]> sigrok.org Git - libsigrok.git/blame_incremental - src/hwdriver.c
input: vcd: support 1 bit vectors
[libsigrok.git] / src / hwdriver.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include <stdlib.h>
22#include <stdio.h>
23#include <sys/types.h>
24#include <dirent.h>
25#include <string.h>
26#include <glib.h>
27#include <libsigrok/libsigrok.h>
28#include "libsigrok-internal.h"
29
30/** @cond PRIVATE */
31#define LOG_PREFIX "hwdriver"
32/** @endcond */
33
34/**
35 * @file
36 *
37 * Hardware driver handling in libsigrok.
38 */
39
40/**
41 * @defgroup grp_driver Hardware drivers
42 *
43 * Hardware driver handling in libsigrok.
44 *
45 * @{
46 */
47
48/* Please use the same order/grouping as in enum sr_configkey (libsigrok.h). */
49static struct sr_key_info sr_key_info_config[] = {
50 /* Device classes */
51 {SR_CONF_LOGIC_ANALYZER, SR_T_STRING, NULL, "Logic analyzer", NULL},
52 {SR_CONF_OSCILLOSCOPE, SR_T_STRING, NULL, "Oscilloscope", NULL},
53 {SR_CONF_MULTIMETER, SR_T_STRING, NULL, "Multimeter", NULL},
54 {SR_CONF_DEMO_DEV, SR_T_STRING, NULL, "Demo device", NULL},
55 {SR_CONF_SOUNDLEVELMETER, SR_T_STRING, NULL, "Sound level meter", NULL},
56 {SR_CONF_THERMOMETER, SR_T_STRING, NULL, "Thermometer", NULL},
57 {SR_CONF_HYGROMETER, SR_T_STRING, NULL, "Hygrometer", NULL},
58 {SR_CONF_ENERGYMETER, SR_T_STRING, NULL, "Energy meter", NULL},
59 {SR_CONF_DEMODULATOR, SR_T_STRING, NULL, "Demodulator", NULL},
60 {SR_CONF_POWER_SUPPLY, SR_T_STRING, NULL, "Power supply", NULL},
61 {SR_CONF_LCRMETER, SR_T_STRING, NULL, "LCR meter", NULL},
62 {SR_CONF_ELECTRONIC_LOAD, SR_T_STRING, NULL, "Electronic load", NULL},
63 {SR_CONF_SCALE, SR_T_STRING, NULL, "Scale", NULL},
64
65 /* Driver scan options */
66 {SR_CONF_CONN, SR_T_STRING, "conn",
67 "Connection", NULL},
68 {SR_CONF_SERIALCOMM, SR_T_STRING, "serialcomm",
69 "Serial communication", NULL},
70 {SR_CONF_MODBUSADDR, SR_T_UINT64, "modbusaddr",
71 "Modbus slave address", NULL},
72
73 /* Device (or channel group) configuration */
74 {SR_CONF_SAMPLERATE, SR_T_UINT64, "samplerate",
75 "Sample rate", NULL},
76 {SR_CONF_CAPTURE_RATIO, SR_T_UINT64, "captureratio",
77 "Pre-trigger capture ratio", NULL},
78 {SR_CONF_PATTERN_MODE, SR_T_STRING, "pattern",
79 "Pattern", NULL},
80 {SR_CONF_RLE, SR_T_BOOL, "rle",
81 "Run length encoding", NULL},
82 {SR_CONF_TRIGGER_SLOPE, SR_T_STRING, "triggerslope",
83 "Trigger slope", NULL},
84 {SR_CONF_AVERAGING, SR_T_BOOL, "averaging",
85 "Averaging", NULL},
86 {SR_CONF_AVG_SAMPLES, SR_T_UINT64, "avg_samples",
87 "Number of samples to average over", NULL},
88 {SR_CONF_TRIGGER_SOURCE, SR_T_STRING, "triggersource",
89 "Trigger source", NULL},
90 {SR_CONF_HORIZ_TRIGGERPOS, SR_T_FLOAT, "horiz_triggerpos",
91 "Horizontal trigger position", NULL},
92 {SR_CONF_BUFFERSIZE, SR_T_UINT64, "buffersize",
93 "Buffer size", NULL},
94 {SR_CONF_TIMEBASE, SR_T_RATIONAL_PERIOD, "timebase",
95 "Time base", NULL},
96 {SR_CONF_FILTER, SR_T_BOOL, "filter",
97 "Filter", NULL},
98 {SR_CONF_VDIV, SR_T_RATIONAL_VOLT, "vdiv",
99 "Volts/div", NULL},
100 {SR_CONF_COUPLING, SR_T_STRING, "coupling",
101 "Coupling", NULL},
102 {SR_CONF_TRIGGER_MATCH, SR_T_INT32, "triggermatch",
103 "Trigger matches", NULL},
104 {SR_CONF_SAMPLE_INTERVAL, SR_T_UINT64, "sample_interval",
105 "Sample interval", NULL},
106 {SR_CONF_NUM_HDIV, SR_T_INT32, "num_hdiv",
