]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/yokogawa-dlm/protocol.c
scpi-dmm: add support for Siglent SDM3055
[libsigrok.git] / src / hardware / yokogawa-dlm / protocol.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2014 abraxa (Soeren Apel) <soeren@apelpie.net>
5 * Based on the Hameg HMO driver by poljar (Damir Jelić) <poljarinho@gmail.com>
6 *
7 * This program is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21#include <config.h>
22#include "scpi.h"
23#include "protocol.h"
24
25static const char *coupling_options[] = {
26 "AC", "DC", "DC50", "GND",
27};
28
29static const char *trigger_sources_2ch[] = {
30 "1", "2", "LINE", "EXT",
31};
32
33/* TODO: Is BITx handled correctly or is Dx required? */
34static const char *trigger_sources_4ch[] = {
35 "1", "2", "3", "4",
36 "LINE", "EXT", "BIT1",
37 "BIT2", "BIT3", "BIT4", "BIT5", "BIT6", "BIT7", "BIT8",
38};
39
40/* Note: Values must correlate to the trigger_slopes values. */
41const char *dlm_trigger_slopes[2] = {
42 "r", "f",
43};
44
45const uint64_t dlm_timebases[36][2] = {
46 /* nanoseconds */
47 { 1, 1000000000 },
48 { 2, 1000000000 },
49 { 5, 1000000000 },
50 { 10, 1000000000 },
51 { 20, 1000000000 },
52 { 50, 1000000000 },
53 { 100, 1000000000 },
54 { 200, 1000000000 },
55 { 500, 1000000000 },
56 /* microseconds */
57 { 1, 1000000 },
58 { 2, 1000000 },
59 { 5, 1000000 },
60 { 10, 1000000 },
61 { 20, 1000000 },
62 { 50, 1000000 },
63 { 100, 1000000 },
64 { 200, 1000000 },
65 { 500, 1000000 },
66 /* milliseconds */
67 { 1, 1000 },
68 { 2, 1000 },
69 { 5, 1000 },
70 { 10, 1000 },
71 { 20, 1000 },
72 { 50, 1000 },
73 { 100, 1000 },
74 { 200, 1000 },
75 { 500, 1000 },
76 /* seconds */
77 { 1, 1 },
78 { 2, 1 },
79 { 5, 1 },
80 { 10, 1 },
81 { 20, 1 },
82 { 50, 1 },
83 { 100, 1 },
84 { 200, 1 },
85 { 500, 1 },
86};
87
88const uint64_t dlm_vdivs[17][2] = {
89 /* millivolts */
90 { 2, 1000 },
91 { 5, 1000 },
92 { 10, 1000 },
93 { 20, 1000 },
94 { 50, 1000 },
95 { 100, 1000 },
96 { 200, 1000 },
97 { 500, 1000 },
98 /* volts */
99 { 1, 1 },
100 { 2, 1 },
101 { 5, 1 },
102 { 10, 1 },
103 { 20, 1 },
104 { 50, 1 },
105 { 100, 1 },
106 { 200, 1 },
107 { 500, 1 },
108};
109
110static const char *scope_analog_channel_names[] = {
111 "1", "2", "3", "4",
112};
113
114static const char *scope_digital_channel_names_8[] = {
115 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
116};
117
118static const char *scope_digital_channel_names_32[] = {
119 "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",
120 "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",
121 "C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7",
122 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
123};
124
125static const struct scope_config scope_models[] = {
126 {
127 .model_id = {"710105", "710115", "710125", NULL},
128 .model_name = {"DLM2022", "DLM2032", "DLM2052", NULL},
