]> sigrok.org Git - libsigrok.git/blame_incremental - src/hwdriver.c
Add SR_T_MQLIST.
[libsigrok.git] / src / hwdriver.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <stdlib.h>
21#include <stdio.h>
22#include <sys/types.h>
23#include <dirent.h>
24#include <string.h>
25#include <glib.h>
26#include "config.h" /* Needed for HAVE_LIBUSB_1_0 and others. */
27#include <libsigrok/libsigrok.h>
28#include "libsigrok-internal.h"
29
30/** @cond PRIVATE */
31#define LOG_PREFIX "hwdriver"
32/** @endcond */
33
34/**
35 * @file
36 *
37 * Hardware driver handling in libsigrok.
38 */
39
40/**
41 * @defgroup grp_driver Hardware drivers
42 *
43 * Hardware driver handling in libsigrok.
44 *
45 * @{
46 */
47
48/* Same key order/grouping as in enum sr_configkey (libsigrok.h). */
49static struct sr_key_info sr_key_info_config[] = {
50 /* Device classes */
51 {SR_CONF_LOGIC_ANALYZER, SR_T_STRING, NULL, "Logic analyzer", NULL},
52 {SR_CONF_OSCILLOSCOPE, SR_T_STRING, NULL, "Oscilloscope", NULL},
53 {SR_CONF_MULTIMETER, SR_T_STRING, NULL, "Multimeter", NULL},
54 {SR_CONF_DEMO_DEV, SR_T_STRING, NULL, "Demo device", NULL},
55 {SR_CONF_SOUNDLEVELMETER, SR_T_STRING, NULL, "Sound level meter", NULL},
56 {SR_CONF_THERMOMETER, SR_T_STRING, NULL, "Thermometer", NULL},
57 {SR_CONF_HYGROMETER, SR_T_STRING, NULL, "Hygrometer", NULL},
58 {SR_CONF_ENERGYMETER, SR_T_STRING, NULL, "Energy meter", NULL},
59 {SR_CONF_DEMODULATOR, SR_T_STRING, NULL, "Demodulator", NULL},
60 {SR_CONF_POWER_SUPPLY, SR_T_STRING, NULL, "Power supply", NULL},
61 {SR_CONF_LCRMETER, SR_T_STRING, NULL, "LCR meter", NULL},
62
63 /* Driver scan options */
64 {SR_CONF_CONN, SR_T_STRING, "conn",
65 "Connection", NULL},
66 {SR_CONF_SERIALCOMM, SR_T_STRING, "serialcomm",
67 "Serial communication", NULL},
68 {SR_CONF_MODBUSADDR, SR_T_UINT64, "modbusaddr",
69 "Modbus slave address", NULL},
70
71 /* Device (or channel group) configuration */
72 {SR_CONF_SAMPLERATE, SR_T_UINT64, "samplerate",
73 "Sample rate", NULL},
74 {SR_CONF_CAPTURE_RATIO, SR_T_UINT64, "captureratio",
75 "Pre-trigger capture ratio", NULL},
76 {SR_CONF_PATTERN_MODE, SR_T_STRING, "pattern",
77 "Pattern", NULL},
78 {SR_CONF_RLE, SR_T_BOOL, "rle",
79 "Run length encoding", NULL},
80 {SR_CONF_TRIGGER_SLOPE, SR_T_STRING, "triggerslope",
81 "Trigger slope", NULL},
82 {SR_CONF_AVERAGING, SR_T_BOOL, "averaging",
83 "Averaging", NULL},
84 {SR_CONF_AVG_SAMPLES, SR_T_UINT64, "avg_samples",
85 "Number of samples to average over", NULL},
86 {SR_CONF_TRIGGER_SOURCE, SR_T_STRING, "triggersource",
87 "Trigger source", NULL},
88 {SR_CONF_HORIZ_TRIGGERPOS, SR_T_FLOAT, "horiz_triggerpos",
89 "Horizontal trigger position", NULL},
90 {SR_CONF_BUFFERSIZE, SR_T_UINT64, "buffersize",
91 "Buffer size", NULL},
92 {SR_CONF_TIMEBASE, SR_T_RATIONAL_PERIOD, "timebase",
93 "Time base", NULL},
94 {SR_CONF_FILTER, SR_T_BOOL, "filter",
95 "Filter", NULL},
96 {SR_CONF_VDIV, SR_T_RATIONAL_VOLT, "vdiv",
97 "Volts/div", NULL},
98 {SR_CONF_COUPLING, SR_T_STRING, "coupling",
99 "Coupling", NULL},
100 {SR_CONF_TRIGGER_MATCH, SR_T_INT32, "triggermatch",
101 "Trigger matches", NULL},
102 {SR_CONF_SAMPLE_INTERVAL, SR_T_UINT64, "sample_interval",
103 "Sample interval", NULL},
104 {SR_CONF_NUM_HDIV, SR_T_INT32, "num_hdiv",
105 "Number of horizontal divisions", NULL},