107 "Number of horizontal divisions", NULL},
108 {SR_CONF_NUM_VDIV, SR_T_INT32, "num_vdiv",
109 "Number of vertical divisions", NULL},
110 {SR_CONF_SPL_WEIGHT_FREQ, SR_T_STRING, "spl_weight_freq",
111 "Sound pressure level frequency weighting", NULL},
112 {SR_CONF_SPL_WEIGHT_TIME, SR_T_STRING, "spl_weight_time",
113 "Sound pressure level time weighting", NULL},
114 {SR_CONF_SPL_MEASUREMENT_RANGE, SR_T_UINT64_RANGE, "spl_meas_range",
115 "Sound pressure level measurement range", NULL},
116 {SR_CONF_HOLD_MAX, SR_T_BOOL, "hold_max",
117 "Hold max", NULL},
118 {SR_CONF_HOLD_MIN, SR_T_BOOL, "hold_min",
119 "Hold min", NULL},
120 {SR_CONF_VOLTAGE_THRESHOLD, SR_T_DOUBLE_RANGE, "voltage_threshold",
121 "Voltage threshold", NULL },
122 {SR_CONF_EXTERNAL_CLOCK, SR_T_BOOL, "external_clock",
123 "External clock mode", NULL},
124 {SR_CONF_SWAP, SR_T_BOOL, "swap",
125 "Swap channel order", NULL},
126 {SR_CONF_CENTER_FREQUENCY, SR_T_UINT64, "center_frequency",
127 "Center frequency", NULL},
128 {SR_CONF_NUM_LOGIC_CHANNELS, SR_T_INT32, "logic_channels",
129 "Number of logic channels", NULL},
130 {SR_CONF_NUM_ANALOG_CHANNELS, SR_T_INT32, "analog_channels",
131 "Number of analog channels", NULL},
132 {SR_CONF_VOLTAGE, SR_T_FLOAT, "voltage",
133 "Current voltage", NULL},
134 {SR_CONF_VOLTAGE_TARGET, SR_T_FLOAT, "voltage_target",
135 "Voltage target", NULL},
136 {SR_CONF_CURRENT, SR_T_FLOAT, "current",
137 "Current current", NULL},
138 {SR_CONF_CURRENT_LIMIT, SR_T_FLOAT, "current_limit",
139 "Current limit", NULL},
140 {SR_CONF_ENABLED, SR_T_BOOL, "enabled",
141 "Channel enabled", NULL},
142 {SR_CONF_CHANNEL_CONFIG, SR_T_STRING, "channel_config",
143 "Channel modes", NULL},
144 {SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED, SR_T_BOOL, "ovp_enabled",
145 "Over-voltage protection enabled", NULL},
146 {SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE, SR_T_BOOL, "ovp_active",
147 "Over-voltage protection active", NULL},
148 {SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD, SR_T_FLOAT, "ovp_threshold",
149 "Over-voltage protection threshold", NULL},
150 {SR_CONF_OVER_CURRENT_PROTECTION_ENABLED, SR_T_BOOL, "ocp_enabled",
151 "Over-current protection enabled", NULL},
152 {SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE, SR_T_BOOL, "ocp_active",
153 "Over-current protection active", NULL},
154 {SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD, SR_T_FLOAT, "ocp_threshold",
155 "Over-current protection threshold", NULL},
156 {SR_CONF_CLOCK_EDGE, SR_T_STRING, "clock_edge",
157 "Clock edge", NULL},
158 {SR_CONF_AMPLITUDE, SR_T_FLOAT, "amplitude",
159 "Amplitude", NULL},
160 {SR_CONF_REGULATION, SR_T_STRING, "regulation",
161 "Channel regulation", NULL},
162 {SR_CONF_OVER_TEMPERATURE_PROTECTION, SR_T_BOOL, "otp",
163 "Over-temperature protection", NULL},
164 {SR_CONF_OUTPUT_FREQUENCY, SR_T_FLOAT, "output_frequency",
165 "Output frequency", NULL},
166 {SR_CONF_OUTPUT_FREQUENCY_TARGET, SR_T_FLOAT, "output_frequency_target",
167 "Output frequency target", NULL},
168 {SR_CONF_MEASURED_QUANTITY, SR_T_MQ, "measured_quantity",
169 "Measured quantity", NULL},
170 {SR_CONF_EQUIV_CIRCUIT_MODEL, SR_T_STRING, "equiv_circuit_model",
171 "Equivalent circuit model", NULL},
172 {SR_CONF_OVER_TEMPERATURE_PROTECTION_ACTIVE, SR_T_BOOL, "otp_active",