129 .analog_channels = 2,
130 .digital_channels = 0,
131 .pods = 0,
132
133 .analog_names = &scope_analog_channel_names,
134 .digital_names = &scope_digital_channel_names_8,
135
136 .coupling_options = &coupling_options,
137 .num_coupling_options = ARRAY_SIZE(coupling_options),
138
139 .trigger_sources = &trigger_sources_2ch,
140 .num_trigger_sources = ARRAY_SIZE(trigger_sources_2ch),
141
142 .num_xdivs = 10,
143 .num_ydivs = 8,
144 },
145 {
146 .model_id = {"710110", "710120", "710130", NULL},
147 .model_name = {"DLM2024", "DLM2034", "DLM2054", NULL},
148 .analog_channels = 4,
149 .digital_channels = 8,
150 .pods = 1,
151
152 .analog_names = &scope_analog_channel_names,
153 .digital_names = &scope_digital_channel_names_8,
154
155 .coupling_options = &coupling_options,
156 .num_coupling_options = ARRAY_SIZE(coupling_options),
157
158 .trigger_sources = &trigger_sources_4ch,
159 .num_trigger_sources = ARRAY_SIZE(trigger_sources_4ch),
160
161 .num_xdivs = 10,
162 .num_ydivs = 8,
163 },
164 {
165 .model_id = {"701307", "701308", "701310", "701311",
166 "701312", "701313", NULL},
167 .model_name = {"DL9040", "DL9040L", "DL9140", "DL9140L",
168 "DL9240", "DL9240L", NULL},
169 .analog_channels = 4,
170 .digital_channels = 0,
171 .pods = 0,
172
173 .analog_names = &scope_analog_channel_names,
174 .digital_names = NULL,
175
176 .coupling_options = &coupling_options,
177 .num_coupling_options = ARRAY_SIZE(coupling_options),
178
179 .trigger_sources = &trigger_sources_4ch,
180 .num_trigger_sources = ARRAY_SIZE(trigger_sources_4ch),
181
182 .num_xdivs = 10,
183 .num_ydivs = 8,
184 },
185 {
186 .model_id = {"701320", "701321", NULL},
187 .model_name = {"DL9505L", "DL9510L", NULL},
188 .analog_channels = 4,
189 .digital_channels = 16,
190 .pods = 4,
191
192 .analog_names = &scope_analog_channel_names,
193 .digital_names = &scope_digital_channel_names_32,
194
195 .coupling_options = &coupling_options,
196 .num_coupling_options = ARRAY_SIZE(coupling_options),
197
198 .trigger_sources = &trigger_sources_4ch,
199 .num_trigger_sources = ARRAY_SIZE(trigger_sources_4ch),
200
201 .num_xdivs = 10,
202 .num_ydivs = 8,
203 },
204 {
205 .model_id = {"701330", "701331", NULL},
206 .model_name = {"DL9705L", "DL9710L", NULL},
207 .analog_channels = 4,
208 .digital_channels = 32,
209 .pods = 4,
210
211 .analog_names = &scope_analog_channel_names,
212 .digital_names = &scope_digital_channel_names_32,
213
214 .coupling_options = &coupling_options,
215 .num_coupling_options = ARRAY_SIZE(coupling_options),
216
217 .trigger_sources = &trigger_sources_4ch,
218 .num_trigger_sources = ARRAY_SIZE(trigger_sources_4ch),
219
220 .num_xdivs = 10,
221 .num_ydivs = 8,
222 },
223};
224
225/**
226 * Prints out the state of the device as we currently know it.
227 *
228 * @param config This is the scope configuration.
229 * @param state The current scope state to print.
