]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/zeroplus-logic-cube/api.c
sr_dev_close(): Factor out SR_ERR_DEV_CLOSED check.
[libsigrok.git] / src / hardware / zeroplus-logic-cube / api.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include "protocol.h"
22
23#define VENDOR_NAME "ZEROPLUS"
24#define USB_INTERFACE 0
25#define USB_CONFIGURATION 1
26#define NUM_TRIGGER_STAGES 4
27#define PACKET_SIZE 2048 /* ?? */
28
29//#define ZP_EXPERIMENTAL
30
31struct zp_model {
32 uint16_t vid;
33 uint16_t pid;
34 const char *model_name;
35 unsigned int channels;
36 unsigned int sample_depth; /* In Ksamples/channel */
37 unsigned int max_sampling_freq;
38};
39
40/*
41 * Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the
42 * same 128K sample depth.
43 */
44static const struct zp_model zeroplus_models[] = {
45 {0x0c12, 0x7002, "LAP-16128U", 16, 128, 200},
46 {0x0c12, 0x7009, "LAP-C(16064)", 16, 64, 100},
47 {0x0c12, 0x700a, "LAP-C(16128)", 16, 128, 200},
48 {0x0c12, 0x700b, "LAP-C(32128)", 32, 128, 200},
49 {0x0c12, 0x700c, "LAP-C(321000)", 32, 1024, 200},
50 {0x0c12, 0x700d, "LAP-C(322000)", 32, 2048, 200},
51 {0x0c12, 0x700e, "LAP-C(16032)", 16, 32, 100},
52 {0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200},
53 {0x0c12, 0x7100, "AKIP-9101", 16, 256, 200},
54 ALL_ZERO
55};
56
57static const uint32_t drvopts[] = {
58 SR_CONF_LOGIC_ANALYZER,
59};
60
61static const uint32_t devopts[] = {
62 SR_CONF_LIMIT_SAMPLES | SR_CONF_SET | SR_CONF_LIST,
63 SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
64 SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
65 SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
66 SR_CONF_VOLTAGE_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
67};
68
69static const int32_t trigger_matches[] = {
70 SR_TRIGGER_ZERO,
71 SR_TRIGGER_ONE,
72};
73
74/*
75 * ZEROPLUS LAP-C (16032) numbers the 16 channels A0-A7 and B0-B7.
76 * We currently ignore other untested/unsupported devices here.
77 */
78static const char *channel_names[] = {
79 "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",
80 "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",
81 "C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7",
82 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
83};
84
85/*
86 * The hardware supports more samplerates than these, but these are the
87 * options hardcoded into the vendor's Windows GUI.
88 */
89
90static const uint64_t samplerates_100[] = {
91 SR_HZ(100),
92 SR_HZ(500),
93 SR_KHZ(1),
94 SR_KHZ(5),
95 SR_KHZ(25),
96 SR_KHZ(50),
97 SR_KHZ(100),
98 SR_KHZ(200),
99 SR_KHZ(400),
100 SR_KHZ(800),
101 SR_MHZ(1),
102 SR_MHZ(10),
103 SR_MHZ(25),
104 SR_MHZ(50),
105 SR_MHZ(80),
106 SR_MHZ(100),
107};
108
109const uint64_t samplerates_200[] = {
110 SR_HZ(100),
111 SR_HZ(500),
112 SR_KHZ(1),
113 SR_KHZ(5),
114 SR_KHZ(25),
115 SR_KHZ(50),
116 SR_KHZ(100),
117 SR_KHZ(200),
118 SR_KHZ(400),
119 SR_KHZ(800),
120 SR_MHZ(1),
121 SR_MHZ(10),
122 SR_MHZ(25),
123 SR_MHZ(50),
124 SR_MHZ(80),
125 SR_MHZ(100),
126 SR_MHZ(150),
127 SR_MHZ(200),
128};
129
130SR_PRIV int zp_set_samplerate(struct dev_context *devc, uint64_t samplerate)
131{
132 int i;
133
134 for (i = 0; ARRAY_SIZE(samplerates_200); i++)
135 if (samplerate == samplerates_200[i])
136 break;
137
138 if (i == ARRAY_SIZE(samplerates_200) || samplerate > devc->max_samplerate) {
139 sr_err("Unsupported samplerate: %" PRIu64 "Hz.", samplerate);
140 return SR_ERR_ARG;
141 }
142
143 sr_info("Setting samplerate to %" PRIu64 "Hz.", samplerate);
144
145 if (samplerate >= SR_MHZ(1))
146 analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
147 else if (samplerate >= SR_KHZ(1))
148 analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
149 else
150 analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
151
152 devc->cur_samplerate = samplerate;
153
154 return SR_OK;
155}
156