173 "Over-temperature protection active", NULL},
174
175 /* Special stuff */
176 {SR_CONF_SESSIONFILE, SR_T_STRING, "sessionfile",
177 "Session file", NULL},
178 {SR_CONF_CAPTUREFILE, SR_T_STRING, "capturefile",
179 "Capture file", NULL},
180 {SR_CONF_CAPTURE_UNITSIZE, SR_T_UINT64, "capture_unitsize",
181 "Capture unitsize", NULL},
182 {SR_CONF_POWER_OFF, SR_T_BOOL, "power_off",
183 "Power off", NULL},
184 {SR_CONF_DATA_SOURCE, SR_T_STRING, "data_source",
185 "Data source", NULL},
186 {SR_CONF_PROBE_FACTOR, SR_T_UINT64, "probe_factor",
187 "Probe factor", NULL},
188
189 /* Acquisition modes, sample limiting */
190 {SR_CONF_LIMIT_MSEC, SR_T_UINT64, "limit_time",
191 "Time limit", NULL},
192 {SR_CONF_LIMIT_SAMPLES, SR_T_UINT64, "limit_samples",
193 "Sample limit", NULL},
194 {SR_CONF_LIMIT_FRAMES, SR_T_UINT64, "limit_frames",
195 "Frame limit", NULL},
196 {SR_CONF_CONTINUOUS, SR_T_UINT64, "continuous",
197 "Continuous sampling", NULL},
198 {SR_CONF_DATALOG, SR_T_BOOL, "datalog",
199 "Datalog", NULL},
200 {SR_CONF_DEVICE_MODE, SR_T_STRING, "device_mode",
201 "Device mode", NULL},
202 {SR_CONF_TEST_MODE, SR_T_STRING, "test_mode",
203 "Test mode", NULL},
204
205 ALL_ZERO
206};
207
208/* Please use the same order as in enum sr_mq (libsigrok.h). */
209static struct sr_key_info sr_key_info_mq[] = {
210 {SR_MQ_VOLTAGE, 0, "voltage", "Voltage", NULL},
211 {SR_MQ_CURRENT, 0, "current", "Current", NULL},
212 {SR_MQ_RESISTANCE, 0, "resistance", "Resistance", NULL},
213 {SR_MQ_CAPACITANCE, 0, "capacitance", "Capacitance", NULL},
214 {SR_MQ_TEMPERATURE, 0, "temperature", "Temperature", NULL},
215 {SR_MQ_FREQUENCY, 0, "frequency", "Frequency", NULL},
216 {SR_MQ_DUTY_CYCLE, 0, "duty_cycle", "Duty cycle", NULL},
217 {SR_MQ_CONTINUITY, 0, "continuity", "Continuity", NULL},
218 {SR_MQ_PULSE_WIDTH, 0, "pulse_width", "Pulse width", NULL},
219 {SR_MQ_CONDUCTANCE, 0, "conductance", "Conductance", NULL},
220 {SR_MQ_POWER, 0, "power", "Power", NULL},
221 {SR_MQ_GAIN, 0, "gain", "Gain", NULL},
222 {SR_MQ_SOUND_PRESSURE_LEVEL, 0, "spl", "Sound pressure level", NULL},
223 {SR_MQ_CARBON_MONOXIDE, 0, "co", "Carbon monoxide", NULL},
224 {SR_MQ_RELATIVE_HUMIDITY, 0, "rh", "Relative humidity", NULL},
225 {SR_MQ_TIME, 0, "time", "Time", NULL},
226 {SR_MQ_WIND_SPEED, 0, "wind_speed", "Wind speed", NULL},
227 {SR_MQ_PRESSURE, 0, "pressure", "Pressure", NULL},
228 {SR_MQ_PARALLEL_INDUCTANCE, 0, "parallel_inductance", "Parallel inductance", NULL},
229 {SR_MQ_PARALLEL_CAPACITANCE, 0, "parallel_capacitance", "Parallel capacitance", NULL},
230 {SR_MQ_PARALLEL_RESISTANCE, 0, "parallel_resistance", "Parallel resistance", NULL},
231 {SR_MQ_SERIES_INDUCTANCE, 0, "series_inductance", "Series inductance", NULL},
232 {SR_MQ_SERIES_CAPACITANCE, 0, "series_capacitance", "Series capacitance", NULL},
233 {SR_MQ_SERIES_RESISTANCE, 0, "series_resistance", "Series resistance", NULL},
234 {SR_MQ_DISSIPATION_FACTOR, 0, "dissipation_factor", "Dissipation factor", NULL},
235 {SR_MQ_QUALITY_FACTOR, 0, "quality_factor", "Quality factor", NULL},
236 {SR_MQ_PHASE_ANGLE, 0, "phase_angle", "Phase angle", NULL},
237 {SR_MQ_DIFFERENCE, 0, "difference", "Difference", NULL},
238 {SR_MQ_COUNT, 0, "count", "Count", NULL},
239 {SR_MQ_POWER_FACTOR, 0, "power_factor", "Power factor", NULL},