230 */
231static void scope_state_dump(const struct scope_config *config,
232 struct scope_state *state)
233{
234 unsigned int i;
235 char *tmp;
236
237 for (i = 0; i < config->analog_channels; i++) {
238 tmp = sr_voltage_string(dlm_vdivs[state->analog_states[i].vdiv][0],
239 dlm_vdivs[state->analog_states[i].vdiv][1]);
240 sr_info("State of analog channel %d -> %s : %s (coupling) %s (vdiv) %2.2e (offset)",
241 i + 1, state->analog_states[i].state ? "On" : "Off",
242 (*config->coupling_options)[state->analog_states[i].coupling],
243 tmp, state->analog_states[i].vertical_offset);
244 }
245
246 for (i = 0; i < config->digital_channels; i++) {
247 sr_info("State of digital channel %d -> %s", i,
248 state->digital_states[i] ? "On" : "Off");
249 }
250
251 for (i = 0; i < config->pods; i++) {
252 sr_info("State of digital POD %d -> %s", i,
253 state->pod_states[i] ? "On" : "Off");
254 }
255
256 tmp = sr_period_string(dlm_timebases[state->timebase][0],
257 dlm_timebases[state->timebase][1]);
258 sr_info("Current timebase: %s", tmp);
259 g_free(tmp);
260
261 tmp = sr_samplerate_string(state->sample_rate);
262 sr_info("Current samplerate: %s", tmp);
263 g_free(tmp);
264
265 sr_info("Current samples per acquisition (i.e. frame): %d",
266 state->samples_per_frame);
267
268 sr_info("Current trigger: %s (source), %s (slope) %.2f (offset)",
269 (*config->trigger_sources)[state->trigger_source],
270 dlm_trigger_slopes[state->trigger_slope],
271 state->horiz_triggerpos);
272}
273
274/**
275 * Searches through an array of strings and returns the index to the
276 * array where a given string is located.
277 *
278 * @param value The string to search for.
279 * @param array The array of strings.
280 * @param result The index at which value is located in array. -1 on error.
281 *
282 * @return SR_ERR when value couldn't be found, SR_OK otherwise.
283 */
284static int array_option_get(char *value, const char *(*array)[],
285 unsigned int n, int *result)
286{
287 unsigned int i;
288
289 *result = -1;
290
291 for (i = 0; i < n; i++)
292 if (!g_strcmp0(value, (*array)[i])) {
293 *result = i;
294 break;
295 }
296
297 if (*result == -1)
298 return SR_ERR;
299
300 return SR_OK;
301}
302
303/**
304 * This function takes a value of the form "2.000E-03", converts it to a
305 * significand / factor pair and returns the index of an array where
306 * a matching pair was found.
307 *
308 * It's a bit convoluted because of floating-point issues. The value "10.00E-09"
309 * is parsed by g_ascii_strtod() as 0.000000009999999939, for example.
310 * Therefore it's easier to break the number up into two strings and handle
311 * them separately.
312 *
313 * @param value The string to be parsed.
314 * @param array The array of s/f pairs.
315 * @param array_len The number of pairs in the array.
316 * @param result The index at which a matching pair was found.
317 *
318 * @return SR_ERR on any parsing error, SR_OK otherwise.
319 */
320static int array_float_get(gchar *value, const uint64_t array[][2],
321 int array_len, int *result)
322{
323 int i, e;
324 size_t pos;
325 uint64_t f;
326 float s;
327 unsigned int s_int;
328 gchar ss[10], es[10];
329
330 memset(ss, 0, sizeof(ss));
331 memset(es, 0, sizeof(es));
332
333 /* Get index of the separating 'E' character and break up the string. */
334 pos = strcspn(value, "E");
335
336 strncpy(ss, value, pos);
337 strncpy(es, &(value[pos+1]), 3);
338
339 if (sr_atof_ascii(ss, &s) != SR_OK)
340 return SR_ERR;
341 if (sr_atoi(es, &e) != SR_OK)
342 return SR_ERR;
343
344 /* Transform e.g. 10^-03 to 1000 as the array stores the inverse. */
345 f = pow(10, abs(e));
346
347 /*
348 * Adjust the significand/factor pair to make sure
349 * that f is a multiple of 1000.
350 */
351 while ((int)fmod(log10(f), 3) > 0) {
352 s *= 10;
353
354 if (e < 0)
355 f *= 10;
356 else
357 f /= 10;
358 }
359
360 /* Truncate s to circumvent rounding errors. */
361 s_int = (unsigned int)s;
362
363 for (i = 0; i < array_len; i++) {
364 if ((s_int == array[i][0]) && (f == array[i][1])) {
365 *result = i;
366 return SR_OK;
367 }
368 }
369
370 return SR_ERR;
371}
372
373/**
374 * Obtains information about all analog channels from the oscilloscope.
375 * The internal state information is updated accordingly.
