]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/zeroplus-logic-cube/api.c
hameg-hmo: add one missing g_free
[libsigrok.git] / src / hardware / zeroplus-logic-cube / api.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include "protocol.h"
22
23#define VENDOR_NAME "ZEROPLUS"
24#define USB_INTERFACE 0
25#define USB_CONFIGURATION 1
26#define NUM_TRIGGER_STAGES 4
27#define PACKET_SIZE 2048 /* ?? */
28
29//#define ZP_EXPERIMENTAL
30
31struct zp_model {
32 uint16_t vid;
33 uint16_t pid;
34 const char *model_name;
35 unsigned int channels;
36 unsigned int sample_depth; /* In Ksamples/channel */
37 unsigned int max_sampling_freq;
38};
39
40/*
41 * Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the
42 * same 128K sample depth.
43 */
44static const struct zp_model zeroplus_models[] = {
45 {0x0c12, 0x7002, "LAP-16128U", 16, 128, 200},
46 {0x0c12, 0x7009, "LAP-C(16064)", 16, 64, 100},
47 {0x0c12, 0x700a, "LAP-C(16128)", 16, 128, 200},
48 {0x0c12, 0x700b, "LAP-C(32128)", 32, 128, 200},
49 {0x0c12, 0x700c, "LAP-C(321000)", 32, 1024, 200},
50 {0x0c12, 0x700d, "LAP-C(322000)", 32, 2048, 200},
51 {0x0c12, 0x700e, "LAP-C(16032)", 16, 32, 100},
52 {0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200},
53 {0x0c12, 0x7100, "AKIP-9101", 16, 256, 200},
54 ALL_ZERO
55};
56
57static const uint32_t devopts[] = {
58 SR_CONF_LOGIC_ANALYZER,
59 SR_CONF_LIMIT_SAMPLES | SR_CONF_SET | SR_CONF_LIST,
60 SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
61 SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
62 SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
63 SR_CONF_VOLTAGE_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
64};
65
66static const int32_t trigger_matches[] = {
67 SR_TRIGGER_ZERO,
68 SR_TRIGGER_ONE,
69};
70
71/*
72 * ZEROPLUS LAP-C (16032) numbers the 16 channels A0-A7 and B0-B7.
73 * We currently ignore other untested/unsupported devices here.
74 */
75static const char *channel_names[] = {
76 "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",
77 "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",
78 "C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7",
79 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
80};
81
82SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info;
83
84/*
85 * The hardware supports more samplerates than these, but these are the
86 * options hardcoded into the vendor's Windows GUI.
87 */
88
89static const uint64_t samplerates_100[] = {
90 SR_HZ(100),
91 SR_HZ(500),
92 SR_KHZ(1),
93 SR_KHZ(5),
94 SR_KHZ(25),
95 SR_KHZ(50),
96 SR_KHZ(100),
97 SR_KHZ(200),
98 SR_KHZ(400),
99 SR_KHZ(800),
100 SR_MHZ(1),
101 SR_MHZ(10),
102 SR_MHZ(25),
103 SR_MHZ(50),
104 SR_MHZ(80),
105 SR_MHZ(100),
106};
107
108const uint64_t samplerates_200[] = {
109 SR_HZ(100),
110 SR_HZ(500),
111 SR_KHZ(1),
112 SR_KHZ(5),
113 SR_KHZ(25),
114 SR_KHZ(50),
115 SR_KHZ(100),
116 SR_KHZ(200),
117 SR_KHZ(400),
118 SR_KHZ(800),
119 SR_MHZ(1),
120 SR_MHZ(10),
121 SR_MHZ(25),
122 SR_MHZ(50),
123 SR_MHZ(80),
124 SR_MHZ(100),
125 SR_MHZ(150),
126 SR_MHZ(200),
127};
128
129static int dev_close(struct sr_dev_inst *sdi);
130
131SR_PRIV int zp_set_samplerate(struct dev_context *devc, uint64_t samplerate)
132{
133 int i;
134
135 for (i = 0; ARRAY_SIZE(samplerates_200); i++)
136 if (samplerate == samplerates_200[i])
137 break;
138
139 if (i == ARRAY_SIZE(samplerates_200) || samplerate > devc->max_samplerate) {
140 sr_err("Unsupported samplerate: %" PRIu64 "Hz.", samplerate);
141 return SR_ERR_ARG;
142 }
143
144 sr_info("Setting samplerate to %" PRIu64 "Hz.", samplerate);
145
146 if (samplerate >= SR_MHZ(1))
147 analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
148 else if (samplerate >= SR_KHZ(1))
149 analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
150 else
151 analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
152
153 devc->cur_samplerate = samplerate;
154
155 return SR_OK;
156}
157