106 {SR_CONF_NUM_VDIV, SR_T_INT32, "num_vdiv",
107 "Number of vertical divisions", NULL},
108 {SR_CONF_SPL_WEIGHT_FREQ, SR_T_STRING, "spl_weight_freq",
109 "Sound pressure level frequency weighting", NULL},
110 {SR_CONF_SPL_WEIGHT_TIME, SR_T_STRING, "spl_weight_time",
111 "Sound pressure level time weighting", NULL},
112 {SR_CONF_SPL_MEASUREMENT_RANGE, SR_T_UINT64_RANGE, "spl_meas_range",
113 "Sound pressure level measurement range", NULL},
114 {SR_CONF_HOLD_MAX, SR_T_BOOL, "hold_max",
115 "Hold max", NULL},
116 {SR_CONF_HOLD_MIN, SR_T_BOOL, "hold_min",
117 "Hold min", NULL},
118 {SR_CONF_VOLTAGE_THRESHOLD, SR_T_DOUBLE_RANGE, "voltage_threshold",
119 "Voltage threshold", NULL },
120 {SR_CONF_EXTERNAL_CLOCK, SR_T_BOOL, "external_clock",
121 "External clock mode", NULL},
122 {SR_CONF_SWAP, SR_T_BOOL, "swap",
123 "Swap channel order", NULL},
124 {SR_CONF_CENTER_FREQUENCY, SR_T_UINT64, "center_frequency",
125 "Center frequency", NULL},
126 {SR_CONF_NUM_LOGIC_CHANNELS, SR_T_INT32, "logic_channels",
127 "Number of logic channels", NULL},
128 {SR_CONF_NUM_ANALOG_CHANNELS, SR_T_INT32, "analog_channels",
129 "Number of analog channels", NULL},
130 {SR_CONF_VOLTAGE, SR_T_FLOAT, "voltage",
131 "Current voltage", NULL},
132 {SR_CONF_VOLTAGE_TARGET, SR_T_FLOAT, "voltage_target",
133 "Voltage target", NULL},
134 {SR_CONF_CURRENT, SR_T_FLOAT, "current",
135 "Current current", NULL},
136 {SR_CONF_CURRENT_LIMIT, SR_T_FLOAT, "current_limit",
137 "Current limit", NULL},
138 {SR_CONF_ENABLED, SR_T_BOOL, "enabled",
139 "Channel enabled", NULL},
140 {SR_CONF_CHANNEL_CONFIG, SR_T_STRING, "channel_config",
141 "Channel modes", NULL},
142 {SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED, SR_T_BOOL, "ovp_enabled",
143 "Over-voltage protection enabled", NULL},
144 {SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE, SR_T_BOOL, "ovp_active",
145 "Over-voltage protection active", NULL},
146 {SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD, SR_T_FLOAT, "ovp_threshold",
147 "Over-voltage protection threshold", NULL},
148 {SR_CONF_OVER_CURRENT_PROTECTION_ENABLED, SR_T_BOOL, "ocp_enabled",
149 "Over-current protection enabled", NULL},
150 {SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE, SR_T_BOOL, "ocp_active",
151 "Over-current protection active", NULL},
152 {SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD, SR_T_FLOAT, "ocp_threshold",
153 "Over-current protection threshold", NULL},
154 {SR_CONF_CLOCK_EDGE, SR_T_STRING, "clock_edge",
155 "Clock edge", NULL},
156 {SR_CONF_AMPLITUDE, SR_T_FLOAT, "amplitude",
157 "Amplitude", NULL},
158 {SR_CONF_REGULATION, SR_T_STRING, "regulation",
159 "Channel regulation", NULL},
160 {SR_CONF_OVER_TEMPERATURE_PROTECTION, SR_T_BOOL, "otp",
161 "Over-temperature protection", NULL},
162 {SR_CONF_OUTPUT_FREQUENCY, SR_T_FLOAT, "output_frequency",
163 "Output frequency", NULL},
164 {SR_CONF_OUTPUT_FREQUENCY_TARGET, SR_T_FLOAT, "output_frequency_target",
165 "Output frequency target", NULL},
166 {SR_CONF_MEASURED_QUANTITY, SR_T_STRING, "measured_quantity",
167 "Measured quantity", NULL},
168 {SR_CONF_MEASURED_2ND_QUANTITY, SR_T_STRING, "measured_2nd_quantity",
169 "Measured secondary quantity", NULL},
170 {SR_CONF_EQUIV_CIRCUIT_MODEL, SR_T_STRING, "equiv_circuit_model",
171 "Equivalent circuit model", NULL},