157static GSList *scan(struct sr_dev_driver *di, GSList *options)
158{
159 struct sr_dev_inst *sdi;
160 struct drv_context *drvc;
161 struct dev_context *devc;
162 const struct zp_model *prof;
163 struct libusb_device_descriptor des;
164 struct libusb_device_handle *hdl;
165 libusb_device **devlist;
166 GSList *devices;
167 int ret, i, j;
168 char serial_num[64], connection_id[64];
169
170 (void)options;
171
172 drvc = di->context;
173
174 devices = NULL;
175
176 /* Find all ZEROPLUS analyzers and add them to device list. */
177 libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); /* TODO: Errors. */
178
179 for (i = 0; devlist[i]; i++) {
180 libusb_get_device_descriptor(devlist[i], &des);
181
182 if ((ret = libusb_open(devlist[i], &hdl)) < 0)
183 continue;
184
185 if (des.iSerialNumber == 0) {
186 serial_num[0] = '\0';
187 } else if ((ret = libusb_get_string_descriptor_ascii(hdl,
188 des.iSerialNumber, (unsigned char *) serial_num,
189 sizeof(serial_num))) < 0) {
190 sr_warn("Failed to get serial number string descriptor: %s.",
191 libusb_error_name(ret));
192 continue;
193 }
194
195 libusb_close(hdl);
196
197 usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
198
199 prof = NULL;
200 for (j = 0; j < zeroplus_models[j].vid; j++) {
201 if (des.idVendor == zeroplus_models[j].vid &&
202 des.idProduct == zeroplus_models[j].pid) {
203 prof = &zeroplus_models[j];
204 }
205 }
206 /* Skip if the device was not found. */
207 if (!prof)
208 continue;
209 sr_info("Found ZEROPLUS %s.", prof->model_name);
210
211 /* Register the device with libsigrok. */
212 sdi = g_malloc0(sizeof(struct sr_dev_inst));
213 sdi->status = SR_ST_INACTIVE;
214 sdi->vendor = g_strdup(VENDOR_NAME);
215 sdi->model = g_strdup(prof->model_name);
216 sdi->serial_num = g_strdup(serial_num);
217 sdi->connection_id = g_strdup(connection_id);
218
219 /* Allocate memory for our private driver context. */
220 devc = g_malloc0(sizeof(struct dev_context));
221 sdi->priv = devc;
222 devc->prof = prof;
223 devc->num_channels = prof->channels;
224#ifdef ZP_EXPERIMENTAL
225 devc->max_sample_depth = 128 * 1024;
226 devc->max_samplerate = 200;
227#else
228 devc->max_sample_depth = prof->sample_depth * 1024;
229 devc->max_samplerate = prof->max_sampling_freq;
230#endif
231 devc->max_samplerate *= SR_MHZ(1);
232 devc->memory_size = MEMORY_SIZE_8K;
233 // memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES);
234
235 /* Fill in channellist according to this device's profile. */
236 for (j = 0; j < devc->num_channels; j++)
237 sr_channel_new(sdi, j, SR_CHANNEL_LOGIC, TRUE,
238 channel_names[j]);
239
240 devices = g_slist_append(devices, sdi);
241 sdi->inst_type = SR_INST_USB;
242 sdi->conn = sr_usb_dev_inst_new(
243 libusb_get_bus_number(devlist[i]),
244 libusb_get_device_address(devlist[i]), NULL);
245 }
246 libusb_free_device_list(devlist, 1);
247
248 return std_scan_complete(di, devices);
249}
250
251static int dev_open(struct sr_dev_inst *sdi)
252{
253 struct sr_dev_driver *di = sdi->driver;
254 struct dev_context *devc;
255 struct drv_context *drvc;
256 struct sr_usb_dev_inst *usb;
257 int ret;
258
259 drvc = di->context;
260 usb = sdi->conn;
261 devc = sdi->priv;
262
263 ret = sr_usb_open(drvc->sr_ctx->libusb_ctx, usb);
264 if (ret != SR_OK)
265 return ret;
266
267 sdi->status = SR_ST_ACTIVE;
268
269 ret = libusb_set_configuration(usb->devhdl, USB_CONFIGURATION);
270 if (ret < 0) {
271 sr_err("Unable to set USB configuration %d: %s.",
272 USB_CONFIGURATION, libusb_error_name(ret));
273 return SR_ERR;
274 }
275
276 ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
277 if (ret != 0) {
278 sr_err("Unable to claim interface: %s.",
279 libusb_error_name(ret));
280 return SR_ERR;
281 }
282
283 /* Set default configuration after power on. */
284 if (analyzer_read_status(usb->devhdl) == 0)
285 analyzer_configure(usb->devhdl);
