]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/zeroplus-logic-cube/api.c
pce-322a: Pass driver dev_close callback std_serial_dev_acquisition_stop()
[libsigrok.git] / src / hardware / zeroplus-logic-cube / api.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include "protocol.h"
22
23#define VENDOR_NAME "ZEROPLUS"
24#define USB_INTERFACE 0
25#define USB_CONFIGURATION 1
26#define NUM_TRIGGER_STAGES 4
27#define PACKET_SIZE 2048 /* ?? */
28
29//#define ZP_EXPERIMENTAL
30
31struct zp_model {
32 uint16_t vid;
33 uint16_t pid;
34 const char *model_name;
35 unsigned int channels;
36 unsigned int sample_depth; /* In Ksamples/channel */
37 unsigned int max_sampling_freq;
38};
39
40/*
41 * Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the
42 * same 128K sample depth.
43 */
44static const struct zp_model zeroplus_models[] = {
45 {0x0c12, 0x7002, "LAP-16128U", 16, 128, 200},
46 {0x0c12, 0x7009, "LAP-C(16064)", 16, 64, 100},
47 {0x0c12, 0x700a, "LAP-C(16128)", 16, 128, 200},
48 {0x0c12, 0x700b, "LAP-C(32128)", 32, 128, 200},
49 {0x0c12, 0x700c, "LAP-C(321000)", 32, 1024, 200},
50 {0x0c12, 0x700d, "LAP-C(322000)", 32, 2048, 200},
51 {0x0c12, 0x700e, "LAP-C(16032)", 16, 32, 100},
52 {0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200},
53 {0x0c12, 0x7100, "AKIP-9101", 16, 256, 200},
54 ALL_ZERO
55};
56
57static const uint32_t devopts[] = {
58 SR_CONF_LOGIC_ANALYZER,
59 SR_CONF_LIMIT_SAMPLES | SR_CONF_SET | SR_CONF_LIST,
60 SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
61 SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
62 SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
63 SR_CONF_VOLTAGE_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
64};
65
66static const int32_t trigger_matches[] = {
67 SR_TRIGGER_ZERO,
68 SR_TRIGGER_ONE,
69};
70
71/*
72 * ZEROPLUS LAP-C (16032) numbers the 16 channels A0-A7 and B0-B7.
73 * We currently ignore other untested/unsupported devices here.
74 */
75static const char *channel_names[] = {
76 "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",
77 "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",
78 "C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7",
79 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
80};
81
82/*
83 * The hardware supports more samplerates than these, but these are the
84 * options hardcoded into the vendor's Windows GUI.
85 */
86
87static const uint64_t samplerates_100[] = {
88 SR_HZ(100),
89 SR_HZ(500),
90 SR_KHZ(1),
91 SR_KHZ(5),
92 SR_KHZ(25),
93 SR_KHZ(50),
94 SR_KHZ(100),
95 SR_KHZ(200),
96 SR_KHZ(400),
97 SR_KHZ(800),
98 SR_MHZ(1),
99 SR_MHZ(10),
100 SR_MHZ(25),
101 SR_MHZ(50),
102 SR_MHZ(80),
103 SR_MHZ(100),
104};
105
106const uint64_t samplerates_200[] = {
107 SR_HZ(100),
108 SR_HZ(500),
109 SR_KHZ(1),
110 SR_KHZ(5),
111 SR_KHZ(25),
112 SR_KHZ(50),
113 SR_KHZ(100),
114 SR_KHZ(200),
115 SR_KHZ(400),
116 SR_KHZ(800),
117 SR_MHZ(1),
118 SR_MHZ(10),
119 SR_MHZ(25),
120 SR_MHZ(50),
121 SR_MHZ(80),
122 SR_MHZ(100),
123 SR_MHZ(150),
124 SR_MHZ(200),
125};
126
127static int dev_close(struct sr_dev_inst *sdi);
128
129SR_PRIV int zp_set_samplerate(struct dev_context *devc, uint64_t samplerate)
130{
131 int i;
132
133 for (i = 0; ARRAY_SIZE(samplerates_200); i++)
134 if (samplerate == samplerates_200[i])
135 break;
136
137 if (i == ARRAY_SIZE(samplerates_200) || samplerate > devc->max_samplerate) {
138 sr_err("Unsupported samplerate: %" PRIu64 "Hz.", samplerate);
139 return SR_ERR_ARG;
140 }
141
142 sr_info("Setting samplerate to %" PRIu64 "Hz.", samplerate);
143
144 if (samplerate >= SR_MHZ(1))
145 analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
146 else if (samplerate >= SR_KHZ(1))
147 analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
148 else
149 analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
150
151 devc->cur_samplerate = samplerate;
152
153 return SR_OK;
