]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/zeroplus-logic-cube/api.c
scpi: Rephrase buffer resize for free space during SCPI read, add comments
[libsigrok.git] / src / hardware / zeroplus-logic-cube / api.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include "protocol.h"
22
23#define VENDOR_NAME "ZEROPLUS"
24#define USB_INTERFACE 0
25#define USB_CONFIGURATION 1
26#define NUM_TRIGGER_STAGES 4
27#define PACKET_SIZE 2048 /* ?? */
28
29//#define ZP_EXPERIMENTAL
30
31struct zp_model {
32 uint16_t vid;
33 uint16_t pid;
34 const char *model_name;
35 unsigned int channels;
36 unsigned int sample_depth; /* In Ksamples/channel */
37 unsigned int max_sampling_freq;
38};
39
40/*
41 * Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the
42 * same 128K sample depth.
43 */
44static const struct zp_model zeroplus_models[] = {
45 {0x0c12, 0x7002, "LAP-16128U", 16, 128, 200},
46 {0x0c12, 0x7009, "LAP-C(16064)", 16, 64, 100},
47 {0x0c12, 0x700a, "LAP-C(16128)", 16, 128, 200},
48 {0x0c12, 0x700b, "LAP-C(32128)", 32, 128, 200},
49 {0x0c12, 0x700c, "LAP-C(321000)", 32, 1024, 200},
50 {0x0c12, 0x700d, "LAP-C(322000)", 32, 2048, 200},
51 {0x0c12, 0x700e, "LAP-C(16032)", 16, 32, 100},
52 {0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200},
53 {0x0c12, 0x7100, "AKIP-9101", 16, 256, 200},
54 ALL_ZERO
55};
56
57static const uint32_t drvopts[] = {
58 SR_CONF_LOGIC_ANALYZER,
59};
60
61static const uint32_t devopts[] = {
62 SR_CONF_LIMIT_SAMPLES | SR_CONF_SET | SR_CONF_LIST,
63 SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
64 SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
65 SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
66 SR_CONF_VOLTAGE_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
67};
68
69static const int32_t trigger_matches[] = {
70 SR_TRIGGER_ZERO,
71 SR_TRIGGER_ONE,
72};
73
74/*
75 * ZEROPLUS LAP-C (16032) numbers the 16 channels A0-A7 and B0-B7.
76 * We currently ignore other untested/unsupported devices here.
77 */
78static const char *channel_names[] = {
79 "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",
80 "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",
81 "C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7",
82 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
83};
84
85/*
86 * The hardware supports more samplerates than these, but these are the
87 * options hardcoded into the vendor's Windows GUI.
88 */
89
90static const uint64_t samplerates_100[] = {
91 SR_HZ(100),
92 SR_HZ(500),
93 SR_KHZ(1),
94 SR_KHZ(5),
95 SR_KHZ(25),
96 SR_KHZ(50),
97 SR_KHZ(100),
98 SR_KHZ(200),
99 SR_KHZ(400),
100 SR_KHZ(800),
101 SR_MHZ(1),
102 SR_MHZ(10),
103 SR_MHZ(25),
104 SR_MHZ(50),
105 SR_MHZ(80),
106 SR_MHZ(100),
107};
108
109const uint64_t samplerates_200[] = {
110 SR_HZ(100),
111 SR_HZ(500),
112 SR_KHZ(1),
113 SR_KHZ(5),
114 SR_KHZ(25),
115 SR_KHZ(50),
116 SR_KHZ(100),
117 SR_KHZ(200),
118 SR_KHZ(400),
119 SR_KHZ(800),
120 SR_MHZ(1),
121 SR_MHZ(10),
122 SR_MHZ(25),
123 SR_MHZ(50),
124 SR_MHZ(80),
125 SR_MHZ(100),
126 SR_MHZ(150),
127 SR_MHZ(200),
128};
129
130static int dev_close(struct sr_dev_inst *sdi);
131
132SR_PRIV int zp_set_samplerate(struct dev_context *devc, uint64_t samplerate)
133{
134 int i;
135
136 for (i = 0; ARRAY_SIZE(samplerates_200); i++)
137 if (samplerate == samplerates_200[i])
138 break;
139
140 if (i == ARRAY_SIZE(samplerates_200) || samplerate > devc->max_samplerate) {
141 sr_err("Unsupported samplerate: %" PRIu64 "Hz.", samplerate);
142 return SR_ERR_ARG;
143 }
144
145 sr_info("Setting samplerate to %" PRIu64 "Hz.", samplerate);
146
147 if (samplerate >= SR_MHZ(1))
148 analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
149 else if (samplerate >= SR_KHZ(1))
150 analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
151 else
152 analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
153
154 devc->cur_samplerate = samplerate;
155
156 return SR_OK;