376 *
377 * @param sdi The device instance.
378 * @param config The device's device configuration.
379 * @param state The device's state information.
380 *
381 * @return SR_ERR on error, SR_OK otherwise.
382 */
383static int analog_channel_state_get(const struct sr_dev_inst *sdi,
384 const struct scope_config *config,
385 struct scope_state *state)
386{
387 struct sr_scpi_dev_inst *scpi;
388 int i, j;
389 GSList *l;
390 struct sr_channel *ch;
391 gchar *response;
392
393 scpi = sdi->conn;
394
395 for (i = 0; i < config->analog_channels; i++) {
396
397 if (dlm_analog_chan_state_get(scpi, i + 1,
398 &state->analog_states[i].state) != SR_OK)
399 return SR_ERR;
400
401 for (l = sdi->channels; l; l = l->next) {
402 ch = l->data;
403 if (ch->index == i) {
404 ch->enabled = state->analog_states[i].state;
405 break;
406 }
407 }
408
409 if (dlm_analog_chan_vdiv_get(scpi, i + 1, &response) != SR_OK)
410 return SR_ERR;
411
412 if (array_float_get(response, ARRAY_AND_SIZE(dlm_vdivs),
413 &j) != SR_OK) {
414 g_free(response);
415 return SR_ERR;
416 }
417
418 g_free(response);
419 state->analog_states[i].vdiv = j;
420
421 if (dlm_analog_chan_voffs_get(scpi, i + 1,
422 &state->analog_states[i].vertical_offset) != SR_OK)
423 return SR_ERR;
424
425 if (dlm_analog_chan_wrange_get(scpi, i + 1,
426 &state->analog_states[i].waveform_range) != SR_OK)
427 return SR_ERR;
428
429 if (dlm_analog_chan_woffs_get(scpi, i + 1,
430 &state->analog_states[i].waveform_offset) != SR_OK)
431 return SR_ERR;
432
433 if (dlm_analog_chan_coupl_get(scpi, i + 1, &response) != SR_OK) {
434 g_free(response);
435 return SR_ERR;
436 }
437
438 if (array_option_get(response, config->coupling_options,
439 config->num_coupling_options,
440 &state->analog_states[i].coupling) != SR_OK) {
441 g_free(response);
442 return SR_ERR;
443 }
444 g_free(response);
445 }
446
447 return SR_OK;
448}
449
450/**
451 * Obtains information about all digital channels from the oscilloscope.
452 * The internal state information is updated accordingly.
453 *
454 * @param sdi The device instance.
455 * @param config The device's device configuration.
456 * @param state The device's state information.
457 *
458 * @return SR_ERR on error, SR_OK otherwise.
459 */
460static int digital_channel_state_get(const struct sr_dev_inst *sdi,
461 const struct scope_config *config,
462 struct scope_state *state)
463{
464 struct sr_scpi_dev_inst *scpi;
465 int i;
466 GSList *l;
467 struct sr_channel *ch;
468
469 scpi = sdi->conn;
470
471 if (!config->digital_channels) {
472 sr_warn("Tried obtaining digital channel states on a " \
473 "model without digital inputs.");
474 return SR_OK;
475 }
476
477 for (i = 0; i < config->digital_channels; i++) {
478 if (dlm_digital_chan_state_get(scpi, i + 1,
479 &state->digital_states[i]) != SR_OK) {
480 return SR_ERR;
481 }
482
483 for (l = sdi->channels; l; l = l->next) {
484 ch = l->data;
485 if (ch->index == i + DLM_DIG_CHAN_INDEX_OFFS) {
486 ch->enabled = state->digital_states[i];
487 break;
488 }
489 }
490 }
491
492 if (!config->pods) {
493 sr_warn("Tried obtaining pod states on a model without pods.");
494 return SR_OK;
495 }
496
497 for (i = 0; i < config->pods; i++) {
498 if (dlm_digital_pod_state_get(scpi, i + 'A',
