]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/zeroplus-logic-cube/api.c
std_init(): Drop check if pass in driver is non-NULL
[libsigrok.git] / src / hardware / zeroplus-logic-cube / api.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include "protocol.h"
22
23#define VENDOR_NAME "ZEROPLUS"
24#define USB_INTERFACE 0
25#define USB_CONFIGURATION 1
26#define NUM_TRIGGER_STAGES 4
27#define PACKET_SIZE 2048 /* ?? */
28
29//#define ZP_EXPERIMENTAL
30
31struct zp_model {
32 uint16_t vid;
33 uint16_t pid;
34 const char *model_name;
35 unsigned int channels;
36 unsigned int sample_depth; /* In Ksamples/channel */
37 unsigned int max_sampling_freq;
38};
39
40/*
41 * Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the
42 * same 128K sample depth.
43 */
44static const struct zp_model zeroplus_models[] = {
45 {0x0c12, 0x7002, "LAP-16128U", 16, 128, 200},
46 {0x0c12, 0x7009, "LAP-C(16064)", 16, 64, 100},
47 {0x0c12, 0x700a, "LAP-C(16128)", 16, 128, 200},
48 {0x0c12, 0x700b, "LAP-C(32128)", 32, 128, 200},
49 {0x0c12, 0x700c, "LAP-C(321000)", 32, 1024, 200},
50 {0x0c12, 0x700d, "LAP-C(322000)", 32, 2048, 200},
51 {0x0c12, 0x700e, "LAP-C(16032)", 16, 32, 100},
52 {0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200},
53 {0x0c12, 0x7100, "AKIP-9101", 16, 256, 200},
54 ALL_ZERO
55};
56
57static const uint32_t devopts[] = {
58 SR_CONF_LOGIC_ANALYZER,
59 SR_CONF_LIMIT_SAMPLES | SR_CONF_SET | SR_CONF_LIST,
60 SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
61 SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
62 SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
63 SR_CONF_VOLTAGE_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
64};
65
66static const int32_t trigger_matches[] = {
67 SR_TRIGGER_ZERO,
68 SR_TRIGGER_ONE,
69};
70
71/*
72 * ZEROPLUS LAP-C (16032) numbers the 16 channels A0-A7 and B0-B7.
73 * We currently ignore other untested/unsupported devices here.
74 */
75static const char *channel_names[] = {
76 "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",
77 "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",
78 "C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7",
79 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
80};
81
82SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info;
83
84/*
85 * The hardware supports more samplerates than these, but these are the
86 * options hardcoded into the vendor's Windows GUI.
87 */
88
89static const uint64_t samplerates_100[] = {
90 SR_HZ(100),
91 SR_HZ(500),
92 SR_KHZ(1),
93 SR_KHZ(5),
94 SR_KHZ(25),
95 SR_KHZ(50),
96 SR_KHZ(100),
97 SR_KHZ(200),
98 SR_KHZ(400),
99 SR_KHZ(800),
100 SR_MHZ(1),
101 SR_MHZ(10),
102 SR_MHZ(25),
103 SR_MHZ(50),
104 SR_MHZ(80),
105 SR_MHZ(100),
106};
107
108const uint64_t samplerates_200[] = {
109 SR_HZ(100),
110 SR_HZ(500),
111 SR_KHZ(1),
112 SR_KHZ(5),
113 SR_KHZ(25),
114 SR_KHZ(50),
115 SR_KHZ(100),
116 SR_KHZ(200),
117 SR_KHZ(400),
118 SR_KHZ(800),
119 SR_MHZ(1),
120 SR_MHZ(10),
121 SR_MHZ(25),
122 SR_MHZ(50),
123 SR_MHZ(80),
124 SR_MHZ(100),
125 SR_MHZ(150),
126 SR_MHZ(200),
127};
128
129static int dev_close(struct sr_dev_inst *sdi);
130
131SR_PRIV int zp_set_samplerate(struct dev_context *devc, uint64_t samplerate)
132{
133 int i;
134
135 for (i = 0; ARRAY_SIZE(samplerates_200); i++)
136 if (samplerate == samplerates_200[i])
137 break;
138
139 if (i == ARRAY_SIZE(samplerates_200) || samplerate > devc->max_samplerate) {
140 sr_err("Unsupported samplerate: %" PRIu64 "Hz.", samplerate);
141 return SR_ERR_ARG;
142 }
143
144 sr_info("Setting samplerate to %" PRIu64 "Hz.", samplerate);
145
146 if (samplerate >= SR_MHZ(1))
147 analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
148 else if (samplerate >= SR_KHZ(1))
149 analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
150 else
151 analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
152
153 devc->cur_samplerate = samplerate;
154
155 return SR_OK;
156}
157