172 {SR_CONF_OVER_TEMPERATURE_PROTECTION_ACTIVE, SR_T_BOOL, "otp_active",
173 "Over-temperature protection active", NULL},
174
175 /* Special stuff */
176 {SR_CONF_SCAN_OPTIONS, SR_T_STRING, "scan_options",
177 "Scan options", NULL},
178 {SR_CONF_DEVICE_OPTIONS, SR_T_STRING, "device_options",
179 "Device options", NULL},
180 {SR_CONF_SESSIONFILE, SR_T_STRING, "sessionfile",
181 "Session file", NULL},
182 {SR_CONF_CAPTUREFILE, SR_T_STRING, "capturefile",
183 "Capture file", NULL},
184 {SR_CONF_CAPTURE_UNITSIZE, SR_T_UINT64, "capture_unitsize",
185 "Capture unitsize", NULL},
186 {SR_CONF_POWER_OFF, SR_T_BOOL, "power_off",
187 "Power off", NULL},
188 {SR_CONF_DATA_SOURCE, SR_T_STRING, "data_source",
189 "Data source", NULL},
190 {SR_CONF_PROBE_FACTOR, SR_T_UINT64, "probe_factor",
191 "Probe factor", NULL},
192
193 /* Acquisition modes, sample limiting */
194 {SR_CONF_LIMIT_MSEC, SR_T_UINT64, "limit_time",
195 "Time limit", NULL},
196 {SR_CONF_LIMIT_SAMPLES, SR_T_UINT64, "limit_samples",
197 "Sample limit", NULL},
198 {SR_CONF_LIMIT_FRAMES, SR_T_UINT64, "limit_frames",
199 "Frame limit", NULL},
200 {SR_CONF_CONTINUOUS, SR_T_UINT64, "continuous",
201 "Continuous sampling", NULL},
202 {SR_CONF_DATALOG, SR_T_BOOL, "datalog",
203 "Datalog", NULL},
204 {SR_CONF_DEVICE_MODE, SR_T_STRING, "device_mode",
205 "Device mode", NULL},
206 {SR_CONF_TEST_MODE, SR_T_STRING, "test_mode",
207 "Test mode", NULL},
208
209 {0, 0, NULL, NULL, NULL},
210};
211
212static struct sr_key_info sr_key_info_mq[] = {
213 {SR_MQ_VOLTAGE, 0, "voltage", "Voltage", NULL},
214 {SR_MQ_CURRENT, 0, "current", "Current", NULL},
215 {SR_MQ_RESISTANCE, 0, "resistance", "Resistance", NULL},
216 {SR_MQ_CAPACITANCE, 0, "capacitance", "Capacitance", NULL},
217 {SR_MQ_TEMPERATURE, 0, "temperature", "Temperature", NULL},
218 {SR_MQ_FREQUENCY, 0, "frequency", "Frequency", NULL},
219 {SR_MQ_DUTY_CYCLE, 0, "duty_cycle", "Duty cycle", NULL},
220 {SR_MQ_CONTINUITY, 0, "continuity", "Continuity", NULL},
221 {SR_MQ_PULSE_WIDTH, 0, "pulse_width", "Pulse width", NULL},
222 {SR_MQ_CONDUCTANCE, 0, "conductance", "Conductance", NULL},
223 {SR_MQ_POWER, 0, "power", "Power", NULL},
224 {SR_MQ_GAIN, 0, "gain", "Gain", NULL},
225 {SR_MQ_SOUND_PRESSURE_LEVEL, 0, "spl", "Sound pressure level", NULL},
226 {SR_MQ_CARBON_MONOXIDE, 0, "co", "Carbon monoxide", NULL},
227 {SR_MQ_RELATIVE_HUMIDITY, 0, "rh", "Relative humidity", NULL},
228 {SR_MQ_TIME, 0, "time", "Time", NULL},
229 {SR_MQ_WIND_SPEED, 0, "wind_speed", "Wind speed", NULL},
230 {SR_MQ_PRESSURE, 0, "pressure", "Pressure", NULL},
231 {SR_MQ_PARALLEL_INDUCTANCE, 0, "parallel_inductance", "Parallel inductance", NULL},
232 {SR_MQ_PARALLEL_CAPACITANCE, 0, "parallel_capacitance", "Parallel capacitance", NULL},
233 {SR_MQ_PARALLEL_RESISTANCE, 0, "parallel_resistance", "Parallel resistance", NULL},
234 {SR_MQ_SERIES_INDUCTANCE, 0, "series_inductance", "Series inductance", NULL},
235 {SR_MQ_SERIES_CAPACITANCE, 0, "series_capacitance", "Series capacitance", NULL},
236 {SR_MQ_SERIES_RESISTANCE, 0, "series_resistance", "Series resistance", NULL},
237 {SR_MQ_DISSIPATION_FACTOR, 0, "dissipation_factor", "Dissipation factor", NULL},
238 {SR_MQ_QUALITY_FACTOR, 0, "quality_factor", "Quality factor", NULL},
239 {SR_MQ_PHASE_ANGLE, 0, "phase_angle", "Phase angle", NULL},