158static GSList *scan(struct sr_dev_driver *di, GSList *options)
159{
160 struct sr_dev_inst *sdi;
161 struct drv_context *drvc;
162 struct dev_context *devc;
163 const struct zp_model *prof;
164 struct libusb_device_descriptor des;
165 struct libusb_device_handle *hdl;
166 libusb_device **devlist;
167 GSList *devices;
168 int ret, i, j;
169 char serial_num[64], connection_id[64];
170
171 (void)options;
172
173 drvc = di->context;
174
175 devices = NULL;
176
177 /* Find all ZEROPLUS analyzers and add them to device list. */
178 libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); /* TODO: Errors. */
179
180 for (i = 0; devlist[i]; i++) {
181 libusb_get_device_descriptor(devlist[i], &des);
182
183 if ((ret = libusb_open(devlist[i], &hdl)) < 0)
184 continue;
185
186 if (des.iSerialNumber == 0) {
187 serial_num[0] = '\0';
188 } else if ((ret = libusb_get_string_descriptor_ascii(hdl,
189 des.iSerialNumber, (unsigned char *) serial_num,
190 sizeof(serial_num))) < 0) {
191 sr_warn("Failed to get serial number string descriptor: %s.",
192 libusb_error_name(ret));
193 continue;
194 }
195
196 libusb_close(hdl);
197
198 usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
199
200 prof = NULL;
201 for (j = 0; j < zeroplus_models[j].vid; j++) {
202 if (des.idVendor == zeroplus_models[j].vid &&
203 des.idProduct == zeroplus_models[j].pid) {
204 prof = &zeroplus_models[j];
205 }
206 }
207 /* Skip if the device was not found. */
208 if (!prof)
209 continue;
210 sr_info("Found ZEROPLUS %s.", prof->model_name);
211
212 /* Register the device with libsigrok. */
213 sdi = g_malloc0(sizeof(struct sr_dev_inst));
214 sdi->status = SR_ST_INACTIVE;
215 sdi->vendor = g_strdup(VENDOR_NAME);
216 sdi->model = g_strdup(prof->model_name);
217 sdi->driver = di;
218 sdi->serial_num = g_strdup(serial_num);
219 sdi->connection_id = g_strdup(connection_id);
220
221 /* Allocate memory for our private driver context. */
222 devc = g_malloc0(sizeof(struct dev_context));
223 sdi->priv = devc;
224 devc->prof = prof;
225 devc->num_channels = prof->channels;
226#ifdef ZP_EXPERIMENTAL
227 devc->max_sample_depth = 128 * 1024;
228 devc->max_samplerate = 200;
229#else
230 devc->max_sample_depth = prof->sample_depth * 1024;
231 devc->max_samplerate = prof->max_sampling_freq;
232#endif
233 devc->max_samplerate *= SR_MHZ(1);
234 devc->memory_size = MEMORY_SIZE_8K;
235 // memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES);
236
237 /* Fill in channellist according to this device's profile. */
238 for (j = 0; j < devc->num_channels; j++)
239 sr_channel_new(sdi, j, SR_CHANNEL_LOGIC, TRUE,
240 channel_names[j]);
241
242 devices = g_slist_append(devices, sdi);
243 drvc->instances = g_slist_append(drvc->instances, sdi);
244 sdi->inst_type = SR_INST_USB;
245 sdi->conn = sr_usb_dev_inst_new(
246 libusb_get_bus_number(devlist[i]),
247 libusb_get_device_address(devlist[i]), NULL);
248 }
249 libusb_free_device_list(devlist, 1);
250
251 return devices;
252}
253
254static int dev_open(struct sr_dev_inst *sdi)
255{
256 struct sr_dev_driver *di = sdi->driver;
257 struct dev_context *devc;
258 struct drv_context *drvc;
259 struct sr_usb_dev_inst *usb;
260 int ret;
261
262 drvc = di->context;
263 usb = sdi->conn;
264 devc = sdi->priv;
265
266 ret = sr_usb_open(drvc->sr_ctx->libusb_ctx, usb);
267 if (ret != SR_OK)
268 return ret;
269
270 sdi->status = SR_ST_ACTIVE;
271
272 ret = libusb_set_configuration(usb->devhdl, USB_CONFIGURATION);
273 if (ret < 0) {
274 sr_err("Unable to set USB configuration %d: %s.",
275 USB_CONFIGURATION, libusb_error_name(ret));
276 return SR_ERR;
277 }
278
279 ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
280 if (ret != 0) {
281 sr_err("Unable to claim interface: %s.",
282 libusb_error_name(ret));
283 return SR_ERR;
284 }
285
286 /* Set default configuration after power on. */
287 if (analyzer_read_status(usb->devhdl) == 0)
288 analyzer_configure(usb->devhdl);