158static int init(struct sr_dev_driver *di, struct sr_context *sr_ctx)
159{
160 return std_init(di, sr_ctx);
161}
162
163static GSList *scan(struct sr_dev_driver *di, GSList *options)
164{
165 struct sr_dev_inst *sdi;
166 struct drv_context *drvc;
167 struct dev_context *devc;
168 const struct zp_model *prof;
169 struct libusb_device_descriptor des;
170 struct libusb_device_handle *hdl;
171 libusb_device **devlist;
172 GSList *devices;
173 int ret, i, j;
174 char serial_num[64], connection_id[64];
175
176 (void)options;
177
178 drvc = di->context;
179
180 devices = NULL;
181
182 /* Find all ZEROPLUS analyzers and add them to device list. */
183 libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); /* TODO: Errors. */
184
185 for (i = 0; devlist[i]; i++) {
186 libusb_get_device_descriptor(devlist[i], &des);
187
188 if ((ret = libusb_open(devlist[i], &hdl)) < 0)
189 continue;
190
191 if (des.iSerialNumber == 0) {
192 serial_num[0] = '\0';
193 } else if ((ret = libusb_get_string_descriptor_ascii(hdl,
194 des.iSerialNumber, (unsigned char *) serial_num,
195 sizeof(serial_num))) < 0) {
196 sr_warn("Failed to get serial number string descriptor: %s.",
197 libusb_error_name(ret));
198 continue;
199 }
200
201 libusb_close(hdl);
202
203 usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
204
205 prof = NULL;
206 for (j = 0; j < zeroplus_models[j].vid; j++) {
207 if (des.idVendor == zeroplus_models[j].vid &&
208 des.idProduct == zeroplus_models[j].pid) {
209 prof = &zeroplus_models[j];
210 }
211 }
212 /* Skip if the device was not found. */
213 if (!prof)
214 continue;
215 sr_info("Found ZEROPLUS %s.", prof->model_name);
216
217 /* Register the device with libsigrok. */
218 sdi = g_malloc0(sizeof(struct sr_dev_inst));
219 sdi->status = SR_ST_INACTIVE;
220 sdi->vendor = g_strdup(VENDOR_NAME);
221 sdi->model = g_strdup(prof->model_name);
222 sdi->driver = di;
223 sdi->serial_num = g_strdup(serial_num);
224 sdi->connection_id = g_strdup(connection_id);
225
226 /* Allocate memory for our private driver context. */
227 devc = g_malloc0(sizeof(struct dev_context));
228 sdi->priv = devc;
229 devc->prof = prof;
230 devc->num_channels = prof->channels;
231#ifdef ZP_EXPERIMENTAL
232 devc->max_sample_depth = 128 * 1024;
233 devc->max_samplerate = 200;
234#else
235 devc->max_sample_depth = prof->sample_depth * 1024;
236 devc->max_samplerate = prof->max_sampling_freq;
237#endif
238 devc->max_samplerate *= SR_MHZ(1);
239 devc->memory_size = MEMORY_SIZE_8K;
240 // memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES);
241
242 /* Fill in channellist according to this device's profile. */
243 for (j = 0; j < devc->num_channels; j++)
244 sr_channel_new(sdi, j, SR_CHANNEL_LOGIC, TRUE,
245 channel_names[j]);
246
247 devices = g_slist_append(devices, sdi);
248 drvc->instances = g_slist_append(drvc->instances, sdi);
249 sdi->inst_type = SR_INST_USB;
250 sdi->conn = sr_usb_dev_inst_new(
251 libusb_get_bus_number(devlist[i]),
252 libusb_get_device_address(devlist[i]), NULL);
253 }
254 libusb_free_device_list(devlist, 1);
255
256 return devices;
257}
258
259static int dev_open(struct sr_dev_inst *sdi)
260{
261 struct sr_dev_driver *di = sdi->driver;
262 struct dev_context *devc;
263 struct drv_context *drvc;
264 struct sr_usb_dev_inst *usb;
265 int ret;
266
267 drvc = di->context;
268 usb = sdi->conn;
269 devc = sdi->priv;
270
271 ret = sr_usb_open(drvc->sr_ctx->libusb_ctx, usb);
272 if (ret != SR_OK)
273 return ret;
274
275 sdi->status = SR_ST_ACTIVE;
276
277 ret = libusb_set_configuration(usb->devhdl, USB_CONFIGURATION);
278 if (ret < 0) {
279 sr_err("Unable to set USB configuration %d: %s.",
280 USB_CONFIGURATION, libusb_error_name(ret));
281 return SR_ERR;
282 }
283
284 ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
285 if (ret != 0) {
286 sr_err("Unable to claim interface: %s.",
287 libusb_error_name(ret));
288 return SR_ERR;
289 }
290
291 /* Set default configuration after power on. */