240 {SR_MQ_APPARENT_POWER, 0, "apparent_power", "Apparent power", NULL},
241 {SR_MQ_MASS, 0, "mass", "Mass", NULL},
242 ALL_ZERO
243};
244
245/* Please use the same order as in enum sr_mqflag (libsigrok.h). */
246static struct sr_key_info sr_key_info_mqflag[] = {
247 {SR_MQFLAG_AC, 0, "ac", "AC", NULL},
248 {SR_MQFLAG_DC, 0, "dc", "DC", NULL},
249 {SR_MQFLAG_RMS, 0, "rms", "RMS", NULL},
250 {SR_MQFLAG_DIODE, 0, "diode", "Diode", NULL},
251 {SR_MQFLAG_HOLD, 0, "hold", "Hold", NULL},
252 {SR_MQFLAG_MAX, 0, "max", "Max", NULL},
253 {SR_MQFLAG_MIN, 0, "min", "Min", NULL},
254 {SR_MQFLAG_AUTORANGE, 0, "auto_range", "Auto range", NULL},
255 {SR_MQFLAG_RELATIVE, 0, "relative", "Relative", NULL},
256 {SR_MQFLAG_SPL_FREQ_WEIGHT_A, 0, "spl_freq_weight_a",
257 "Frequency weighted (A)", NULL},
258 {SR_MQFLAG_SPL_FREQ_WEIGHT_C, 0, "spl_freq_weight_c",
259 "Frequency weighted (C)", NULL},
260 {SR_MQFLAG_SPL_FREQ_WEIGHT_Z, 0, "spl_freq_weight_z",
261 "Frequency weighted (Z)", NULL},
262 {SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, 0, "spl_freq_weight_flat",
263 "Frequency weighted (flat)", NULL},
264 {SR_MQFLAG_SPL_TIME_WEIGHT_S, 0, "spl_time_weight_s",
265 "Time weighted (S)", NULL},
266 {SR_MQFLAG_SPL_TIME_WEIGHT_F, 0, "spl_time_weight_f",
267 "Time weighted (F)", NULL},
268 {SR_MQFLAG_SPL_LAT, 0, "spl_time_average", "Time-averaged (LEQ)", NULL},
269 {SR_MQFLAG_SPL_PCT_OVER_ALARM, 0, "spl_pct_over_alarm",
270 "Percentage over alarm", NULL},
271 {SR_MQFLAG_DURATION, 0, "duration", "Duration", NULL},
272 {SR_MQFLAG_AVG, 0, "average", "Average", NULL},
273 {SR_MQFLAG_REFERENCE, 0, "reference", "Reference", NULL},
274 {SR_MQFLAG_UNSTABLE, 0, "unstable", "Unstable", NULL},
275 ALL_ZERO
276};
277
278/* This must handle all the keys from enum sr_datatype (libsigrok.h). */
279SR_PRIV const GVariantType *sr_variant_type_get(int datatype)
280{
281 switch (datatype) {
282 case SR_T_INT32:
283 return G_VARIANT_TYPE_INT32;
284 case SR_T_UINT64:
285 return G_VARIANT_TYPE_UINT64;
286 case SR_T_STRING:
287 return G_VARIANT_TYPE_STRING;
288 case SR_T_BOOL:
289 return G_VARIANT_TYPE_BOOLEAN;
290 case SR_T_FLOAT:
291 return G_VARIANT_TYPE_DOUBLE;
292 case SR_T_RATIONAL_PERIOD:
293 case SR_T_RATIONAL_VOLT:
294 case SR_T_UINT64_RANGE:
295 case SR_T_DOUBLE_RANGE:
296 return G_VARIANT_TYPE_TUPLE;
297 case SR_T_KEYVALUE:
298 return G_VARIANT_TYPE_DICTIONARY;
299 case SR_T_MQ:
300 return G_VARIANT_TYPE_TUPLE;
301 default:
302 return NULL;
303 }
304}
305
306SR_PRIV int sr_variant_type_check(uint32_t key, GVariant *value)
307{
308 const struct sr_key_info *info;
309 const GVariantType *type, *expected;
310 char *expected_string, *type_string;
311
312 info = sr_key_info_get(SR_KEY_CONFIG, key);
313 if (!info)
314 return SR_OK;
315
316 expected = sr_variant_type_get(info->datatype);
317 type = g_variant_get_type(value);
318 if (!g_variant_type_equal(type, expected)
319 && !g_variant_type_is_subtype_of(type, expected)) {
320 expected_string = g_variant_type_dup_string(expected);
321 type_string = g_variant_type_dup_string(type);
322 sr_err("Wrong variant type for key '%s': expected '%s', got '%s'",
323 info->name, expected_string, type_string);
324 g_free(expected_string);
325 g_free(type_string);
326 return SR_ERR_ARG;
327 }
328
329 return SR_OK;
330}
331
332/**
333 * Return the list of supported hardware drivers.