240 {SR_MQ_DIFFERENCE, 0, "difference", "Difference", NULL},
241 {SR_MQ_COUNT, 0, "count", "Count", NULL},
242 {SR_MQ_POWER_FACTOR, 0, "power_factor", "Power factor", NULL},
243 {SR_MQ_APPARENT_POWER, 0, "apparent_power", "Apparent power", NULL},
244 ALL_ZERO
245};
246
247static struct sr_key_info sr_key_info_mqflag[] = {
248 {SR_MQFLAG_AC, 0, "ac", "AC", NULL},
249 {SR_MQFLAG_DC, 0, "dc", "DC", NULL},
250 {SR_MQFLAG_RMS, 0, "rms", "RMS", NULL},
251 {SR_MQFLAG_DIODE, 0, "diode", "Diode", NULL},
252 {SR_MQFLAG_HOLD, 0, "hold", "Hold", NULL},
253 {SR_MQFLAG_MAX, 0, "max", "Max", NULL},
254 {SR_MQFLAG_MIN, 0, "min", "Min", NULL},
255 {SR_MQFLAG_AUTORANGE, 0, "auto_range", "Auto range", NULL},
256 {SR_MQFLAG_RELATIVE, 0, "relative", "Relative", NULL},
257 {SR_MQFLAG_SPL_FREQ_WEIGHT_A, 0, "spl_freq_weight_a",
258 "Frequency weighted (A)", NULL},
259 {SR_MQFLAG_SPL_FREQ_WEIGHT_C, 0, "spl_freq_weight_c",
260 "Frequency weighted (C)", NULL},
261 {SR_MQFLAG_SPL_FREQ_WEIGHT_Z, 0, "spl_freq_weight_z",
262 "Frequency weighted (Z)", NULL},
263 {SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, 0, "spl_freq_weight_flat",
264 "Frequency weighted (flat)", NULL},
265 {SR_MQFLAG_SPL_TIME_WEIGHT_S, 0, "spl_time_weight_s",
266 "Time weighted (S)", NULL},
267 {SR_MQFLAG_SPL_TIME_WEIGHT_F, 0, "spl_time_weight_f",
268 "Time weighted (F)", NULL},
269 {SR_MQFLAG_SPL_LAT, 0, "spl_time_average", "Time-averaged (LEQ)", NULL},
270 {SR_MQFLAG_SPL_PCT_OVER_ALARM, 0, "spl_pct_over_alarm",
271 "Percentage over alarm", NULL},
272 {SR_MQFLAG_DURATION, 0, "duration", "Duration", NULL},
273 {SR_MQFLAG_AVG, 0, "average", "Average", NULL},
274 {SR_MQFLAG_REFERENCE, 0, "reference", "Reference", NULL},
275 ALL_ZERO
276};
277
278SR_PRIV const GVariantType *sr_variant_type_get(int datatype)
279{
280 switch (datatype) {
281 case SR_T_INT32:
282 return G_VARIANT_TYPE_INT32;
283 case SR_T_UINT64:
284 return G_VARIANT_TYPE_UINT64;
285 case SR_T_STRING:
286 return G_VARIANT_TYPE_STRING;
287 case SR_T_BOOL:
288 return G_VARIANT_TYPE_BOOLEAN;
289 case SR_T_FLOAT:
290 return G_VARIANT_TYPE_DOUBLE;
291 case SR_T_RATIONAL_PERIOD:
292 case SR_T_RATIONAL_VOLT:
293 case SR_T_UINT64_RANGE:
294 case SR_T_DOUBLE_RANGE:
295 return G_VARIANT_TYPE_TUPLE;
296 case SR_T_KEYVALUE:
297 return G_VARIANT_TYPE_DICTIONARY;
298 case SR_T_MQLIST:
299 return G_VARIANT_TYPE_ARRAY;
300 default:
301 return NULL;
302 }
303}
304
305SR_PRIV int sr_variant_type_check(uint32_t key, GVariant *value)
306{
307 const struct sr_key_info *info;
308 const GVariantType *type, *expected;
309 char *expected_string, *type_string;
310
311 info = sr_key_info_get(SR_KEY_CONFIG, key);
312 if (!info)
313 return SR_OK;
314
315 expected = sr_variant_type_get(info->datatype);
316 type = g_variant_get_type(value);
317 if (!g_variant_type_equal(type, expected)
318 && !g_variant_type_is_subtype_of(type, expected)) {
319 expected_string = g_variant_type_dup_string(expected);
320 type_string = g_variant_type_dup_string(type);
321 sr_err("Wrong variant type for key '%s': expected '%s', got '%s'",
322 info->name, expected_string, type_string);
323 g_free(expected_string);
324 g_free(type_string);
325 return SR_ERR_ARG;
326 }
327
328 return SR_OK;
329}
330
331/**
332 * Return the list of supported hardware drivers.