499 &state->pod_states[i]) != SR_OK)
500 return SR_ERR;
501 }
502
503 return SR_OK;
504}
505
506SR_PRIV int dlm_channel_state_set(const struct sr_dev_inst *sdi,
507 const int ch_index, gboolean ch_state)
508{
509 GSList *l;
510 struct sr_channel *ch;
511 struct dev_context *devc = NULL;
512 struct scope_state *state;
513 const struct scope_config *model = NULL;
514 struct sr_scpi_dev_inst *scpi;
515 gboolean chan_found;
516 gboolean *pod_enabled;
517 int i, result;
518
519 result = SR_OK;
520
521 scpi = sdi->conn;
522 devc = sdi->priv;
523 state = devc->model_state;
524 model = devc->model_config;
525 chan_found = FALSE;
526
527 pod_enabled = g_malloc0(sizeof(gboolean) * model->pods);
528
529 for (l = sdi->channels; l; l = l->next) {
530 ch = l->data;
531
532 switch (ch->type) {
533 case SR_CHANNEL_ANALOG:
534 if (ch->index == ch_index) {
535 if (dlm_analog_chan_state_set(scpi, ch->index + 1, ch_state) != SR_OK) {
536 result = SR_ERR;
537 break;
538 }
539
540 ch->enabled = ch_state;
541 state->analog_states[ch->index].state = ch_state;
542 chan_found = TRUE;
543 break;
544 }
545 break;
546 case SR_CHANNEL_LOGIC:
547 i = ch->index - DLM_DIG_CHAN_INDEX_OFFS;
548
549 if (ch->index == ch_index) {
550 if (dlm_digital_chan_state_set(scpi, i + 1, ch_state) != SR_OK) {
551 result = SR_ERR;
552 break;
553 }
554
555 ch->enabled = ch_state;
556 state->digital_states[i] = ch_state;
557 chan_found = TRUE;
558
559 /* The corresponding pod has to be enabled also. */
560 pod_enabled[i / 8] |= ch->enabled;
561 } else {
562 /* Also check all other channels. Maybe we can disable a pod. */
563 pod_enabled[i / 8] |= ch->enabled;
564 }
565 break;
566 default:
567 result = SR_ERR_NA;
568 }
569 }
570
571 for (i = 0; i < model->pods; i++) {
572 if (state->pod_states[i] == pod_enabled[i])
573 continue;
574
575 if (dlm_digital_pod_state_set(scpi, i + 1, pod_enabled[i]) != SR_OK) {
576 result = SR_ERR;
577 break;
578 }
579
580 state->pod_states[i] = pod_enabled[i];
581 }
582
583 g_free(pod_enabled);
584
585 if ((result == SR_OK) && !chan_found)
586 result = SR_ERR_BUG;
587
588 return result;
589}
590
591/**
592 * Obtains information about the sample rate from the oscilloscope.
593 * The internal state information is updated accordingly.
594 *
595 * @param sdi The device instance.
596 *
597 * @return SR_ERR on error, SR_OK otherwise.
598 */
599SR_PRIV int dlm_sample_rate_query(const struct sr_dev_inst *sdi)
600{
601 struct dev_context *devc;
602 struct scope_state *state;
603 float tmp_float;
604
605 devc = sdi->priv;
606 state = devc->model_state;
607
608 /*
609 * No need to find an active channel to query the sample rate:
610 * querying any channel will do, so we use channel 1 all the time.
611 */
612 if (dlm_analog_chan_srate_get(sdi->conn, 1, &tmp_float) != SR_OK)
613 return SR_ERR;
614
615 state->sample_rate = tmp_float;
616
617 return SR_OK;
618}
619
620/**
621 * Obtains information about the current device state from the oscilloscope,
622 * including all analog and digital channel configurations.
623 * The internal state information is updated accordingly.
624 *
625 * @param sdi The device instance.
626 *
627 * @return SR_ERR on error, SR_OK otherwise.