157}
158
159static GSList *scan(struct sr_dev_driver *di, GSList *options)
160{
161 struct sr_dev_inst *sdi;
162 struct drv_context *drvc;
163 struct dev_context *devc;
164 const struct zp_model *prof;
165 struct libusb_device_descriptor des;
166 struct libusb_device_handle *hdl;
167 libusb_device **devlist;
168 GSList *devices;
169 int ret, i, j;
170 char serial_num[64], connection_id[64];
171
172 (void)options;
173
174 drvc = di->context;
175
176 devices = NULL;
177
178 /* Find all ZEROPLUS analyzers and add them to device list. */
179 libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); /* TODO: Errors. */
180
181 for (i = 0; devlist[i]; i++) {
182 libusb_get_device_descriptor(devlist[i], &des);
183
184 if ((ret = libusb_open(devlist[i], &hdl)) < 0)
185 continue;
186
187 if (des.iSerialNumber == 0) {
188 serial_num[0] = '\0';
189 } else if ((ret = libusb_get_string_descriptor_ascii(hdl,
190 des.iSerialNumber, (unsigned char *) serial_num,
191 sizeof(serial_num))) < 0) {
192 sr_warn("Failed to get serial number string descriptor: %s.",
193 libusb_error_name(ret));
194 continue;
195 }
196
197 libusb_close(hdl);
198
199 usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
200
201 prof = NULL;
202 for (j = 0; j < zeroplus_models[j].vid; j++) {
203 if (des.idVendor == zeroplus_models[j].vid &&
204 des.idProduct == zeroplus_models[j].pid) {
205 prof = &zeroplus_models[j];
206 }
207 }
208 /* Skip if the device was not found. */
209 if (!prof)
210 continue;
211 sr_info("Found ZEROPLUS %s.", prof->model_name);
212
213 /* Register the device with libsigrok. */
214 sdi = g_malloc0(sizeof(struct sr_dev_inst));
215 sdi->status = SR_ST_INACTIVE;
216 sdi->vendor = g_strdup(VENDOR_NAME);
217 sdi->model = g_strdup(prof->model_name);
218 sdi->serial_num = g_strdup(serial_num);
219 sdi->connection_id = g_strdup(connection_id);
220
221 /* Allocate memory for our private driver context. */
222 devc = g_malloc0(sizeof(struct dev_context));
223 sdi->priv = devc;
224 devc->prof = prof;
225 devc->num_channels = prof->channels;
226#ifdef ZP_EXPERIMENTAL
227 devc->max_sample_depth = 128 * 1024;
228 devc->max_samplerate = 200;
229#else
230 devc->max_sample_depth = prof->sample_depth * 1024;
231 devc->max_samplerate = prof->max_sampling_freq;
232#endif
233 devc->max_samplerate *= SR_MHZ(1);
234 devc->memory_size = MEMORY_SIZE_8K;
235 // memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES);
236
237 /* Fill in channellist according to this device's profile. */
238 for (j = 0; j < devc->num_channels; j++)
239 sr_channel_new(sdi, j, SR_CHANNEL_LOGIC, TRUE,
240 channel_names[j]);
241
242 devices = g_slist_append(devices, sdi);
243 sdi->inst_type = SR_INST_USB;
244 sdi->conn = sr_usb_dev_inst_new(
245 libusb_get_bus_number(devlist[i]),
246 libusb_get_device_address(devlist[i]), NULL);
247 }
248 libusb_free_device_list(devlist, 1);
249
250 return std_scan_complete(di, devices);
251}
252
253static int dev_open(struct sr_dev_inst *sdi)
254{
255 struct sr_dev_driver *di = sdi->driver;
256 struct dev_context *devc;
257 struct drv_context *drvc;
258 struct sr_usb_dev_inst *usb;
259 int ret;
260
261 drvc = di->context;
262 usb = sdi->conn;
263 devc = sdi->priv;
264
265 ret = sr_usb_open(drvc->sr_ctx->libusb_ctx, usb);
266 if (ret != SR_OK)
267 return ret;
268
269 sdi->status = SR_ST_ACTIVE;
270
271 ret = libusb_set_configuration(usb->devhdl, USB_CONFIGURATION);
272 if (ret < 0) {
273 sr_err("Unable to set USB configuration %d: %s.",
274 USB_CONFIGURATION, libusb_error_name(ret));
275 return SR_ERR;
276 }
277
278 ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
279 if (ret != 0) {
280 sr_err("Unable to claim interface: %s.",
281 libusb_error_name(ret));
282 return SR_ERR;
283 }
284
285 /* Set default configuration after power on. */
286 if (analyzer_read_status(usb->devhdl) == 0)
287 analyzer_configure(usb->devhdl);
288
289 analyzer_reset(usb->devhdl);