154}
155
156static GSList *scan(struct sr_dev_driver *di, GSList *options)
157{
158 struct sr_dev_inst *sdi;
159 struct drv_context *drvc;
160 struct dev_context *devc;
161 const struct zp_model *prof;
162 struct libusb_device_descriptor des;
163 struct libusb_device_handle *hdl;
164 libusb_device **devlist;
165 GSList *devices;
166 int ret, i, j;
167 char serial_num[64], connection_id[64];
168
169 (void)options;
170
171 drvc = di->context;
172
173 devices = NULL;
174
175 /* Find all ZEROPLUS analyzers and add them to device list. */
176 libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); /* TODO: Errors. */
177
178 for (i = 0; devlist[i]; i++) {
179 libusb_get_device_descriptor(devlist[i], &des);
180
181 if ((ret = libusb_open(devlist[i], &hdl)) < 0)
182 continue;
183
184 if (des.iSerialNumber == 0) {
185 serial_num[0] = '\0';
186 } else if ((ret = libusb_get_string_descriptor_ascii(hdl,
187 des.iSerialNumber, (unsigned char *) serial_num,
188 sizeof(serial_num))) < 0) {
189 sr_warn("Failed to get serial number string descriptor: %s.",
190 libusb_error_name(ret));
191 continue;
192 }
193
194 libusb_close(hdl);
195
196 usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
197
198 prof = NULL;
199 for (j = 0; j < zeroplus_models[j].vid; j++) {
200 if (des.idVendor == zeroplus_models[j].vid &&
201 des.idProduct == zeroplus_models[j].pid) {
202 prof = &zeroplus_models[j];
203 }
204 }
205 /* Skip if the device was not found. */
206 if (!prof)
207 continue;
208 sr_info("Found ZEROPLUS %s.", prof->model_name);
209
210 /* Register the device with libsigrok. */
211 sdi = g_malloc0(sizeof(struct sr_dev_inst));
212 sdi->status = SR_ST_INACTIVE;
213 sdi->vendor = g_strdup(VENDOR_NAME);
214 sdi->model = g_strdup(prof->model_name);
215 sdi->serial_num = g_strdup(serial_num);
216 sdi->connection_id = g_strdup(connection_id);
217
218 /* Allocate memory for our private driver context. */
219 devc = g_malloc0(sizeof(struct dev_context));
220 sdi->priv = devc;
221 devc->prof = prof;
222 devc->num_channels = prof->channels;
223#ifdef ZP_EXPERIMENTAL
224 devc->max_sample_depth = 128 * 1024;
225 devc->max_samplerate = 200;
226#else
227 devc->max_sample_depth = prof->sample_depth * 1024;
228 devc->max_samplerate = prof->max_sampling_freq;
229#endif
230 devc->max_samplerate *= SR_MHZ(1);
231 devc->memory_size = MEMORY_SIZE_8K;
232 // memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES);
233
234 /* Fill in channellist according to this device's profile. */
235 for (j = 0; j < devc->num_channels; j++)
236 sr_channel_new(sdi, j, SR_CHANNEL_LOGIC, TRUE,
237 channel_names[j]);
238
239 devices = g_slist_append(devices, sdi);
240 sdi->inst_type = SR_INST_USB;
241 sdi->conn = sr_usb_dev_inst_new(
242 libusb_get_bus_number(devlist[i]),
243 libusb_get_device_address(devlist[i]), NULL);
244 }
245 libusb_free_device_list(devlist, 1);
246
247 return std_scan_complete(di, devices);
248}
249
250static int dev_open(struct sr_dev_inst *sdi)
251{
252 struct sr_dev_driver *di = sdi->driver;
253 struct dev_context *devc;
254 struct drv_context *drvc;
255 struct sr_usb_dev_inst *usb;
256 int ret;
257
258 drvc = di->context;
259 usb = sdi->conn;
260 devc = sdi->priv;
261
262 ret = sr_usb_open(drvc->sr_ctx->libusb_ctx, usb);
263 if (ret != SR_OK)
264 return ret;
265
266 sdi->status = SR_ST_ACTIVE;
267
268 ret = libusb_set_configuration(usb->devhdl, USB_CONFIGURATION);
269 if (ret < 0) {
270 sr_err("Unable to set USB configuration %d: %s.",
271 USB_CONFIGURATION, libusb_error_name(ret));
272 return SR_ERR;
273 }
274
275 ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
276 if (ret != 0) {
277 sr_err("Unable to claim interface: %s.",
278 libusb_error_name(ret));
279 return SR_ERR;
280 }
281
282 /* Set default configuration after power on. */
283 if (analyzer_read_status(usb->devhdl) == 0)
284 analyzer_configure(usb->devhdl);