289
290 analyzer_reset(usb->devhdl);
291 analyzer_initialize(usb->devhdl);
292
293 //analyzer_set_memory_size(MEMORY_SIZE_512K);
294 // analyzer_set_freq(g_freq, g_freq_scale);
295 analyzer_set_trigger_count(1);
296 // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
297 // * get_memory_size(g_memory_size)) / 100) >> 2);
298
299#if 0
300 if (g_double_mode == 1)
301 analyzer_set_compression(COMPRESSION_DOUBLE);
302 else if (g_compression == 1)
303 analyzer_set_compression(COMPRESSION_ENABLE);
304 else
305#endif
306 analyzer_set_compression(COMPRESSION_NONE);
307
308 if (devc->cur_samplerate == 0) {
309 /* Samplerate hasn't been set. Default to 1MHz. */
310 analyzer_set_freq(1, FREQ_SCALE_MHZ);
311 devc->cur_samplerate = SR_MHZ(1);
312 }
313
314 if (devc->cur_threshold == 0)
315 set_voltage_threshold(devc, 1.5);
316
317 return SR_OK;
318}
319
320static int dev_close(struct sr_dev_inst *sdi)
321{
322 struct sr_usb_dev_inst *usb;
323
324 usb = sdi->conn;
325
326 if (!usb->devhdl)
327 return SR_ERR;
328
329 sr_info("Closing device on %d.%d (logical) / %s (physical) interface %d.",
330 usb->bus, usb->address, sdi->connection_id, USB_INTERFACE);
331 libusb_release_interface(usb->devhdl, USB_INTERFACE);
332 libusb_reset_device(usb->devhdl);
333 libusb_close(usb->devhdl);
334 usb->devhdl = NULL;
335 sdi->status = SR_ST_INACTIVE;
336
337 return SR_OK;
338}
339
340static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
341 const struct sr_channel_group *cg)
342{
343 struct dev_context *devc;
344 GVariant *range[2];
345
346 (void)cg;
347
348 if (!sdi)
349 return SR_ERR_ARG;
350
351 devc = sdi->priv;
352
353 switch (key) {
354 case SR_CONF_SAMPLERATE:
355 *data = g_variant_new_uint64(devc->cur_samplerate);
356 break;
357 case SR_CONF_CAPTURE_RATIO:
358 *data = g_variant_new_uint64(devc->capture_ratio);
359 break;
360 case SR_CONF_VOLTAGE_THRESHOLD:
361 range[0] = g_variant_new_double(devc->cur_threshold);
362 range[1] = g_variant_new_double(devc->cur_threshold);
363 *data = g_variant_new_tuple(range, 2);
364 break;
365 default:
366 return SR_ERR_NA;
367 }
368
369 return SR_OK;
370}
371
372static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
373 const struct sr_channel_group *cg)
374{
375 struct dev_context *devc;
376 gdouble low, high;
377
378 (void)cg;
379
380 if (sdi->status != SR_ST_ACTIVE)
381 return SR_ERR_DEV_CLOSED;
382
383 if (!(devc = sdi->priv)) {
384 sr_err("%s: sdi->priv was NULL", __func__);
385 return SR_ERR_ARG;
386 }
387
388 switch (key) {
389 case SR_CONF_SAMPLERATE:
390 return zp_set_samplerate(devc, g_variant_get_uint64(data));
391 case SR_CONF_LIMIT_SAMPLES:
392 return set_limit_samples(devc, g_variant_get_uint64(data));
393 case SR_CONF_CAPTURE_RATIO:
394 return set_capture_ratio(devc, g_variant_get_uint64(data));
395 case SR_CONF_VOLTAGE_THRESHOLD:
396 g_variant_get(data, "(dd)", &low, &high);
397 return set_voltage_threshold(devc, (low + high) / 2.0);
398 default:
399 return SR_ERR_NA;
400 }
401
402 return SR_OK;
403}
404
405static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
406 const struct sr_channel_group *cg)
407{
408 struct dev_context *devc;
409 GVariant *gvar, *grange[2];
410 GVariantBuilder gvb;
411 double v;
412 GVariant *range[2];
413
414 (void)cg;
415
416 switch (key) {
417 case SR_CONF_DEVICE_OPTIONS:
418 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
419 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
420 break;
421 case SR_CONF_SAMPLERATE:
422 devc = sdi->priv;
423 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
424 if (devc->prof->max_sampling_freq == 100) {
425 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
426 samplerates_100, ARRAY_SIZE(samplerates_100),
427 sizeof(uint64_t));
428 } else if (devc->prof->max_sampling_freq == 200) {
429 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
430 samplerates_200, ARRAY_SIZE(samplerates_200),