290 analyzer_initialize(usb->devhdl);
291
292 //analyzer_set_memory_size(MEMORY_SIZE_512K);
293 // analyzer_set_freq(g_freq, g_freq_scale);
294 analyzer_set_trigger_count(1);
295 // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
296 // * get_memory_size(g_memory_size)) / 100) >> 2);
297
298#if 0
299 if (g_double_mode == 1)
300 analyzer_set_compression(COMPRESSION_DOUBLE);
301 else if (g_compression == 1)
302 analyzer_set_compression(COMPRESSION_ENABLE);
303 else
304#endif
305 analyzer_set_compression(COMPRESSION_NONE);
306
307 if (devc->cur_samplerate == 0) {
308 /* Samplerate hasn't been set. Default to 1MHz. */
309 analyzer_set_freq(1, FREQ_SCALE_MHZ);
310 devc->cur_samplerate = SR_MHZ(1);
311 }
312
313 if (devc->cur_threshold == 0)
314 set_voltage_threshold(devc, 1.5);
315
316 return SR_OK;
317}
318
319static int dev_close(struct sr_dev_inst *sdi)
320{
321 struct sr_usb_dev_inst *usb;
322
323 usb = sdi->conn;
324
325 if (!usb->devhdl)
326 return SR_ERR;
327
328 sr_info("Closing device on %d.%d (logical) / %s (physical) interface %d.",
329 usb->bus, usb->address, sdi->connection_id, USB_INTERFACE);
330 libusb_release_interface(usb->devhdl, USB_INTERFACE);
331 libusb_reset_device(usb->devhdl);
332 libusb_close(usb->devhdl);
333 usb->devhdl = NULL;
334 sdi->status = SR_ST_INACTIVE;
335
336 return SR_OK;
337}
338
339static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
340 const struct sr_channel_group *cg)
341{
342 struct dev_context *devc;
343 GVariant *range[2];
344
345 (void)cg;
346
347 if (!sdi)
348 return SR_ERR_ARG;
349
350 devc = sdi->priv;
351
352 switch (key) {
353 case SR_CONF_SAMPLERATE:
354 *data = g_variant_new_uint64(devc->cur_samplerate);
355 break;
356 case SR_CONF_CAPTURE_RATIO:
357 *data = g_variant_new_uint64(devc->capture_ratio);
358 break;
359 case SR_CONF_VOLTAGE_THRESHOLD:
360 range[0] = g_variant_new_double(devc->cur_threshold);
361 range[1] = g_variant_new_double(devc->cur_threshold);
362 *data = g_variant_new_tuple(range, 2);
363 break;
364 default:
365 return SR_ERR_NA;
366 }
367
368 return SR_OK;
369}
370
371static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
372 const struct sr_channel_group *cg)
373{
374 struct dev_context *devc;
375 gdouble low, high;
376
377 (void)cg;
378
379 if (sdi->status != SR_ST_ACTIVE)
380 return SR_ERR_DEV_CLOSED;
381
382 devc = sdi->priv;
383
384 switch (key) {
385 case SR_CONF_SAMPLERATE:
386 return zp_set_samplerate(devc, g_variant_get_uint64(data));
387 case SR_CONF_LIMIT_SAMPLES:
388 return set_limit_samples(devc, g_variant_get_uint64(data));
389 case SR_CONF_CAPTURE_RATIO:
390 return set_capture_ratio(devc, g_variant_get_uint64(data));
391 case SR_CONF_VOLTAGE_THRESHOLD:
392 g_variant_get(data, "(dd)", &low, &high);
393 return set_voltage_threshold(devc, (low + high) / 2.0);
394 default:
395 return SR_ERR_NA;
396 }
397
398 return SR_OK;
399}
400
401static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
402 const struct sr_channel_group *cg)
403{
404 struct dev_context *devc;
405 GVariant *gvar, *grange[2];
406 GVariantBuilder gvb;
407 double v;
408 GVariant *range[2];
409
410 (void)cg;
411
412 switch (key) {
413 case SR_CONF_DEVICE_OPTIONS:
414 if (!sdi) {
415 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
416 drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
417 } else {
418 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
419 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
420 }
421 break;
422 case SR_CONF_SAMPLERATE:
423 devc = sdi->priv;
424 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
425 if (devc->prof->max_sampling_freq == 100) {
426 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
427 samplerates_100, ARRAY_SIZE(samplerates_100),
428 sizeof(uint64_t));
429 } else if (devc->prof->max_sampling_freq == 200) {
430 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