334 *
335 * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
336 *
337 * @retval NULL The ctx argument was NULL, or there are no supported drivers.
338 * @retval Other Pointer to the NULL-terminated list of hardware drivers.
339 * The user should NOT g_free() this list, sr_exit() will do that.
340 *
341 * @since 0.4.0
342 */
343SR_API struct sr_dev_driver **sr_driver_list(const struct sr_context *ctx)
344{
345 if (!ctx)
346 return NULL;
347
348 return ctx->driver_list;
349}
350
351/**
352 * Initialize a hardware driver.
353 *
354 * This usually involves memory allocations and variable initializations
355 * within the driver, but _not_ scanning for attached devices.
356 * The API call sr_driver_scan() is used for that.
357 *
358 * @param ctx A libsigrok context object allocated by a previous call to
359 * sr_init(). Must not be NULL.
360 * @param driver The driver to initialize. This must be a pointer to one of
361 * the entries returned by sr_driver_list(). Must not be NULL.
362 *
363 * @retval SR_OK Success
364 * @retval SR_ERR_ARG Invalid parameter(s).
365 * @retval SR_ERR_BUG Internal errors.
366 * @retval other Another negative error code upon other errors.
367 *
368 * @since 0.2.0
369 */
370SR_API int sr_driver_init(struct sr_context *ctx, struct sr_dev_driver *driver)
371{
372 int ret;
373
374 if (!ctx) {
375 sr_err("Invalid libsigrok context, can't initialize.");
376 return SR_ERR_ARG;
377 }
378
379 if (!driver) {
380 sr_err("Invalid driver, can't initialize.");
381 return SR_ERR_ARG;
382 }
383
384 sr_spew("Initializing driver '%s'.", driver->name);
385 if ((ret = driver->init(driver, ctx)) < 0)
386 sr_err("Failed to initialize the driver: %d.", ret);
387
388 return ret;
389}
390
391/**
392 * Enumerate scan options supported by this driver.
393 *
394 * Before calling sr_driver_scan_options_list(), the user must have previously
395 * initialized the driver by calling sr_driver_init().
396 *
397 * @param driver The driver to enumerate options for. This must be a pointer
398 * to one of the entries returned by sr_driver_list(). Must not
399 * be NULL.
400 *
401 * @return A GArray * of uint32_t entries, or NULL on invalid arguments. Each
402 * entry is a configuration key that is supported as a scan option.
403 * The array must be freed by the caller using g_array_free().
404 *
405 * @since 0.4.0
406 */
407SR_API GArray *sr_driver_scan_options_list(const struct sr_dev_driver *driver)
408{
409 GVariant *gvar;
410 const uint32_t *opts;
411 gsize num_opts;
412 GArray *result;
413
414 if (sr_config_list(driver, NULL, NULL, SR_CONF_SCAN_OPTIONS, &gvar) != SR_OK)
415 return NULL;
416
417 opts = g_variant_get_fixed_array(gvar, &num_opts, sizeof(uint32_t));
418
419 result = g_array_sized_new(FALSE, FALSE, sizeof(uint32_t), num_opts);
420
421 g_array_insert_vals(result, 0, opts, num_opts);
422
423 g_variant_unref(gvar);
424
425 return result;
426}
427
428static int check_options(struct sr_dev_driver *driver, GSList *options,
429 uint32_t optlist_key, struct sr_dev_inst *sdi,
430 struct sr_channel_group *cg)
431{
432 struct sr_config *src;
433 const struct sr_key_info *srci;
434 GVariant *gvar_opts;
435 GSList *l;
436 const uint32_t *opts;
437 gsize num_opts, i;
438 int ret;
439
440 if (sr_config_list(driver, sdi, cg, optlist_key, &gvar_opts) != SR_OK) {
441 /* Driver publishes no options for this optlist. */
442 return SR_ERR;
443 }
444
445 ret = SR_OK;
446 opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
447 for (l = options; l; l = l->next) {
448 src = l->data;
449 for (i = 0; i < num_opts; i++) {
450 if (opts[i] == src->key)
451 break;
452 }
453 if (i == num_opts) {
454 if (!(srci = sr_key_info_get(SR_KEY_CONFIG, src->key)))
455 /* Shouldn't happen. */
456 sr_err("Invalid option %d.", src->key);
457 else
458 sr_err("Invalid option '%s'.", srci->id);
459 ret = SR_ERR_ARG;
460 break;
461 }
462 if (sr_variant_type_check(src->key, src->data) != SR_OK) {
463 ret = SR_ERR_ARG;
464 break;
465 }
466 }
467 g_variant_unref(gvar_opts);
468
469 return ret;
470}
471
472/**
473 * Tell a hardware driver to scan for devices.