292 if (analyzer_read_status(usb->devhdl) == 0)
293 analyzer_configure(usb->devhdl);
294
295 analyzer_reset(usb->devhdl);
296 analyzer_initialize(usb->devhdl);
297
298 //analyzer_set_memory_size(MEMORY_SIZE_512K);
299 // analyzer_set_freq(g_freq, g_freq_scale);
300 analyzer_set_trigger_count(1);
301 // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
302 // * get_memory_size(g_memory_size)) / 100) >> 2);
303
304#if 0
305 if (g_double_mode == 1)
306 analyzer_set_compression(COMPRESSION_DOUBLE);
307 else if (g_compression == 1)
308 analyzer_set_compression(COMPRESSION_ENABLE);
309 else
310#endif
311 analyzer_set_compression(COMPRESSION_NONE);
312
313 if (devc->cur_samplerate == 0) {
314 /* Samplerate hasn't been set. Default to 1MHz. */
315 analyzer_set_freq(1, FREQ_SCALE_MHZ);
316 devc->cur_samplerate = SR_MHZ(1);
317 }
318
319 if (devc->cur_threshold == 0)
320 set_voltage_threshold(devc, 1.5);
321
322 return SR_OK;
323}
324
325static int dev_close(struct sr_dev_inst *sdi)
326{
327 struct sr_usb_dev_inst *usb;
328
329 usb = sdi->conn;
330
331 if (!usb->devhdl)
332 return SR_ERR;
333
334 sr_info("Closing device on %d.%d (logical) / %s (physical) interface %d.",
335 usb->bus, usb->address, sdi->connection_id, USB_INTERFACE);
336 libusb_release_interface(usb->devhdl, USB_INTERFACE);
337 libusb_reset_device(usb->devhdl);
338 libusb_close(usb->devhdl);
339 usb->devhdl = NULL;
340 sdi->status = SR_ST_INACTIVE;
341
342 return SR_OK;
343}
344
345static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
346 const struct sr_channel_group *cg)
347{
348 struct dev_context *devc;
349 GVariant *range[2];
350
351 (void)cg;
352
353 if (!sdi)
354 return SR_ERR_ARG;
355
356 devc = sdi->priv;
357
358 switch (key) {
359 case SR_CONF_SAMPLERATE:
360 *data = g_variant_new_uint64(devc->cur_samplerate);
361 break;
362 case SR_CONF_CAPTURE_RATIO:
363 *data = g_variant_new_uint64(devc->capture_ratio);
364 break;
365 case SR_CONF_VOLTAGE_THRESHOLD:
366 range[0] = g_variant_new_double(devc->cur_threshold);
367 range[1] = g_variant_new_double(devc->cur_threshold);
368 *data = g_variant_new_tuple(range, 2);
369 break;
370 default:
371 return SR_ERR_NA;
372 }
373
374 return SR_OK;
375}
376
377static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
378 const struct sr_channel_group *cg)
379{
380 struct dev_context *devc;
381 gdouble low, high;
382
383 (void)cg;
384
385 if (sdi->status != SR_ST_ACTIVE)
386 return SR_ERR_DEV_CLOSED;
387
388 if (!(devc = sdi->priv)) {
389 sr_err("%s: sdi->priv was NULL", __func__);
390 return SR_ERR_ARG;
391 }
392
393 switch (key) {
394 case SR_CONF_SAMPLERATE:
395 return zp_set_samplerate(devc, g_variant_get_uint64(data));
396 case SR_CONF_LIMIT_SAMPLES:
397 return set_limit_samples(devc, g_variant_get_uint64(data));
398 case SR_CONF_CAPTURE_RATIO:
399 return set_capture_ratio(devc, g_variant_get_uint64(data));
400 case SR_CONF_VOLTAGE_THRESHOLD:
401 g_variant_get(data, "(dd)", &low, &high);
402 return set_voltage_threshold(devc, (low + high) / 2.0);
403 default:
404 return SR_ERR_NA;
405 }
406
407 return SR_OK;
408}
409
410static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
411 const struct sr_channel_group *cg)
412{
413 struct dev_context *devc;
414 GVariant *gvar, *grange[2];
415 GVariantBuilder gvb;
416 double v;
417 GVariant *range[2];
418
419 (void)cg;
420
421 switch (key) {
422 case SR_CONF_DEVICE_OPTIONS:
423 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
424 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
425 break;
426 case SR_CONF_SAMPLERATE:
427 devc = sdi->priv;
428 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
429 if (devc->prof->max_sampling_freq == 100) {
430 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
431 samplerates_100, ARRAY_SIZE(samplerates_100),
432 sizeof(uint64_t));
433 } else if (devc->prof->max_sampling_freq == 200) {
434 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