628 */
629SR_PRIV int dlm_scope_state_query(struct sr_dev_inst *sdi)
630{
631 struct dev_context *devc;
632 struct scope_state *state;
633 const struct scope_config *config;
634 float tmp_float;
635 gchar *response;
636 int i;
637
638 devc = sdi->priv;
639 config = devc->model_config;
640 state = devc->model_state;
641
642 if (analog_channel_state_get(sdi, config, state) != SR_OK)
643 return SR_ERR;
644
645 if (digital_channel_state_get(sdi, config, state) != SR_OK)
646 return SR_ERR;
647
648 if (dlm_timebase_get(sdi->conn, &response) != SR_OK)
649 return SR_ERR;
650
651 if (array_float_get(response, ARRAY_AND_SIZE(dlm_timebases), &i) != SR_OK) {
652 g_free(response);
653 return SR_ERR;
654 }
655
656 g_free(response);
657 state->timebase = i;
658
659 if (dlm_horiz_trigger_pos_get(sdi->conn, &tmp_float) != SR_OK)
660 return SR_ERR;
661
662 /* TODO: Check if the calculation makes sense for the DLM. */
663 state->horiz_triggerpos = tmp_float /
664 (((double)dlm_timebases[state->timebase][0] /
665 dlm_timebases[state->timebase][1]) * config->num_xdivs);
666 state->horiz_triggerpos -= 0.5;
667 state->horiz_triggerpos *= -1;
668
669 if (dlm_trigger_source_get(sdi->conn, &response) != SR_OK) {
670 g_free(response);
671 return SR_ERR;
672 }
673
674 if (array_option_get(response, config->trigger_sources,
675 config->num_trigger_sources, &state->trigger_source) != SR_OK) {
676 g_free(response);
677 return SR_ERR;
678 }
679
680 g_free(response);
681
682 if (dlm_trigger_slope_get(sdi->conn, &i) != SR_OK)
683 return SR_ERR;
684
685 state->trigger_slope = i;
686
687 if (dlm_acq_length_get(sdi->conn, &state->samples_per_frame) != SR_OK) {
688 sr_err("Failed to query acquisition length.");
689 return SR_ERR;
690 }
691
692 dlm_sample_rate_query(sdi);
693
694 scope_state_dump(config, state);
695
696 return SR_OK;
697}
698
699/**
700 * Creates a new device state structure.
701 *
702 * @param config The device configuration to use.
703 *
704 * @return The newly allocated scope_state struct.
705 */
706static struct scope_state *dlm_scope_state_new(const struct scope_config *config)
707{
708 struct scope_state *state;
709
710 state = g_malloc0(sizeof(struct scope_state));
711
712 state->analog_states = g_malloc0(config->analog_channels *
713 sizeof(struct analog_channel_state));
714
715 state->digital_states = g_malloc0(config->digital_channels *
716 sizeof(gboolean));
717
718 state->pod_states = g_malloc0(config->pods * sizeof(gboolean));
719
720 return state;
721}
722
723/**
724 * Frees the memory that was allocated by a call to dlm_scope_state_new().
725 *
726 * @param state The device state structure whose memory is to be freed.
727 */
728SR_PRIV void dlm_scope_state_destroy(struct scope_state *state)
729{
730 g_free(state->analog_states);
731 g_free(state->digital_states);
732 g_free(state->pod_states);
733 g_free(state);
734}
735
736SR_PRIV int dlm_model_get(char *model_id, char **model_name, int *model_index)
737{
738 unsigned int i, j;
739
740 *model_index = -1;
741 *model_name = NULL;
742
743 for (i = 0; i < ARRAY_SIZE(scope_models); i++) {
744 for (j = 0; scope_models[i].model_id[j]; j++) {
745 if (!strcmp(model_id, scope_models[i].model_id[j])) {
746 *model_index = i;
747 *model_name = (char *)scope_models[i].model_name[j];
748 break;
749 }
750 }
751 if (*model_index != -1)
752 break;
753 }
754
755 if (*model_index == -1) {
756 sr_err("Found unsupported DLM device with model identifier %s.",
757 model_id);
758 return SR_ERR_NA;
759 }
760
761 return SR_OK;
762}
763
764/**
765 * Attempts to initialize a DL/DLM device and prepares internal structures
766 * if a suitable device was found.