333 *
334 * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
335 *
336 * @retval NULL The ctx argument was NULL, or there are no supported drivers.
337 * @retval Other Pointer to the NULL-terminated list of hardware drivers.
338 * The user should NOT g_free() this list, sr_exit() will do that.
339 *
340 * @since 0.4.0
341 */
342SR_API struct sr_dev_driver **sr_driver_list(const struct sr_context *ctx)
343{
344 if (!ctx)
345 return NULL;
346
347 return ctx->driver_list;
348}
349
350/**
351 * Initialize a hardware driver.
352 *
353 * This usually involves memory allocations and variable initializations
354 * within the driver, but _not_ scanning for attached devices.
355 * The API call sr_driver_scan() is used for that.
356 *
357 * @param ctx A libsigrok context object allocated by a previous call to
358 * sr_init(). Must not be NULL.
359 * @param driver The driver to initialize. This must be a pointer to one of
360 * the entries returned by sr_driver_list(). Must not be NULL.
361 *
362 * @retval SR_OK Success
363 * @retval SR_ERR_ARG Invalid parameter(s).
364 * @retval SR_ERR_BUG Internal errors.
365 * @retval other Another negative error code upon other errors.
366 *
367 * @since 0.2.0
368 */
369SR_API int sr_driver_init(struct sr_context *ctx, struct sr_dev_driver *driver)
370{
371 int ret;
372
373 if (!ctx) {
374 sr_err("Invalid libsigrok context, can't initialize.");
375 return SR_ERR_ARG;
376 }
377
378 if (!driver) {
379 sr_err("Invalid driver, can't initialize.");
380 return SR_ERR_ARG;
381 }
382
383 sr_spew("Initializing driver '%s'.", driver->name);
384 if ((ret = driver->init(driver, ctx)) < 0)
385 sr_err("Failed to initialize the driver: %d.", ret);
386
387 return ret;
388}
389
390static int check_options(struct sr_dev_driver *driver, GSList *options,
391 uint32_t optlist_key, struct sr_dev_inst *sdi,
392 struct sr_channel_group *cg)
393{
394 struct sr_config *src;
395 const struct sr_key_info *srci;
396 GVariant *gvar_opts;
397 GSList *l;
398 const uint32_t *opts;
399 gsize num_opts, i;
400 int ret;
401
402 if (sr_config_list(driver, sdi, cg, optlist_key, &gvar_opts) != SR_OK) {
403 /* Driver publishes no options for this optlist. */
404 return SR_ERR;
405 }
406
407 ret = SR_OK;
408 opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
409 for (l = options; l; l = l->next) {
410 src = l->data;
411 for (i = 0; i < num_opts; i++) {
412 if (opts[i] == src->key)
413 break;
414 }
415 if (i == num_opts) {
416 if (!(srci = sr_key_info_get(SR_KEY_CONFIG, src->key)))
417 /* Shouldn't happen. */
418 sr_err("Invalid option %d.", src->key);
419 else
420 sr_err("Invalid option '%s'.", srci->id);
421 ret = SR_ERR_ARG;
422 break;
423 }
424 if (sr_variant_type_check(src->key, src->data) != SR_OK) {
425 ret = SR_ERR_ARG;
426 break;
427 }
428 }
429 g_variant_unref(gvar_opts);
430
431 return ret;
432}
433
434/**
435 * Tell a hardware driver to scan for devices.