431 sizeof(uint64_t));
432 } else {
433 sr_err("Internal error: Unknown max. samplerate: %d.",
434 devc->prof->max_sampling_freq);
435 return SR_ERR_ARG;
436 }
437 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
438 *data = g_variant_builder_end(&gvb);
439 break;
440 case SR_CONF_TRIGGER_MATCH:
441 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
442 trigger_matches, ARRAY_SIZE(trigger_matches),
443 sizeof(int32_t));
444 break;
445 case SR_CONF_VOLTAGE_THRESHOLD:
446 g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
447 for (v = -6.0; v <= 6.0; v += 0.1) {
448 range[0] = g_variant_new_double(v);
449 range[1] = g_variant_new_double(v);
450 gvar = g_variant_new_tuple(range, 2);
451 g_variant_builder_add_value(&gvb, gvar);
452 }
453 *data = g_variant_builder_end(&gvb);
454 break;
455 case SR_CONF_LIMIT_SAMPLES:
456 if (!sdi)
457 return SR_ERR_ARG;
458 devc = sdi->priv;
459 grange[0] = g_variant_new_uint64(0);
460 grange[1] = g_variant_new_uint64(devc->max_sample_depth);
461 *data = g_variant_new_tuple(grange, 2);
462 break;
463 default:
464 return SR_ERR_NA;
465 }
466
467 return SR_OK;
468}
469
470static int dev_acquisition_start(const struct sr_dev_inst *sdi)
471{
472 struct dev_context *devc;
473 struct sr_usb_dev_inst *usb;
474 struct sr_datafeed_packet packet;
475 struct sr_datafeed_logic logic;
476 unsigned int samples_read;
477 int res;
478 unsigned int packet_num, n;
479 unsigned char *buf;
480 unsigned int status;
481 unsigned int stop_address;
482 unsigned int now_address;
483 unsigned int trigger_address;
484 unsigned int trigger_offset;
485 unsigned int triggerbar;
486 unsigned int ramsize_trigger;
487 unsigned int memory_size;
488 unsigned int valid_samples;
489 unsigned int discard;
490 int trigger_now;
491
492 if (sdi->status != SR_ST_ACTIVE)
493 return SR_ERR_DEV_CLOSED;
494
495 devc = sdi->priv;
496
497 if (analyzer_add_triggers(sdi) != SR_OK) {
498 sr_err("Failed to configure triggers.");
499 return SR_ERR;
500 }
501
502 usb = sdi->conn;
503
504 set_triggerbar(devc);
505
506 /* Push configured settings to device. */
507 analyzer_configure(usb->devhdl);
508
509 analyzer_start(usb->devhdl);
510 sr_info("Waiting for data.");
511 analyzer_wait_data(usb->devhdl);
512
513 status = analyzer_read_status(usb->devhdl);
514 stop_address = analyzer_get_stop_address(usb->devhdl);
515 now_address = analyzer_get_now_address(usb->devhdl);
516 trigger_address = analyzer_get_trigger_address(usb->devhdl);
517
518 triggerbar = analyzer_get_triggerbar_address();
519 ramsize_trigger = analyzer_get_ramsize_trigger_address();
520
521 n = get_memory_size(devc->memory_size);
522 memory_size = n / 4;
523
524 sr_info("Status = 0x%x.", status);
525 sr_info("Stop address = 0x%x.", stop_address);
526 sr_info("Now address = 0x%x.", now_address);
527 sr_info("Trigger address = 0x%x.", trigger_address);
528 sr_info("Triggerbar address = 0x%x.", triggerbar);
529 sr_info("Ramsize trigger = 0x%x.", ramsize_trigger);
530 sr_info("Memory size = 0x%x.", memory_size);
531
532 std_session_send_df_header(sdi, LOG_PREFIX);
533
534 /* Check for empty capture */
535 if ((status & STATUS_READY) && !stop_address) {
536 std_session_send_df_end(sdi, LOG_PREFIX);
537 return SR_OK;
538 }
539
540 buf = g_malloc(PACKET_SIZE);
541
542 /* Check if the trigger is in the samples we are throwing away */
543 trigger_now = now_address == trigger_address ||
544 ((now_address + 1) % memory_size) == trigger_address;
545
546 /*
547 * STATUS_READY doesn't clear until now_address advances past
548 * addr 0, but for our logic, clear it in that case
549 */
550 if (!now_address)
551 status &= ~STATUS_READY;
552
553 analyzer_read_start(usb->devhdl);
554
555 /* Calculate how much data to discard */
556 discard = 0;
557 if (status & STATUS_READY) {
558 /*
559 * We haven't wrapped around, we need to throw away data from
560 * our current position to the end of the buffer.