435 samplerates_200, ARRAY_SIZE(samplerates_200),
436 sizeof(uint64_t));
437 } else {
438 sr_err("Internal error: Unknown max. samplerate: %d.",
439 devc->prof->max_sampling_freq);
440 return SR_ERR_ARG;
441 }
442 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
443 *data = g_variant_builder_end(&gvb);
444 break;
445 case SR_CONF_TRIGGER_MATCH:
446 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
447 trigger_matches, ARRAY_SIZE(trigger_matches),
448 sizeof(int32_t));
449 break;
450 case SR_CONF_VOLTAGE_THRESHOLD:
451 g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
452 for (v = -6.0; v <= 6.0; v += 0.1) {
453 range[0] = g_variant_new_double(v);
454 range[1] = g_variant_new_double(v);
455 gvar = g_variant_new_tuple(range, 2);
456 g_variant_builder_add_value(&gvb, gvar);
457 }
458 *data = g_variant_builder_end(&gvb);
459 break;
460 case SR_CONF_LIMIT_SAMPLES:
461 if (!sdi)
462 return SR_ERR_ARG;
463 devc = sdi->priv;
464 grange[0] = g_variant_new_uint64(0);
465 grange[1] = g_variant_new_uint64(devc->max_sample_depth);
466 *data = g_variant_new_tuple(grange, 2);
467 break;
468 default:
469 return SR_ERR_NA;
470 }
471
472 return SR_OK;
473}
474
475static int dev_acquisition_start(const struct sr_dev_inst *sdi)
476{
477 struct dev_context *devc;
478 struct sr_usb_dev_inst *usb;
479 struct sr_datafeed_packet packet;
480 struct sr_datafeed_logic logic;
481 unsigned int samples_read;
482 int res;
483 unsigned int packet_num, n;
484 unsigned char *buf;
485 unsigned int status;
486 unsigned int stop_address;
487 unsigned int now_address;
488 unsigned int trigger_address;
489 unsigned int trigger_offset;
490 unsigned int triggerbar;
491 unsigned int ramsize_trigger;
492 unsigned int memory_size;
493 unsigned int valid_samples;
494 unsigned int discard;
495 int trigger_now;
496
497 if (sdi->status != SR_ST_ACTIVE)
498 return SR_ERR_DEV_CLOSED;
499
500 devc = sdi->priv;
501
502 if (analyzer_add_triggers(sdi) != SR_OK) {
503 sr_err("Failed to configure triggers.");
504 return SR_ERR;
505 }
506
507 usb = sdi->conn;
508
509 set_triggerbar(devc);
510
511 /* Push configured settings to device. */
512 analyzer_configure(usb->devhdl);
513
514 analyzer_start(usb->devhdl);
515 sr_info("Waiting for data.");
516 analyzer_wait_data(usb->devhdl);
517
518 status = analyzer_read_status(usb->devhdl);
519 stop_address = analyzer_get_stop_address(usb->devhdl);
520 now_address = analyzer_get_now_address(usb->devhdl);
521 trigger_address = analyzer_get_trigger_address(usb->devhdl);
522
523 triggerbar = analyzer_get_triggerbar_address();
524 ramsize_trigger = analyzer_get_ramsize_trigger_address();
525
526 n = get_memory_size(devc->memory_size);
527 memory_size = n / 4;
528
529 sr_info("Status = 0x%x.", status);
530 sr_info("Stop address = 0x%x.", stop_address);
531 sr_info("Now address = 0x%x.", now_address);
532 sr_info("Trigger address = 0x%x.", trigger_address);
533 sr_info("Triggerbar address = 0x%x.", triggerbar);
534 sr_info("Ramsize trigger = 0x%x.", ramsize_trigger);
535 sr_info("Memory size = 0x%x.", memory_size);
536
537 std_session_send_df_header(sdi, LOG_PREFIX);
538
539 /* Check for empty capture */
540 if ((status & STATUS_READY) && !stop_address) {
541 std_session_send_df_end(sdi, LOG_PREFIX);
542 return SR_OK;
543 }
544
545 buf = g_malloc(PACKET_SIZE);
546
547 /* Check if the trigger is in the samples we are throwing away */
548 trigger_now = now_address == trigger_address ||
549 ((now_address + 1) % memory_size) == trigger_address;
550
551 /*
552 * STATUS_READY doesn't clear until now_address advances past
553 * addr 0, but for our logic, clear it in that case
554 */
555 if (!now_address)
556 status &= ~STATUS_READY;
557
558 analyzer_read_start(usb->devhdl);
559
560 /* Calculate how much data to discard */
561 discard = 0;
562 if (status & STATUS_READY) {
563 /*
564 * We haven't wrapped around, we need to throw away data from
565 * our current position to the end of the buffer.