436 *
437 * In addition to the detection, the devices that are found are also
438 * initialized automatically. On some devices, this involves a firmware upload,
439 * or other such measures.
440 *
441 * The order in which the system is scanned for devices is not specified. The
442 * caller should not assume or rely on any specific order.
443 *
444 * Before calling sr_driver_scan(), the user must have previously initialized
445 * the driver by calling sr_driver_init().
446 *
447 * @param driver The driver that should scan. This must be a pointer to one of
448 * the entries returned by sr_driver_list(). Must not be NULL.
449 * @param options A list of 'struct sr_hwopt' options to pass to the driver's
450 * scanner. Can be NULL/empty.
451 *
452 * @return A GSList * of 'struct sr_dev_inst', or NULL if no devices were
453 * found (or errors were encountered). This list must be freed by the
454 * caller using g_slist_free(), but without freeing the data pointed
455 * to in the list.
456 *
457 * @since 0.2.0
458 */
459SR_API GSList *sr_driver_scan(struct sr_dev_driver *driver, GSList *options)
460{
461 GSList *l;
462
463 if (!driver) {
464 sr_err("Invalid driver, can't scan for devices.");
465 return NULL;
466 }
467
468 if (!driver->context) {
469 sr_err("Driver not initialized, can't scan for devices.");
470 return NULL;
471 }
472
473 if (options) {
474 if (check_options(driver, options, SR_CONF_SCAN_OPTIONS, NULL, NULL) != SR_OK)
475 return NULL;
476 }
477
478 l = driver->scan(driver, options);
479
480 sr_spew("Scan of '%s' found %d devices.", driver->name,
481 g_slist_length(l));
482
483 return l;
484}
485
486/**
487 * Call driver cleanup function for all drivers.
488 *
489 * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
490 *
491 * @private
492 */
493SR_PRIV void sr_hw_cleanup_all(const struct sr_context *ctx)
494{
495 int i;
496 struct sr_dev_driver **drivers;
497
498 if (!ctx)
499 return;
500
501 drivers = sr_driver_list(ctx);
502 for (i = 0; drivers[i]; i++) {
503 if (drivers[i]->cleanup)
504 drivers[i]->cleanup(drivers[i]);
505 drivers[i]->context = NULL;
506 }
507}
508
509/** Allocate struct sr_config.
510 * A floating reference can be passed in for data.
511 * @private
512 */
513SR_PRIV struct sr_config *sr_config_new(uint32_t key, GVariant *data)
514{
515 struct sr_config *src;
516
517 src = g_malloc0(sizeof(struct sr_config));
518 src->key = key;
519 src->data = g_variant_ref_sink(data);
520
521 return src;
522}
523
524/** Free struct sr_config.
525 * @private
526 */
527SR_PRIV void sr_config_free(struct sr_config *src)
528{
529
530 if (!src || !src->data) {
531 sr_err("%s: invalid data!", __func__);
532 return;
533 }
534
535 g_variant_unref(src->data);
536 g_free(src);
537
538}
539
540static void log_key(const struct sr_dev_inst *sdi,
541 const struct sr_channel_group *cg, uint32_t key, int op, GVariant *data)
542{
543 const char *opstr;
544 const struct sr_key_info *srci;
545
546 /* Don't log SR_CONF_DEVICE_OPTIONS, it's verbose and not too useful. */
547 if (key == SR_CONF_DEVICE_OPTIONS)
548 return;
549
550 opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
551 srci = sr_key_info_get(SR_KEY_CONFIG, key);
552
553 sr_spew("sr_config_%s(): key %d (%s) sdi %p cg %s -> %s", opstr, key,
554 srci ? srci->id : "NULL", sdi, cg ? cg->name : "NULL",
555 data ? g_variant_print(data, TRUE) : "NULL");
556}
557
558static int check_key(const struct sr_dev_driver *driver,
559 const struct sr_dev_inst *sdi, const struct sr_channel_group *cg,
560 uint32_t key, int op, GVariant *data)
561{
562 const struct sr_key_info *srci;
563 gsize num_opts, i;
564 GVariant *gvar_opts;
565 const uint32_t *opts;
566 uint32_t pub_opt;
567 char *suffix, *opstr;
568
569 if (sdi && cg)
570 suffix = " for this device and channel group";
571 else if (sdi)
572 suffix = " for this device";
573 else
574 suffix = "";
575
576 if (!(srci = sr_key_info_get(SR_KEY_CONFIG, key))) {
577 sr_err("Invalid key %d.", key);
578 return SR_ERR_ARG;
579 }
580 opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
581
582 switch (key) {
583 case SR_CONF_LIMIT_MSEC:
584 case SR_CONF_LIMIT_SAMPLES:
585 case SR_CONF_SAMPLERATE:
586 /* Setting any of these to 0 is not useful. */
587 if (op != SR_CONF_SET || !data)
588 break;
589 if (g_variant_get_uint64(data) == 0) {
590 sr_err("Cannot set '%s' to 0.", srci->id);
591 return SR_ERR_ARG;
592 }
593 break;
594 }
595
596 if (sr_config_list(driver, sdi, cg, SR_CONF_DEVICE_OPTIONS, &gvar_opts) != SR_OK) {
597 /* Driver publishes no options. */
598 sr_err("No options available%s.", srci->id, suffix);
599 return SR_ERR_ARG;
600 }
601 opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
602 pub_opt = 0;
603 for (i = 0; i < num_opts; i++) {
604 if ((opts[i] & SR_CONF_MASK) == key) {
605 pub_opt = opts[i];
606 break;
607 }
608 }
609 g_variant_unref(gvar_opts);
610 if (!pub_opt) {
611 sr_err("Option '%s' not available%s.", srci->id, suffix);
612 return SR_ERR_ARG;
613 }
614
615 if (!(pub_opt & op)) {
616 sr_err("Option '%s' not available to %s%s.", srci->id, opstr, suffix);
617 return SR_ERR_ARG;
618 }
619
620 return SR_OK;
621}
622
623/**
624 * Query value of a configuration key at the given driver or device instance.
625 *
626 * @param[in] driver The sr_dev_driver struct to query.
627 * @param[in] sdi (optional) If the key is specific to a device, this must
628 * contain a pointer to the struct sr_dev_inst to be checked.
629 * Otherwise it must be NULL.
630 * @param[in] cg The channel group on the device for which to list the
631 * values, or NULL.
632 * @param[in] key The configuration key (SR_CONF_*).
633 * @param[in,out] data Pointer to a GVariant where the value will be stored.
634 * Must not be NULL. The caller is given ownership of the GVariant
635 * and must thus decrease the refcount after use. However if
636 * this function returns an error code, the field should be
637 * considered unused, and should not be unreferenced.
638 *
639 * @retval SR_OK Success.
640 * @retval SR_ERR Error.
641 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
642 * interpreted as an error by the caller; merely as an indication
643 * that it's not applicable.
644 *
645 * @since 0.3.0
646 */
647SR_API int sr_config_get(const struct sr_dev_driver *driver,
648 const struct sr_dev_inst *sdi,
649 const struct sr_channel_group *cg,
650 uint32_t key, GVariant **data)
651{
652 int ret;
653
654 if (!driver || !data)
655 return SR_ERR;
656
657 if (!driver->config_get)
658 return SR_ERR_ARG;
659
660 if (check_key(driver, sdi, cg, key, SR_CONF_GET, NULL) != SR_OK)
661 return SR_ERR_ARG;
662
663 if ((ret = driver->config_get(key, data, sdi, cg)) == SR_OK) {
664 log_key(sdi, cg, key, SR_CONF_GET, *data);
665 /* Got a floating reference from the driver. Sink it here,
666 * caller will need to unref when done with it. */
667 g_variant_ref_sink(*data);
668 }
669
670 return ret;
671}
672
673/**
674 * Set value of a configuration key in a device instance.
675 *
676 * @param[in] sdi The device instance.
677 * @param[in] cg The channel group on the device for which to list the
678 * values, or NULL.
679 * @param[in] key The configuration key (SR_CONF_*).
680 * @param data The new value for the key, as a GVariant with GVariantType
681 * appropriate to that key. A floating reference can be passed
682 * in; its refcount will be sunk and unreferenced after use.
683 *
684 * @retval SR_OK Success.
685 * @retval SR_ERR Error.
686 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
687 * interpreted as an error by the caller; merely as an indication
688 * that it's not applicable.
689 *
690 * @since 0.3.0
691 */
692SR_API int sr_config_set(const struct sr_dev_inst *sdi,
693 const struct sr_channel_group *cg,
694 uint32_t key, GVariant *data)
695{
696 int ret;
697
698 g_variant_ref_sink(data);
699
700 if (!sdi || !sdi->driver || !data)
701 ret = SR_ERR;
702 else if (!sdi->driver->config_set)
703 ret = SR_ERR_ARG;
704 else if (check_key(sdi->driver, sdi, cg, key, SR_CONF_SET, data) != SR_OK)
705 return SR_ERR_ARG;
706 else if ((ret = sr_variant_type_check(key, data)) == SR_OK) {
707 log_key(sdi, cg, key, SR_CONF_SET, data);
708 ret = sdi->driver->config_set(key, data, sdi, cg);
709 }
710
711 g_variant_unref(data);
712
713 return ret;
714}
715
716/**
717 * Apply configuration settings to the device hardware.