431 samplerates_200, ARRAY_SIZE(samplerates_200),
432 sizeof(uint64_t));
433 } else {
434 sr_err("Internal error: Unknown max. samplerate: %d.",
435 devc->prof->max_sampling_freq);
436 return SR_ERR_ARG;
437 }
438 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
439 *data = g_variant_builder_end(&gvb);
440 break;
441 case SR_CONF_TRIGGER_MATCH:
442 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
443 trigger_matches, ARRAY_SIZE(trigger_matches),
444 sizeof(int32_t));
445 break;
446 case SR_CONF_VOLTAGE_THRESHOLD:
447 g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
448 for (v = -6.0; v <= 6.0; v += 0.1) {
449 range[0] = g_variant_new_double(v);
450 range[1] = g_variant_new_double(v);
451 gvar = g_variant_new_tuple(range, 2);
452 g_variant_builder_add_value(&gvb, gvar);
453 }
454 *data = g_variant_builder_end(&gvb);
455 break;
456 case SR_CONF_LIMIT_SAMPLES:
457 if (!sdi)
458 return SR_ERR_ARG;
459 devc = sdi->priv;
460 grange[0] = g_variant_new_uint64(0);
461 grange[1] = g_variant_new_uint64(devc->max_sample_depth);
462 *data = g_variant_new_tuple(grange, 2);
463 break;
464 default:
465 return SR_ERR_NA;
466 }
467
468 return SR_OK;
469}
470
471static int dev_acquisition_start(const struct sr_dev_inst *sdi)
472{
473 struct dev_context *devc;
474 struct sr_usb_dev_inst *usb;
475 struct sr_datafeed_packet packet;
476 struct sr_datafeed_logic logic;
477 unsigned int samples_read;
478 int res;
479 unsigned int packet_num, n;
480 unsigned char *buf;
481 unsigned int status;
482 unsigned int stop_address;
483 unsigned int now_address;
484 unsigned int trigger_address;
485 unsigned int trigger_offset;
486 unsigned int triggerbar;
487 unsigned int ramsize_trigger;
488 unsigned int memory_size;
489 unsigned int valid_samples;
490 unsigned int discard;
491 int trigger_now;
492
493 if (sdi->status != SR_ST_ACTIVE)
494 return SR_ERR_DEV_CLOSED;
495
496 devc = sdi->priv;
497
498 if (analyzer_add_triggers(sdi) != SR_OK) {
499 sr_err("Failed to configure triggers.");
500 return SR_ERR;
501 }
502
503 usb = sdi->conn;
504
505 set_triggerbar(devc);
506
507 /* Push configured settings to device. */
508 analyzer_configure(usb->devhdl);
509
510 analyzer_start(usb->devhdl);
511 sr_info("Waiting for data.");
512 analyzer_wait_data(usb->devhdl);
513
514 status = analyzer_read_status(usb->devhdl);
515 stop_address = analyzer_get_stop_address(usb->devhdl);
516 now_address = analyzer_get_now_address(usb->devhdl);
517 trigger_address = analyzer_get_trigger_address(usb->devhdl);
518
519 triggerbar = analyzer_get_triggerbar_address();
520 ramsize_trigger = analyzer_get_ramsize_trigger_address();
521
522 n = get_memory_size(devc->memory_size);
523 memory_size = n / 4;
524
525 sr_info("Status = 0x%x.", status);
526 sr_info("Stop address = 0x%x.", stop_address);
527 sr_info("Now address = 0x%x.", now_address);
528 sr_info("Trigger address = 0x%x.", trigger_address);
529 sr_info("Triggerbar address = 0x%x.", triggerbar);
530 sr_info("Ramsize trigger = 0x%x.", ramsize_trigger);
531 sr_info("Memory size = 0x%x.", memory_size);
532
533 std_session_send_df_header(sdi);
534
535 /* Check for empty capture */
536 if ((status & STATUS_READY) && !stop_address) {
537 std_session_send_df_end(sdi);
538 return SR_OK;
539 }
540
541 buf = g_malloc(PACKET_SIZE);
542
543 /* Check if the trigger is in the samples we are throwing away */
544 trigger_now = now_address == trigger_address ||
545 ((now_address + 1) % memory_size) == trigger_address;
546
547 /*
548 * STATUS_READY doesn't clear until now_address advances past
549 * addr 0, but for our logic, clear it in that case
550 */
551 if (!now_address)
552 status &= ~STATUS_READY;
553
554 analyzer_read_start(usb->devhdl);
555
556 /* Calculate how much data to discard */
557 discard = 0;
558 if (status & STATUS_READY) {
559 /*
560 * We haven't wrapped around, we need to throw away data from
561 * our current position to the end of the buffer.