566 * Additionally, the first two samples captured are always
567 * bogus.
568 */
569 discard += memory_size - now_address + 2;
570 now_address = 2;
571 }
572
573 /* If we have more samples than we need, discard them */
574 valid_samples = (stop_address - now_address) % memory_size;
575 if (valid_samples > ramsize_trigger + triggerbar) {
576 discard += valid_samples - (ramsize_trigger + triggerbar);
577 now_address += valid_samples - (ramsize_trigger + triggerbar);
578 }
579
580 sr_info("Need to discard %d samples.", discard);
581
582 /* Calculate how far in the trigger is */
583 if (trigger_now)
584 trigger_offset = 0;
585 else
586 trigger_offset = (trigger_address - now_address) % memory_size;
587
588 /* Recalculate the number of samples available */
589 valid_samples = (stop_address - now_address) % memory_size;
590
591 /* Send the incoming transfer to the session bus. */
592 samples_read = 0;
593 for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) {
594 unsigned int len;
595 unsigned int buf_offset;
596
597 res = analyzer_read_data(usb->devhdl, buf, PACKET_SIZE);
598 sr_info("Tried to read %d bytes, actually read %d bytes.",
599 PACKET_SIZE, res);
600
601 if (discard >= PACKET_SIZE / 4) {
602 discard -= PACKET_SIZE / 4;
603 continue;
604 }
605
606 len = PACKET_SIZE - discard * 4;
607 buf_offset = discard * 4;
608 discard = 0;
609
610 /* Check if we've read all the samples */
611 if (samples_read + len / 4 >= valid_samples)
612 len = (valid_samples - samples_read) * 4;
613 if (!len)
614 break;
615
616 if (samples_read < trigger_offset &&
617 samples_read + len / 4 > trigger_offset) {
618 /* Send out samples remaining before trigger */
619 packet.type = SR_DF_LOGIC;
620 packet.payload = &logic;
621 logic.length = (trigger_offset - samples_read) * 4;
622 logic.unitsize = 4;
623 logic.data = buf + buf_offset;
624 sr_session_send(sdi, &packet);
625 len -= logic.length;
626 samples_read += logic.length / 4;
627 buf_offset += logic.length;
628 }
629
630 if (samples_read == trigger_offset) {
631 /* Send out trigger */
632 packet.type = SR_DF_TRIGGER;
633 packet.payload = NULL;
634 sr_session_send(sdi, &packet);
635 }
636
637 /* Send out data (or data after trigger) */
638 packet.type = SR_DF_LOGIC;
639 packet.payload = &logic;
640 logic.length = len;
641 logic.unitsize = 4;
642 logic.data = buf + buf_offset;
643 sr_session_send(sdi, &packet);
644 samples_read += len / 4;
645 }
646 analyzer_read_stop(usb->devhdl);
647 g_free(buf);
648
649 std_session_send_df_end(sdi, LOG_PREFIX);
650
651 return SR_OK;
652}
653
654/* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
655static int dev_acquisition_stop(struct sr_dev_inst *sdi)
656{
657 struct sr_usb_dev_inst *usb;
658
659 std_session_send_df_end(sdi, LOG_PREFIX);
660
661 usb = sdi->conn;
662 analyzer_reset(usb->devhdl);
663 /* TODO: Need to cancel and free any queued up transfers. */
664
665 return SR_OK;
666}
667
668SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info = {
669 .name = "zeroplus-logic-cube",
670 .longname = "ZEROPLUS Logic Cube LAP-C series",
671 .api_version = 1,
672 .init = init,
673 .cleanup = std_cleanup,
674 .scan = scan,
675 .dev_list = std_dev_list,
676 .dev_clear = NULL,
677 .config_get = config_get,
678 .config_set = config_set,
679 .config_list = config_list,
680 .dev_open = dev_open,
681 .dev_close = dev_close,
682 .dev_acquisition_start = dev_acquisition_start,
683 .dev_acquisition_stop = dev_acquisition_stop,
684 .context = NULL,
685};