474 *
475 * In addition to the detection, the devices that are found are also
476 * initialized automatically. On some devices, this involves a firmware upload,
477 * or other such measures.
478 *
479 * The order in which the system is scanned for devices is not specified. The
480 * caller should not assume or rely on any specific order.
481 *
482 * Before calling sr_driver_scan(), the user must have previously initialized
483 * the driver by calling sr_driver_init().
484 *
485 * @param driver The driver that should scan. This must be a pointer to one of
486 * the entries returned by sr_driver_list(). Must not be NULL.
487 * @param options A list of 'struct sr_hwopt' options to pass to the driver's
488 * scanner. Can be NULL/empty.
489 *
490 * @return A GSList * of 'struct sr_dev_inst', or NULL if no devices were
491 * found (or errors were encountered). This list must be freed by the
492 * caller using g_slist_free(), but without freeing the data pointed
493 * to in the list.
494 *
495 * @since 0.2.0
496 */
497SR_API GSList *sr_driver_scan(struct sr_dev_driver *driver, GSList *options)
498{
499 GSList *l;
500
501 if (!driver) {
502 sr_err("Invalid driver, can't scan for devices.");
503 return NULL;
504 }
505
506 if (!driver->context) {
507 sr_err("Driver not initialized, can't scan for devices.");
508 return NULL;
509 }
510
511 if (options) {
512 if (check_options(driver, options, SR_CONF_SCAN_OPTIONS, NULL, NULL) != SR_OK)
513 return NULL;
514 }
515
516 l = driver->scan(driver, options);
517
518 sr_spew("Scan of '%s' found %d devices.", driver->name,
519 g_slist_length(l));
520
521 return l;
522}
523
524/**
525 * Call driver cleanup function for all drivers.
526 *
527 * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
528 *
529 * @private
530 */
531SR_PRIV void sr_hw_cleanup_all(const struct sr_context *ctx)
532{
533 int i;
534 struct sr_dev_driver **drivers;
535
536 if (!ctx)
537 return;
538
539 drivers = sr_driver_list(ctx);
540 for (i = 0; drivers[i]; i++) {
541 if (drivers[i]->cleanup)
542 drivers[i]->cleanup(drivers[i]);
543 drivers[i]->context = NULL;
544 }
545}
546
547/** Allocate struct sr_config.
548 * A floating reference can be passed in for data.
549 * @private
550 */
551SR_PRIV struct sr_config *sr_config_new(uint32_t key, GVariant *data)
552{
553 struct sr_config *src;
554
555 src = g_malloc0(sizeof(struct sr_config));
556 src->key = key;
557 src->data = g_variant_ref_sink(data);
558
559 return src;
560}
561
562/** Free struct sr_config.
563 * @private
564 */
565SR_PRIV void sr_config_free(struct sr_config *src)
566{
567
568 if (!src || !src->data) {
569 sr_err("%s: invalid data!", __func__);
570 return;
571 }
572
573 g_variant_unref(src->data);
574 g_free(src);
575
576}
577
578static void log_key(const struct sr_dev_inst *sdi,
579 const struct sr_channel_group *cg, uint32_t key, int op, GVariant *data)
580{
581 const char *opstr;
582 const struct sr_key_info *srci;
583
584 /* Don't log SR_CONF_DEVICE_OPTIONS, it's verbose and not too useful. */
585 if (key == SR_CONF_DEVICE_OPTIONS)
586 return;
587
588 opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
589 srci = sr_key_info_get(SR_KEY_CONFIG, key);
590
591 sr_spew("sr_config_%s(): key %d (%s) sdi %p cg %s -> %s", opstr, key,
592 srci ? srci->id : "NULL", sdi, cg ? cg->name : "NULL",
593 data ? g_variant_print(data, TRUE) : "NULL");
594}
595
596static int check_key(const struct sr_dev_driver *driver,
597 const struct sr_dev_inst *sdi, const struct sr_channel_group *cg,
598 uint32_t key, int op, GVariant *data)
599{
600 const struct sr_key_info *srci;
601 gsize num_opts, i;
602 GVariant *gvar_opts;
603 const uint32_t *opts;
604 uint32_t pub_opt;
605 const char *suffix;
606 const char *opstr;
607
608 if (sdi && cg)
609 suffix = " for this device and channel group";
610 else if (sdi)
611 suffix = " for this device";
612 else
613 suffix = "";
614
615 if (!(srci = sr_key_info_get(SR_KEY_CONFIG, key))) {
616 sr_err("Invalid key %d.", key);
617 return SR_ERR_ARG;
618 }
619 opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
620
621 switch (key) {
622 case SR_CONF_LIMIT_MSEC:
623 case SR_CONF_LIMIT_SAMPLES:
624 case SR_CONF_SAMPLERATE:
625 /* Setting any of these to 0 is not useful. */
626 if (op != SR_CONF_SET || !data)
627 break;
628 if (g_variant_get_uint64(data) == 0) {
629 sr_err("Cannot set '%s' to 0.", srci->id);
630 return SR_ERR_ARG;
631 }
632 break;
633 }
634
635 if (sr_config_list(driver, sdi, cg, SR_CONF_DEVICE_OPTIONS, &gvar_opts) != SR_OK) {
636 /* Driver publishes no options. */
637 sr_err("No options available%s.", suffix);
638 return SR_ERR_ARG;
639 }
640 opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
641 pub_opt = 0;
642 for (i = 0; i < num_opts; i++) {
643 if ((opts[i] & SR_CONF_MASK) == key) {
644 pub_opt = opts[i];
645 break;
646 }
647 }
648 g_variant_unref(gvar_opts);
649 if (!pub_opt) {
650 sr_err("Option '%s' not available%s.", srci->id, suffix);
651 return SR_ERR_ARG;
652 }
653
654 if (!(pub_opt & op)) {
655 sr_err("Option '%s' not available to %s%s.", srci->id, opstr, suffix);
656 return SR_ERR_ARG;
657 }
658
659 return SR_OK;
660}
661
662/**
663 * Query value of a configuration key at the given driver or device instance.
664 *
665 * @param[in] driver The sr_dev_driver struct to query.
666 * @param[in] sdi (optional) If the key is specific to a device, this must
667 * contain a pointer to the struct sr_dev_inst to be checked.
668 * Otherwise it must be NULL.
669 * @param[in] cg The channel group on the device for which to list the
670 * values, or NULL.
671 * @param[in] key The configuration key (SR_CONF_*).
672 * @param[in,out] data Pointer to a GVariant where the value will be stored.
673 * Must not be NULL. The caller is given ownership of the GVariant
674 * and must thus decrease the refcount after use. However if
675 * this function returns an error code, the field should be
676 * considered unused, and should not be unreferenced.
677 *
678 * @retval SR_OK Success.
679 * @retval SR_ERR Error.
680 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
681 * interpreted as an error by the caller; merely as an indication
682 * that it's not applicable.
683 *
684 * @since 0.3.0
685 */
686SR_API int sr_config_get(const struct sr_dev_driver *driver,
687 const struct sr_dev_inst *sdi,
688 const struct sr_channel_group *cg,
689 uint32_t key, GVariant **data)
690{
691 int ret;
692
693 if (!driver || !data)
694 return SR_ERR;
695
696 if (!driver->config_get)
697 return SR_ERR_ARG;
698
699 if (check_key(driver, sdi, cg, key, SR_CONF_GET, NULL) != SR_OK)
700 return SR_ERR_ARG;
701
702 if ((ret = driver->config_get(key, data, sdi, cg)) == SR_OK) {
703 log_key(sdi, cg, key, SR_CONF_GET, *data);
704 /* Got a floating reference from the driver. Sink it here,
705 * caller will need to unref when done with it. */
706 g_variant_ref_sink(*data);
707 }
708
709 return ret;
710}
711
712/**
713 * Set value of a configuration key in a device instance.
714 *
715 * @param[in] sdi The device instance.
716 * @param[in] cg The channel group on the device for which to list the
717 * values, or NULL.
718 * @param[in] key The configuration key (SR_CONF_*).
719 * @param data The new value for the key, as a GVariant with GVariantType
720 * appropriate to that key. A floating reference can be passed
721 * in; its refcount will be sunk and unreferenced after use.
722 *
723 * @retval SR_OK Success.
724 * @retval SR_ERR Error.
725 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
726 * interpreted as an error by the caller; merely as an indication
727 * that it's not applicable.
728 *
729 * @since 0.3.0
730 */
731SR_API int sr_config_set(const struct sr_dev_inst *sdi,
732 const struct sr_channel_group *cg,
733 uint32_t key, GVariant *data)
734{
735 int ret;
736
737 g_variant_ref_sink(data);
738
739 if (!sdi || !sdi->driver || !data)
740 ret = SR_ERR;
741 else if (!sdi->driver->config_set)
742 ret = SR_ERR_ARG;
743 else if (check_key(sdi->driver, sdi, cg, key, SR_CONF_SET, data) != SR_OK)
744 return SR_ERR_ARG;
745 else if ((ret = sr_variant_type_check(key, data)) == SR_OK) {
746 log_key(sdi, cg, key, SR_CONF_SET, data);
747 ret = sdi->driver->config_set(key, data, sdi, cg);
748 }
749
750 g_variant_unref(data);
751
752 return ret;
753}
754
755/**
756 * Apply configuration settings to the device hardware.