286
287 analyzer_reset(usb->devhdl);
288 analyzer_initialize(usb->devhdl);
289
290 //analyzer_set_memory_size(MEMORY_SIZE_512K);
291 // analyzer_set_freq(g_freq, g_freq_scale);
292 analyzer_set_trigger_count(1);
293 // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
294 // * get_memory_size(g_memory_size)) / 100) >> 2);
295
296#if 0
297 if (g_double_mode == 1)
298 analyzer_set_compression(COMPRESSION_DOUBLE);
299 else if (g_compression == 1)
300 analyzer_set_compression(COMPRESSION_ENABLE);
301 else
302#endif
303 analyzer_set_compression(COMPRESSION_NONE);
304
305 if (devc->cur_samplerate == 0) {
306 /* Samplerate hasn't been set. Default to 1MHz. */
307 analyzer_set_freq(1, FREQ_SCALE_MHZ);
308 devc->cur_samplerate = SR_MHZ(1);
309 }
310
311 if (devc->cur_threshold == 0)
312 set_voltage_threshold(devc, 1.5);
313
314 return SR_OK;
315}
316
317static int dev_close(struct sr_dev_inst *sdi)
318{
319 struct sr_usb_dev_inst *usb;
320
321 usb = sdi->conn;
322
323 if (!usb->devhdl)
324 return SR_ERR;
325
326 sr_info("Closing device on %d.%d (logical) / %s (physical) interface %d.",
327 usb->bus, usb->address, sdi->connection_id, USB_INTERFACE);
328 libusb_release_interface(usb->devhdl, USB_INTERFACE);
329 libusb_reset_device(usb->devhdl);
330 libusb_close(usb->devhdl);
331 usb->devhdl = NULL;
332 sdi->status = SR_ST_INACTIVE;
333
334 return SR_OK;
335}
336
337static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
338 const struct sr_channel_group *cg)
339{
340 struct dev_context *devc;
341 GVariant *range[2];
342
343 (void)cg;
344
345 if (!sdi)
346 return SR_ERR_ARG;
347
348 devc = sdi->priv;
349
350 switch (key) {
351 case SR_CONF_SAMPLERATE:
352 *data = g_variant_new_uint64(devc->cur_samplerate);
353 break;
354 case SR_CONF_CAPTURE_RATIO:
355 *data = g_variant_new_uint64(devc->capture_ratio);
356 break;
357 case SR_CONF_VOLTAGE_THRESHOLD:
358 range[0] = g_variant_new_double(devc->cur_threshold);
359 range[1] = g_variant_new_double(devc->cur_threshold);
360 *data = g_variant_new_tuple(range, 2);
361 break;
362 default:
363 return SR_ERR_NA;
364 }
365
366 return SR_OK;
367}
368
369static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
370 const struct sr_channel_group *cg)
371{
372 struct dev_context *devc;
373 gdouble low, high;
374
375 (void)cg;
376
377 devc = sdi->priv;
378
379 switch (key) {
380 case SR_CONF_SAMPLERATE:
381 return zp_set_samplerate(devc, g_variant_get_uint64(data));
382 case SR_CONF_LIMIT_SAMPLES:
383 return set_limit_samples(devc, g_variant_get_uint64(data));
384 case SR_CONF_CAPTURE_RATIO:
385 return set_capture_ratio(devc, g_variant_get_uint64(data));
386 case SR_CONF_VOLTAGE_THRESHOLD:
387 g_variant_get(data, "(dd)", &low, &high);
388 return set_voltage_threshold(devc, (low + high) / 2.0);
389 default:
390 return SR_ERR_NA;
391 }
392
393 return SR_OK;
394}
395
396static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
397 const struct sr_channel_group *cg)
398{
399 struct dev_context *devc;
400 GVariant *gvar, *grange[2];
401 GVariantBuilder gvb;
402 double v;
403 GVariant *range[2];
404
405 (void)cg;
406
407 switch (key) {
408 case SR_CONF_DEVICE_OPTIONS:
409 if (!sdi) {
410 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
411 drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
412 } else {
413 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
414 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
415 }
416 break;
417 case SR_CONF_SAMPLERATE:
418 devc = sdi->priv;
419 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
420 if (devc->prof->max_sampling_freq == 100) {
421 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
422 samplerates_100, ARRAY_SIZE(samplerates_100),
423 sizeof(uint64_t));
424 } else if (devc->prof->max_sampling_freq == 200) {
425 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