767 *
768 * @param sdi The device instance.
769 */
770SR_PRIV int dlm_device_init(struct sr_dev_inst *sdi, int model_index)
771{
772 int i;
773 struct sr_channel *ch;
774 struct dev_context *devc;
775
776 devc = sdi->priv;
777
778 devc->analog_groups = g_malloc0(sizeof(struct sr_channel_group*) *
779 scope_models[model_index].analog_channels);
780 devc->digital_groups = g_malloc0(sizeof(struct sr_channel_group*) *
781 scope_models[model_index].pods);
782 if (!devc->analog_groups || !devc->digital_groups) {
783 g_free(devc->analog_groups);
784 g_free(devc->digital_groups);
785 return SR_ERR_MALLOC;
786 }
787
788 /* Add analog channels, each in its own group. */
789 for (i = 0; i < scope_models[model_index].analog_channels; i++) {
790 ch = sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE,
791 (*scope_models[model_index].analog_names)[i]);
792
793 devc->analog_groups[i] = sr_channel_group_new(sdi,
794 (*scope_models[model_index].analog_names)[i], NULL);
795 devc->analog_groups[i]->channels = g_slist_append(NULL, ch);
796 }
797
798 /* Add digital channel groups. */
799 for (i = 0; i < scope_models[model_index].pods; i++) {
800 devc->digital_groups[i] = sr_channel_group_new(sdi, NULL, NULL);
801 if (!devc->digital_groups[i])
802 return SR_ERR_MALLOC;
803 devc->digital_groups[i]->name = g_strdup_printf("POD%d", i);
804 }
805
806 /* Add digital channels. */
807 for (i = 0; i < scope_models[model_index].digital_channels; i++) {
808 ch = sr_channel_new(sdi, DLM_DIG_CHAN_INDEX_OFFS + i,
809 SR_CHANNEL_LOGIC, TRUE,
810 (*scope_models[model_index].digital_names)[i]);
811
812 devc->digital_groups[i / 8]->channels = g_slist_append(
813 devc->digital_groups[i / 8]->channels, ch);
814 }
815 devc->model_config = &scope_models[model_index];
816 devc->frame_limit = 0;
817
818 if (!(devc->model_state = dlm_scope_state_new(devc->model_config)))
819 return SR_ERR_MALLOC;
820
821 /* Disable non-standard response behavior. */
822 if (dlm_response_headers_set(sdi->conn, FALSE) != SR_OK)
823 return SR_ERR;
824
825 return SR_OK;
826}
827
828SR_PRIV int dlm_channel_data_request(const struct sr_dev_inst *sdi)
829{
830 struct dev_context *devc;
831 struct sr_channel *ch;
832 int result;
833
834 devc = sdi->priv;
835 ch = devc->current_channel->data;
836
837 switch (ch->type) {
838 case SR_CHANNEL_ANALOG:
839 result = dlm_analog_data_get(sdi->conn, ch->index + 1);
840 break;
841 case SR_CHANNEL_LOGIC:
842 result = dlm_digital_data_get(sdi->conn);
843 break;
844 default:
845 sr_err("Invalid channel type encountered (%d).",
846 ch->type);
847 result = SR_ERR;
848 }
849
850 if (result == SR_OK)
851 devc->data_pending = TRUE;
852 else
853 devc->data_pending = FALSE;
854
855 return result;
856}
857
858/**
859 * Reads and removes the block data header from a given data input.
860 * Format is #ndddd... with n being the number of decimal digits d.
861 * The string dddd... contains the decimal-encoded length of the data.
862 * Example: #9000000013 would yield a length of 13 bytes.
863 *
864 * @param data The input data.
865 * @param len The determined input data length.