757 *
758 * @param sdi The device instance.
759 *
760 * @return SR_OK upon success or SR_ERR in case of error.
761 *
762 * @since 0.3.0
763 */
764SR_API int sr_config_commit(const struct sr_dev_inst *sdi)
765{
766 int ret;
767
768 if (!sdi || !sdi->driver)
769 ret = SR_ERR;
770 else if (!sdi->driver->config_commit)
771 ret = SR_OK;
772 else
773 ret = sdi->driver->config_commit(sdi);
774
775 return ret;
776}
777
778/**
779 * List all possible values for a configuration key.
780 *
781 * @param[in] driver The sr_dev_driver struct to query.
782 * @param[in] sdi (optional) If the key is specific to a device, this must
783 * contain a pointer to the struct sr_dev_inst to be checked.
784 * @param[in] cg The channel group on the device for which to list the
785 * values, or NULL.
786 * @param[in] key The configuration key (SR_CONF_*).
787 * @param[in,out] data A pointer to a GVariant where the list will be stored.
788 * The caller is given ownership of the GVariant and must thus
789 * unref the GVariant after use. However if this function
790 * returns an error code, the field should be considered
791 * unused, and should not be unreferenced.
792 *
793 * @retval SR_OK Success.
794 * @retval SR_ERR Error.
795 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
796 * interpreted as an error by the caller; merely as an indication
797 * that it's not applicable.
798 *
799 * @since 0.3.0
800 */
801SR_API int sr_config_list(const struct sr_dev_driver *driver,
802 const struct sr_dev_inst *sdi,
803 const struct sr_channel_group *cg,
804 uint32_t key, GVariant **data)
805{
806 int ret;
807
808 if (!driver || !data)
809 return SR_ERR;
810 else if (!driver->config_list)
811 return SR_ERR_ARG;
812 else if (key != SR_CONF_SCAN_OPTIONS && key != SR_CONF_DEVICE_OPTIONS) {
813 if (check_key(driver, sdi, cg, key, SR_CONF_LIST, NULL) != SR_OK)
814 return SR_ERR_ARG;
815 }
816 if ((ret = driver->config_list(key, data, sdi, cg)) == SR_OK) {
817 log_key(sdi, cg, key, SR_CONF_LIST, *data);
818 g_variant_ref_sink(*data);
819 }
820
821 return ret;
822}
823
824static struct sr_key_info *get_keytable(int keytype)
825{
826 struct sr_key_info *table;
827
828 switch (keytype) {
829 case SR_KEY_CONFIG:
830 table = sr_key_info_config;
831 break;
832 case SR_KEY_MQ:
833 table = sr_key_info_mq;
834 break;
835 case SR_KEY_MQFLAGS:
836 table = sr_key_info_mqflag;
837 break;
838 default:
839 sr_err("Invalid keytype %d", keytype);
840 return NULL;
841 }
842
843 return table;
844}
845
846/**
847 * Get information about a key, by key.
848 *
849 * @param[in] keytype The namespace the key is in.
850 * @param[in] key The key to find.
851 *
852 * @return A pointer to a struct sr_key_info, or NULL if the key
853 * was not found.
854 *
855 * @since 0.3.0
856 */
857SR_API const struct sr_key_info *sr_key_info_get(int keytype, uint32_t key)
858{
859 struct sr_key_info *table;
860 int i;
861
862 if (!(table = get_keytable(keytype)))
863 return NULL;
864
865 for (i = 0; table[i].key; i++) {
866 if (table[i].key == key)
867 return &table[i];
868 }
869
870 return NULL;
871}
872
873/**
874 * Get information about a key, by name.
875 *
876 * @param[in] keytype The namespace the key is in.
877 * @param[in] keyid The key id string.
878 *
879 * @return A pointer to a struct sr_key_info, or NULL if the key
880 * was not found.
881 *
882 * @since 0.2.0
883 */
884SR_API const struct sr_key_info *sr_key_info_name_get(int keytype, const char *keyid)
885{
886 struct sr_key_info *table;
887 int i;
888
889 if (!(table = get_keytable(keytype)))
890 return NULL;
891
892 for (i = 0; table[i].key; i++) {
893 if (!table[i].id)
894 continue;
895 if (!strcmp(table[i].id, keyid))
896 return &table[i];
897 }
898
899 return NULL;
900}
901
902/** @} */