718 *
719 * @param sdi The device instance.
720 *
721 * @return SR_OK upon success or SR_ERR in case of error.
722 *
723 * @since 0.3.0
724 */
725SR_API int sr_config_commit(const struct sr_dev_inst *sdi)
726{
727 int ret;
728
729 if (!sdi || !sdi->driver)
730 ret = SR_ERR;
731 else if (!sdi->driver->config_commit)
732 ret = SR_OK;
733 else
734 ret = sdi->driver->config_commit(sdi);
735
736 return ret;
737}
738
739/**
740 * List all possible values for a configuration key.
741 *
742 * @param[in] driver The sr_dev_driver struct to query.
743 * @param[in] sdi (optional) If the key is specific to a device, this must
744 * contain a pointer to the struct sr_dev_inst to be checked.
745 * @param[in] cg The channel group on the device for which to list the
746 * values, or NULL.
747 * @param[in] key The configuration key (SR_CONF_*).
748 * @param[in,out] data A pointer to a GVariant where the list will be stored.
749 * The caller is given ownership of the GVariant and must thus
750 * unref the GVariant after use. However if this function
751 * returns an error code, the field should be considered
752 * unused, and should not be unreferenced.
753 *
754 * @retval SR_OK Success.
755 * @retval SR_ERR Error.
756 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
757 * interpreted as an error by the caller; merely as an indication
758 * that it's not applicable.
759 *
760 * @since 0.3.0
761 */
762SR_API int sr_config_list(const struct sr_dev_driver *driver,
763 const struct sr_dev_inst *sdi,
764 const struct sr_channel_group *cg,
765 uint32_t key, GVariant **data)
766{
767 int ret;
768
769 if (!driver || !data)
770 return SR_ERR;
771 else if (!driver->config_list)
772 return SR_ERR_ARG;
773 else if (key != SR_CONF_SCAN_OPTIONS && key != SR_CONF_DEVICE_OPTIONS) {
774 if (check_key(driver, sdi, cg, key, SR_CONF_LIST, NULL) != SR_OK)
775 return SR_ERR_ARG;
776 }
777 if ((ret = driver->config_list(key, data, sdi, cg)) == SR_OK) {
778 log_key(sdi, cg, key, SR_CONF_LIST, *data);
779 g_variant_ref_sink(*data);
780 }
781
782 return ret;
783}
784
785static struct sr_key_info *get_keytable(int keytype)
786{
787 struct sr_key_info *table;
788
789 switch (keytype) {
790 case SR_KEY_CONFIG:
791 table = sr_key_info_config;
792 break;
793 case SR_KEY_MQ:
794 table = sr_key_info_mq;
795 break;
796 case SR_KEY_MQFLAGS:
797 table = sr_key_info_mqflag;
798 break;
799 default:
800 sr_err("Invalid keytype %d", keytype);
801 return NULL;
802 }
803
804 return table;
805}
806
807/**
808 * Get information about a key, by key.
809 *
810 * @param[in] keytype The namespace the key is in.
811 * @param[in] key The key to find.
812 *
813 * @return A pointer to a struct sr_key_info, or NULL if the key
814 * was not found.
815 *
816 * @since 0.3.0
817 */
818SR_API const struct sr_key_info *sr_key_info_get(int keytype, uint32_t key)
819{
820 struct sr_key_info *table;
821 int i;
822
823 if (!(table = get_keytable(keytype)))
824 return NULL;
825
826 for (i = 0; table[i].key; i++) {
827 if (table[i].key == key)
828 return &table[i];
829 }
830
831 return NULL;
832}
833
834/**
835 * Get information about a key, by name.
836 *
837 * @param[in] keytype The namespace the key is in.
838 * @param[in] keyid The key id string.
839 *
840 * @return A pointer to a struct sr_key_info, or NULL if the key
841 * was not found.
842 *
843 * @since 0.2.0
844 */
845SR_API const struct sr_key_info *sr_key_info_name_get(int keytype, const char *keyid)
846{
847 struct sr_key_info *table;
848 int i;
849
850 if (!(table = get_keytable(keytype)))
851 return NULL;
852
853 for (i = 0; table[i].key; i++) {
854 if (!table[i].id)
855 continue;
856 if (!strcmp(table[i].id, keyid))
857 return &table[i];
858 }
859
860 return NULL;
861}
862
863/** @} */