285
286 analyzer_reset(usb->devhdl);
287 analyzer_initialize(usb->devhdl);
288
289 //analyzer_set_memory_size(MEMORY_SIZE_512K);
290 // analyzer_set_freq(g_freq, g_freq_scale);
291 analyzer_set_trigger_count(1);
292 // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
293 // * get_memory_size(g_memory_size)) / 100) >> 2);
294
295#if 0
296 if (g_double_mode == 1)
297 analyzer_set_compression(COMPRESSION_DOUBLE);
298 else if (g_compression == 1)
299 analyzer_set_compression(COMPRESSION_ENABLE);
300 else
301#endif
302 analyzer_set_compression(COMPRESSION_NONE);
303
304 if (devc->cur_samplerate == 0) {
305 /* Samplerate hasn't been set. Default to 1MHz. */
306 analyzer_set_freq(1, FREQ_SCALE_MHZ);
307 devc->cur_samplerate = SR_MHZ(1);
308 }
309
310 if (devc->cur_threshold == 0)
311 set_voltage_threshold(devc, 1.5);
312
313 return SR_OK;
314}
315
316static int dev_close(struct sr_dev_inst *sdi)
317{
318 struct sr_usb_dev_inst *usb;
319
320 usb = sdi->conn;
321
322 if (!usb->devhdl)
323 return SR_ERR;
324
325 sr_info("Closing device on %d.%d (logical) / %s (physical) interface %d.",
326 usb->bus, usb->address, sdi->connection_id, USB_INTERFACE);
327 libusb_release_interface(usb->devhdl, USB_INTERFACE);
328 libusb_reset_device(usb->devhdl);
329 libusb_close(usb->devhdl);
330 usb->devhdl = NULL;
331 sdi->status = SR_ST_INACTIVE;
332
333 return SR_OK;
334}
335
336static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
337 const struct sr_channel_group *cg)
338{
339 struct dev_context *devc;
340 GVariant *range[2];
341
342 (void)cg;
343
344 if (!sdi)
345 return SR_ERR_ARG;
346
347 devc = sdi->priv;
348
349 switch (key) {
350 case SR_CONF_SAMPLERATE:
351 *data = g_variant_new_uint64(devc->cur_samplerate);
352 break;
353 case SR_CONF_CAPTURE_RATIO:
354 *data = g_variant_new_uint64(devc->capture_ratio);
355 break;
356 case SR_CONF_VOLTAGE_THRESHOLD:
357 range[0] = g_variant_new_double(devc->cur_threshold);
358 range[1] = g_variant_new_double(devc->cur_threshold);
359 *data = g_variant_new_tuple(range, 2);
360 break;
361 default:
362 return SR_ERR_NA;
363 }
364
365 return SR_OK;
366}
367
368static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
369 const struct sr_channel_group *cg)
370{
371 struct dev_context *devc;
372 gdouble low, high;
373
374 (void)cg;
375
376 if (sdi->status != SR_ST_ACTIVE)
377 return SR_ERR_DEV_CLOSED;
378
379 devc = sdi->priv;
380
381 switch (key) {
382 case SR_CONF_SAMPLERATE:
383 return zp_set_samplerate(devc, g_variant_get_uint64(data));
384 case SR_CONF_LIMIT_SAMPLES:
385 return set_limit_samples(devc, g_variant_get_uint64(data));
386 case SR_CONF_CAPTURE_RATIO:
387 return set_capture_ratio(devc, g_variant_get_uint64(data));
388 case SR_CONF_VOLTAGE_THRESHOLD:
389 g_variant_get(data, "(dd)", &low, &high);
390 return set_voltage_threshold(devc, (low + high) / 2.0);
391 default:
392 return SR_ERR_NA;
393 }
394
395 return SR_OK;
396}
397
398static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
399 const struct sr_channel_group *cg)
400{
401 struct dev_context *devc;
402 GVariant *gvar, *grange[2];
403 GVariantBuilder gvb;
404 double v;
405 GVariant *range[2];
406
407 (void)cg;
408
409 switch (key) {
410 case SR_CONF_DEVICE_OPTIONS:
411 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
412 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
413 break;
414 case SR_CONF_SAMPLERATE:
415 devc = sdi->priv;
416 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
417 if (devc->prof->max_sampling_freq == 100) {
418 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
419 samplerates_100, ARRAY_SIZE(samplerates_100),
420 sizeof(uint64_t));
421 } else if (devc->prof->max_sampling_freq == 200) {
422 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
423 samplerates_200, ARRAY_SIZE(samplerates_200),
424 sizeof(uint64_t));
425 } else {