426 samplerates_200, ARRAY_SIZE(samplerates_200),
427 sizeof(uint64_t));
428 } else {
429 sr_err("Internal error: Unknown max. samplerate: %d.",
430 devc->prof->max_sampling_freq);
431 return SR_ERR_ARG;
432 }
433 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
434 *data = g_variant_builder_end(&gvb);
435 break;
436 case SR_CONF_TRIGGER_MATCH:
437 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
438 trigger_matches, ARRAY_SIZE(trigger_matches),
439 sizeof(int32_t));
440 break;
441 case SR_CONF_VOLTAGE_THRESHOLD:
442 g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
443 for (v = -6.0; v <= 6.0; v += 0.1) {
444 range[0] = g_variant_new_double(v);
445 range[1] = g_variant_new_double(v);
446 gvar = g_variant_new_tuple(range, 2);
447 g_variant_builder_add_value(&gvb, gvar);
448 }
449 *data = g_variant_builder_end(&gvb);
450 break;
451 case SR_CONF_LIMIT_SAMPLES:
452 if (!sdi)
453 return SR_ERR_ARG;
454 devc = sdi->priv;
455 grange[0] = g_variant_new_uint64(0);
456 grange[1] = g_variant_new_uint64(devc->max_sample_depth);
457 *data = g_variant_new_tuple(grange, 2);
458 break;
459 default:
460 return SR_ERR_NA;
461 }
462
463 return SR_OK;
464}
465
466static int dev_acquisition_start(const struct sr_dev_inst *sdi)
467{
468 struct dev_context *devc;
469 struct sr_usb_dev_inst *usb;
470 struct sr_datafeed_packet packet;
471 struct sr_datafeed_logic logic;
472 unsigned int samples_read;
473 int res;
474 unsigned int packet_num, n;
475 unsigned char *buf;
476 unsigned int status;
477 unsigned int stop_address;
478 unsigned int now_address;
479 unsigned int trigger_address;
480 unsigned int trigger_offset;
481 unsigned int triggerbar;
482 unsigned int ramsize_trigger;
483 unsigned int memory_size;
484 unsigned int valid_samples;
485 unsigned int discard;
486 int trigger_now;
487
488 devc = sdi->priv;
489
490 if (analyzer_add_triggers(sdi) != SR_OK) {
491 sr_err("Failed to configure triggers.");
492 return SR_ERR;
493 }
494
495 usb = sdi->conn;
496
497 set_triggerbar(devc);
498
499 /* Push configured settings to device. */
500 analyzer_configure(usb->devhdl);
501
502 analyzer_start(usb->devhdl);
503 sr_info("Waiting for data.");
504 analyzer_wait_data(usb->devhdl);
505
506 status = analyzer_read_status(usb->devhdl);
507 stop_address = analyzer_get_stop_address(usb->devhdl);
508 now_address = analyzer_get_now_address(usb->devhdl);
509 trigger_address = analyzer_get_trigger_address(usb->devhdl);
510
511 triggerbar = analyzer_get_triggerbar_address();
512 ramsize_trigger = analyzer_get_ramsize_trigger_address();
513
514 n = get_memory_size(devc->memory_size);
515 memory_size = n / 4;
516
517 sr_info("Status = 0x%x.", status);
518 sr_info("Stop address = 0x%x.", stop_address);
519 sr_info("Now address = 0x%x.", now_address);
520 sr_info("Trigger address = 0x%x.", trigger_address);
521 sr_info("Triggerbar address = 0x%x.", triggerbar);
522 sr_info("Ramsize trigger = 0x%x.", ramsize_trigger);
523 sr_info("Memory size = 0x%x.", memory_size);
524
525 std_session_send_df_header(sdi);
526
527 /* Check for empty capture */
528 if ((status & STATUS_READY) && !stop_address) {
529 std_session_send_df_end(sdi);
530 return SR_OK;
531 }
532
533 buf = g_malloc(PACKET_SIZE);
534
535 /* Check if the trigger is in the samples we are throwing away */
536 trigger_now = now_address == trigger_address ||
537 ((now_address + 1) % memory_size) == trigger_address;
538
539 /*
540 * STATUS_READY doesn't clear until now_address advances past
541 * addr 0, but for our logic, clear it in that case
542 */
543 if (!now_address)
544 status &= ~STATUS_READY;
545
546 analyzer_read_start(usb->devhdl);
547
548 /* Calculate how much data to discard */
549 discard = 0;
550 if (status & STATUS_READY) {
551 /*
552 * We haven't wrapped around, we need to throw away data from
553 * our current position to the end of the buffer.