561 * Additionally, the first two samples captured are always
562 * bogus.
563 */
564 discard += memory_size - now_address + 2;
565 now_address = 2;
566 }
567
568 /* If we have more samples than we need, discard them */
569 valid_samples = (stop_address - now_address) % memory_size;
570 if (valid_samples > ramsize_trigger + triggerbar) {
571 discard += valid_samples - (ramsize_trigger + triggerbar);
572 now_address += valid_samples - (ramsize_trigger + triggerbar);
573 }
574
575 sr_info("Need to discard %d samples.", discard);
576
577 /* Calculate how far in the trigger is */
578 if (trigger_now)
579 trigger_offset = 0;
580 else
581 trigger_offset = (trigger_address - now_address) % memory_size;
582
583 /* Recalculate the number of samples available */
584 valid_samples = (stop_address - now_address) % memory_size;
585
586 /* Send the incoming transfer to the session bus. */
587 samples_read = 0;
588 for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) {
589 unsigned int len;
590 unsigned int buf_offset;
591
592 res = analyzer_read_data(usb->devhdl, buf, PACKET_SIZE);
593 sr_info("Tried to read %d bytes, actually read %d bytes.",
594 PACKET_SIZE, res);
595
596 if (discard >= PACKET_SIZE / 4) {
597 discard -= PACKET_SIZE / 4;
598 continue;
599 }
600
601 len = PACKET_SIZE - discard * 4;
602 buf_offset = discard * 4;
603 discard = 0;
604
605 /* Check if we've read all the samples */
606 if (samples_read + len / 4 >= valid_samples)
607 len = (valid_samples - samples_read) * 4;
608 if (!len)
609 break;
610
611 if (samples_read < trigger_offset &&
612 samples_read + len / 4 > trigger_offset) {
613 /* Send out samples remaining before trigger */
614 packet.type = SR_DF_LOGIC;
615 packet.payload = &logic;
616 logic.length = (trigger_offset - samples_read) * 4;
617 logic.unitsize = 4;
618 logic.data = buf + buf_offset;
619 sr_session_send(sdi, &packet);
620 len -= logic.length;
621 samples_read += logic.length / 4;
622 buf_offset += logic.length;
623 }
624
625 if (samples_read == trigger_offset) {
626 /* Send out trigger */
627 packet.type = SR_DF_TRIGGER;
628 packet.payload = NULL;
629 sr_session_send(sdi, &packet);
630 }
631
632 /* Send out data (or data after trigger) */
633 packet.type = SR_DF_LOGIC;
634 packet.payload = &logic;
635 logic.length = len;
636 logic.unitsize = 4;
637 logic.data = buf + buf_offset;
638 sr_session_send(sdi, &packet);
639 samples_read += len / 4;
640 }
641 analyzer_read_stop(usb->devhdl);
642 g_free(buf);
643
644 std_session_send_df_end(sdi, LOG_PREFIX);
645
646 return SR_OK;
647}
648
649/* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
650static int dev_acquisition_stop(struct sr_dev_inst *sdi)
651{
652 struct sr_usb_dev_inst *usb;
653
654 std_session_send_df_end(sdi, LOG_PREFIX);
655
656 usb = sdi->conn;
657 analyzer_reset(usb->devhdl);
658 /* TODO: Need to cancel and free any queued up transfers. */
659
660 return SR_OK;
661}
662
663SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info = {
664 .name = "zeroplus-logic-cube",
665 .longname = "ZEROPLUS Logic Cube LAP-C series",
666 .api_version = 1,
667 .init = std_init,
668 .cleanup = std_cleanup,
669 .scan = scan,
670 .dev_list = std_dev_list,
671 .dev_clear = NULL,
672 .config_get = config_get,
673 .config_set = config_set,
674 .config_list = config_list,
675 .dev_open = dev_open,
676 .dev_close = dev_close,
677 .dev_acquisition_start = dev_acquisition_start,
678 .dev_acquisition_stop = dev_acquisition_stop,
679 .context = NULL,
680};