426 sr_err("Internal error: Unknown max. samplerate: %d.",
427 devc->prof->max_sampling_freq);
428 return SR_ERR_ARG;
429 }
430 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
431 *data = g_variant_builder_end(&gvb);
432 break;
433 case SR_CONF_TRIGGER_MATCH:
434 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
435 trigger_matches, ARRAY_SIZE(trigger_matches),
436 sizeof(int32_t));
437 break;
438 case SR_CONF_VOLTAGE_THRESHOLD:
439 g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
440 for (v = -6.0; v <= 6.0; v += 0.1) {
441 range[0] = g_variant_new_double(v);
442 range[1] = g_variant_new_double(v);
443 gvar = g_variant_new_tuple(range, 2);
444 g_variant_builder_add_value(&gvb, gvar);
445 }
446 *data = g_variant_builder_end(&gvb);
447 break;
448 case SR_CONF_LIMIT_SAMPLES:
449 if (!sdi)
450 return SR_ERR_ARG;
451 devc = sdi->priv;
452 grange[0] = g_variant_new_uint64(0);
453 grange[1] = g_variant_new_uint64(devc->max_sample_depth);
454 *data = g_variant_new_tuple(grange, 2);
455 break;
456 default:
457 return SR_ERR_NA;
458 }
459
460 return SR_OK;
461}
462
463static int dev_acquisition_start(const struct sr_dev_inst *sdi)
464{
465 struct dev_context *devc;
466 struct sr_usb_dev_inst *usb;
467 struct sr_datafeed_packet packet;
468 struct sr_datafeed_logic logic;
469 unsigned int samples_read;
470 int res;
471 unsigned int packet_num, n;
472 unsigned char *buf;
473 unsigned int status;
474 unsigned int stop_address;
475 unsigned int now_address;
476 unsigned int trigger_address;
477 unsigned int trigger_offset;
478 unsigned int triggerbar;
479 unsigned int ramsize_trigger;
480 unsigned int memory_size;
481 unsigned int valid_samples;
482 unsigned int discard;
483 int trigger_now;
484
485 if (sdi->status != SR_ST_ACTIVE)
486 return SR_ERR_DEV_CLOSED;
487
488 devc = sdi->priv;
489
490 if (analyzer_add_triggers(sdi) != SR_OK) {
491 sr_err("Failed to configure triggers.");
492 return SR_ERR;
493 }
494
495 usb = sdi->conn;
496
497 set_triggerbar(devc);
498
499 /* Push configured settings to device. */
500 analyzer_configure(usb->devhdl);
501
502 analyzer_start(usb->devhdl);
503 sr_info("Waiting for data.");
504 analyzer_wait_data(usb->devhdl);
505
506 status = analyzer_read_status(usb->devhdl);
507 stop_address = analyzer_get_stop_address(usb->devhdl);
508 now_address = analyzer_get_now_address(usb->devhdl);
509 trigger_address = analyzer_get_trigger_address(usb->devhdl);
510
511 triggerbar = analyzer_get_triggerbar_address();
512 ramsize_trigger = analyzer_get_ramsize_trigger_address();
513
514 n = get_memory_size(devc->memory_size);
515 memory_size = n / 4;
516
517 sr_info("Status = 0x%x.", status);
518 sr_info("Stop address = 0x%x.", stop_address);
519 sr_info("Now address = 0x%x.", now_address);
520 sr_info("Trigger address = 0x%x.", trigger_address);
521 sr_info("Triggerbar address = 0x%x.", triggerbar);
522 sr_info("Ramsize trigger = 0x%x.", ramsize_trigger);
523 sr_info("Memory size = 0x%x.", memory_size);
524
525 std_session_send_df_header(sdi, LOG_PREFIX);
526
527 /* Check for empty capture */
528 if ((status & STATUS_READY) && !stop_address) {
529 std_session_send_df_end(sdi, LOG_PREFIX);
530 return SR_OK;
531 }
532
533 buf = g_malloc(PACKET_SIZE);
534
535 /* Check if the trigger is in the samples we are throwing away */
536 trigger_now = now_address == trigger_address ||
537 ((now_address + 1) % memory_size) == trigger_address;
538
539 /*
540 * STATUS_READY doesn't clear until now_address advances past
541 * addr 0, but for our logic, clear it in that case
542 */
543 if (!now_address)
544 status &= ~STATUS_READY;
545
546 analyzer_read_start(usb->devhdl);
547
548 /* Calculate how much data to discard */
549 discard = 0;
550 if (status & STATUS_READY) {
551 /*
552 * We haven't wrapped around, we need to throw away data from
553 * our current position to the end of the buffer.