554 * Additionally, the first two samples captured are always
555 * bogus.
556 */
557 discard += memory_size - now_address + 2;
558 now_address = 2;
559 }
560
561 /* If we have more samples than we need, discard them */
562 valid_samples = (stop_address - now_address) % memory_size;
563 if (valid_samples > ramsize_trigger + triggerbar) {
564 discard += valid_samples - (ramsize_trigger + triggerbar);
565 now_address += valid_samples - (ramsize_trigger + triggerbar);
566 }
567
568 sr_info("Need to discard %d samples.", discard);
569
570 /* Calculate how far in the trigger is */
571 if (trigger_now)
572 trigger_offset = 0;
573 else
574 trigger_offset = (trigger_address - now_address) % memory_size;
575
576 /* Recalculate the number of samples available */
577 valid_samples = (stop_address - now_address) % memory_size;
578
579 /* Send the incoming transfer to the session bus. */
580 samples_read = 0;
581 for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) {
582 unsigned int len;
583 unsigned int buf_offset;
584
585 res = analyzer_read_data(usb->devhdl, buf, PACKET_SIZE);
586 sr_info("Tried to read %d bytes, actually read %d bytes.",
587 PACKET_SIZE, res);
588
589 if (discard >= PACKET_SIZE / 4) {
590 discard -= PACKET_SIZE / 4;
591 continue;
592 }
593
594 len = PACKET_SIZE - discard * 4;
595 buf_offset = discard * 4;
596 discard = 0;
597
598 /* Check if we've read all the samples */
599 if (samples_read + len / 4 >= valid_samples)
600 len = (valid_samples - samples_read) * 4;
601 if (!len)
602 break;
603
604 if (samples_read < trigger_offset &&
605 samples_read + len / 4 > trigger_offset) {
606 /* Send out samples remaining before trigger */
607 packet.type = SR_DF_LOGIC;
608 packet.payload = &logic;
609 logic.length = (trigger_offset - samples_read) * 4;
610 logic.unitsize = 4;
611 logic.data = buf + buf_offset;
612 sr_session_send(sdi, &packet);
613 len -= logic.length;
614 samples_read += logic.length / 4;
615 buf_offset += logic.length;
616 }
617
618 if (samples_read == trigger_offset) {
619 /* Send out trigger */
620 packet.type = SR_DF_TRIGGER;
621 packet.payload = NULL;
622 sr_session_send(sdi, &packet);
623 }
624
625 /* Send out data (or data after trigger) */
626 packet.type = SR_DF_LOGIC;
627 packet.payload = &logic;
628 logic.length = len;
629 logic.unitsize = 4;
630 logic.data = buf + buf_offset;
631 sr_session_send(sdi, &packet);
632 samples_read += len / 4;
633 }
634 analyzer_read_stop(usb->devhdl);
635 g_free(buf);
636
637 std_session_send_df_end(sdi);
638
639 return SR_OK;
640}
641
642/* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
643static int dev_acquisition_stop(struct sr_dev_inst *sdi)
644{
645 struct sr_usb_dev_inst *usb;
646
647 std_session_send_df_end(sdi);
648
649 usb = sdi->conn;
650 analyzer_reset(usb->devhdl);
651 /* TODO: Need to cancel and free any queued up transfers. */
652
653 return SR_OK;
654}
655
656static struct sr_dev_driver zeroplus_logic_cube_driver_info = {
657 .name = "zeroplus-logic-cube",
658 .longname = "ZEROPLUS Logic Cube LAP-C series",
659 .api_version = 1,
660 .init = std_init,
661 .cleanup = std_cleanup,
662 .scan = scan,
663 .dev_list = std_dev_list,
664 .dev_clear = NULL,
665 .config_get = config_get,
666 .config_set = config_set,
667 .config_list = config_list,
668 .dev_open = dev_open,
669 .dev_close = dev_close,
670 .dev_acquisition_start = dev_acquisition_start,
671 .dev_acquisition_stop = dev_acquisition_stop,
672 .context = NULL,
673};
674SR_REGISTER_DEV_DRIVER(zeroplus_logic_cube_driver_info);