562 * Additionally, the first two samples captured are always
563 * bogus.
564 */
565 discard += memory_size - now_address + 2;
566 now_address = 2;
567 }
568
569 /* If we have more samples than we need, discard them */
570 valid_samples = (stop_address - now_address) % memory_size;
571 if (valid_samples > ramsize_trigger + triggerbar) {
572 discard += valid_samples - (ramsize_trigger + triggerbar);
573 now_address += valid_samples - (ramsize_trigger + triggerbar);
574 }
575
576 sr_info("Need to discard %d samples.", discard);
577
578 /* Calculate how far in the trigger is */
579 if (trigger_now)
580 trigger_offset = 0;
581 else
582 trigger_offset = (trigger_address - now_address) % memory_size;
583
584 /* Recalculate the number of samples available */
585 valid_samples = (stop_address - now_address) % memory_size;
586
587 /* Send the incoming transfer to the session bus. */
588 samples_read = 0;
589 for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) {
590 unsigned int len;
591 unsigned int buf_offset;
592
593 res = analyzer_read_data(usb->devhdl, buf, PACKET_SIZE);
594 sr_info("Tried to read %d bytes, actually read %d bytes.",
595 PACKET_SIZE, res);
596
597 if (discard >= PACKET_SIZE / 4) {
598 discard -= PACKET_SIZE / 4;
599 continue;
600 }
601
602 len = PACKET_SIZE - discard * 4;
603 buf_offset = discard * 4;
604 discard = 0;
605
606 /* Check if we've read all the samples */
607 if (samples_read + len / 4 >= valid_samples)
608 len = (valid_samples - samples_read) * 4;
609 if (!len)
610 break;
611
612 if (samples_read < trigger_offset &&
613 samples_read + len / 4 > trigger_offset) {
614 /* Send out samples remaining before trigger */
615 packet.type = SR_DF_LOGIC;
616 packet.payload = &logic;
617 logic.length = (trigger_offset - samples_read) * 4;
618 logic.unitsize = 4;
619 logic.data = buf + buf_offset;
620 sr_session_send(sdi, &packet);
621 len -= logic.length;
622 samples_read += logic.length / 4;
623 buf_offset += logic.length;
624 }
625
626 if (samples_read == trigger_offset) {
627 /* Send out trigger */
628 packet.type = SR_DF_TRIGGER;
629 packet.payload = NULL;
630 sr_session_send(sdi, &packet);
631 }
632
633 /* Send out data (or data after trigger) */
634 packet.type = SR_DF_LOGIC;
635 packet.payload = &logic;
636 logic.length = len;
637 logic.unitsize = 4;
638 logic.data = buf + buf_offset;
639 sr_session_send(sdi, &packet);
640 samples_read += len / 4;
641 }
642 analyzer_read_stop(usb->devhdl);
643 g_free(buf);
644
645 std_session_send_df_end(sdi);
646
647 return SR_OK;
648}
649
650/* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
651static int dev_acquisition_stop(struct sr_dev_inst *sdi)
652{
653 struct sr_usb_dev_inst *usb;
654
655 std_session_send_df_end(sdi);
656
657 usb = sdi->conn;
658 analyzer_reset(usb->devhdl);
659 /* TODO: Need to cancel and free any queued up transfers. */
660
661 return SR_OK;
662}
663
664static struct sr_dev_driver zeroplus_logic_cube_driver_info = {
665 .name = "zeroplus-logic-cube",
666 .longname = "ZEROPLUS Logic Cube LAP-C series",
667 .api_version = 1,
668 .init = std_init,
669 .cleanup = std_cleanup,
670 .scan = scan,
671 .dev_list = std_dev_list,
672 .dev_clear = NULL,
673 .config_get = config_get,
674 .config_set = config_set,
675 .config_list = config_list,
676 .dev_open = dev_open,
677 .dev_close = dev_close,
678 .dev_acquisition_start = dev_acquisition_start,
679 .dev_acquisition_stop = dev_acquisition_stop,
680 .context = NULL,
681};
682SR_REGISTER_DEV_DRIVER(zeroplus_logic_cube_driver_info);