554 * Additionally, the first two samples captured are always
555 * bogus.
556 */
557 discard += memory_size - now_address + 2;
558 now_address = 2;
559 }
560
561 /* If we have more samples than we need, discard them */
562 valid_samples = (stop_address - now_address) % memory_size;
563 if (valid_samples > ramsize_trigger + triggerbar) {
564 discard += valid_samples - (ramsize_trigger + triggerbar);
565 now_address += valid_samples - (ramsize_trigger + triggerbar);
566 }
567
568 sr_info("Need to discard %d samples.", discard);
569
570 /* Calculate how far in the trigger is */
571 if (trigger_now)
572 trigger_offset = 0;
573 else
574 trigger_offset = (trigger_address - now_address) % memory_size;
575
576 /* Recalculate the number of samples available */
577 valid_samples = (stop_address - now_address) % memory_size;
578
579 /* Send the incoming transfer to the session bus. */
580 samples_read = 0;
581 for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) {
582 unsigned int len;
583 unsigned int buf_offset;
584
585 res = analyzer_read_data(usb->devhdl, buf, PACKET_SIZE);
586 sr_info("Tried to read %d bytes, actually read %d bytes.",
587 PACKET_SIZE, res);
588
589 if (discard >= PACKET_SIZE / 4) {
590 discard -= PACKET_SIZE / 4;
591 continue;
592 }
593
594 len = PACKET_SIZE - discard * 4;
595 buf_offset = discard * 4;
596 discard = 0;
597
598 /* Check if we've read all the samples */
599 if (samples_read + len / 4 >= valid_samples)
600 len = (valid_samples - samples_read) * 4;
601 if (!len)
602 break;
603
604 if (samples_read < trigger_offset &&
605 samples_read + len / 4 > trigger_offset) {
606 /* Send out samples remaining before trigger */
607 packet.type = SR_DF_LOGIC;
608 packet.payload = &logic;
609 logic.length = (trigger_offset - samples_read) * 4;
610 logic.unitsize = 4;
611 logic.data = buf + buf_offset;
612 sr_session_send(sdi, &packet);
613 len -= logic.length;
614 samples_read += logic.length / 4;
615 buf_offset += logic.length;
616 }
617
618 if (samples_read == trigger_offset) {
619 /* Send out trigger */
620 packet.type = SR_DF_TRIGGER;
621 packet.payload = NULL;
622 sr_session_send(sdi, &packet);
623 }
624
625 /* Send out data (or data after trigger) */
626 packet.type = SR_DF_LOGIC;
627 packet.payload = &logic;
628 logic.length = len;
629 logic.unitsize = 4;
630 logic.data = buf + buf_offset;
631 sr_session_send(sdi, &packet);
632 samples_read += len / 4;
633 }
634 analyzer_read_stop(usb->devhdl);
635 g_free(buf);
636
637 std_session_send_df_end(sdi, LOG_PREFIX);
638
639 return SR_OK;
640}
641
642/* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
643static int dev_acquisition_stop(struct sr_dev_inst *sdi)
644{
645 struct sr_usb_dev_inst *usb;
646
647 std_session_send_df_end(sdi, LOG_PREFIX);
648
649 usb = sdi->conn;
650 analyzer_reset(usb->devhdl);
651 /* TODO: Need to cancel and free any queued up transfers. */
652
653 return SR_OK;
654}
655
656static struct sr_dev_driver zeroplus_logic_cube_driver_info = {
657 .name = "zeroplus-logic-cube",
658 .longname = "ZEROPLUS Logic Cube LAP-C series",
659 .api_version = 1,
660 .init = std_init,
661 .cleanup = std_cleanup,
662 .scan = scan,
663 .dev_list = std_dev_list,
664 .dev_clear = NULL,
665 .config_get = config_get,
666 .config_set = config_set,
667 .config_list = config_list,
668 .dev_open = dev_open,
669 .dev_close = dev_close,
670 .dev_acquisition_start = dev_acquisition_start,
671 .dev_acquisition_stop = dev_acquisition_stop,
672 .context = NULL,
673};
674SR_REGISTER_DEV_DRIVER(zeroplus_logic_cube_driver_info);