866 */
867static int dlm_block_data_header_process(GArray *data, int *len)
868{
869 int i, n;
870 gchar s[20];
871
872 if (g_array_index(data, gchar, 0) != '#')
873 return SR_ERR;
874
875 n = (uint8_t)(g_array_index(data, gchar, 1) - '0');
876
877 for (i = 0; i < n; i++)
878 s[i] = g_array_index(data, gchar, 2 + i);
879 s[i] = 0;
880
881 if (sr_atoi(s, len) != SR_OK)
882 return SR_ERR;
883
884 g_array_remove_range(data, 0, 2 + n);
885
886 return SR_OK;
887}
888
889/**
890 * Turns raw sample data into voltages and sends them off to the session bus.
891 *
892 * @param data The raw sample data.
893 * @ch_state Pointer to the state of the channel whose data we're processing.
894 * @sdi The device instance.
895 *
896 * @return SR_ERR when data is trucated, SR_OK otherwise.
897 */
898static int dlm_analog_samples_send(GArray *data,
899 struct analog_channel_state *ch_state,
900 struct sr_dev_inst *sdi)
901{
902 uint32_t i, samples;
903 float voltage, range, offset;
904 GArray *float_data;
905 struct dev_context *devc;
906 struct scope_state *model_state;
907 struct sr_channel *ch;
908 struct sr_datafeed_analog analog;
909 struct sr_analog_encoding encoding;
910 struct sr_analog_meaning meaning;
911 struct sr_analog_spec spec;
912 struct sr_datafeed_packet packet;
913
914 devc = sdi->priv;
915 model_state = devc->model_state;
916 samples = model_state->samples_per_frame;
917 ch = devc->current_channel->data;
918
919 if (data->len < samples * sizeof(uint8_t)) {
920 sr_err("Truncated waveform data packet received.");
921 return SR_ERR;
922 }
923
924 range = ch_state->waveform_range;
925 offset = ch_state->waveform_offset;
926
927 /*
928 * Convert byte sample to voltage according to
929 * page 269 of the Communication Interface User's Manual.
930 */
931 float_data = g_array_new(FALSE, FALSE, sizeof(float));
932 for (i = 0; i < samples; i++) {
933 voltage = (float)g_array_index(data, int8_t, i);
934 voltage = (range * voltage /
935 DLM_DIVISION_FOR_BYTE_FORMAT) + offset;
936 g_array_append_val(float_data, voltage);
937 }
938
939 /* TODO: Use proper 'digits' value for this device (and its modes). */
940 sr_analog_init(&analog, &encoding, &meaning, &spec, 2);
941 analog.meaning->channels = g_slist_append(NULL, ch);
942 analog.num_samples = float_data->len;
943 analog.data = (float*)float_data->data;
944 analog.meaning->mq = SR_MQ_VOLTAGE;
945 analog.meaning->unit = SR_UNIT_VOLT;
946 analog.meaning->mqflags = 0;
947 packet.type = SR_DF_ANALOG;
948 packet.payload = &analog;
949 sr_session_send(sdi, &packet);
950 g_slist_free(analog.meaning->channels);
951
952 g_array_free(float_data, TRUE);
953 g_array_remove_range(data, 0, samples * sizeof(uint8_t));
954
955 return SR_OK;
956}
957
958/**
959 * Sends logic sample data off to the session bus.
960 *
961 * @param data The raw sample data.
962 * @ch_state Pointer to the state of the channel whose data we're processing.
963 * @sdi The device instance.
964 *
965 * @return SR_ERR when data is trucated, SR_OK otherwise.
966 */
967static int dlm_digital_samples_send(GArray *data,
968 struct sr_dev_inst *sdi)
969{
970 struct dev_context *devc;
971 struct scope_state *model_state;
972 uint32_t samples;
973 struct sr_datafeed_logic logic;
974 struct sr_datafeed_packet packet;
975
976 devc = sdi->priv;
977 model_state = devc->model_state;
978 samples = model_state->samples_per_frame;
979
980 if (data->len < samples * sizeof(uint8_t)) {
981 sr_err("Truncated waveform data packet received.");
982 return SR_ERR;
983 }
984
985 logic.length = samples;
986 logic.unitsize = 1;
987 logic.data = data->data;
988 packet.type = SR_DF_LOGIC;
989 packet.payload = &logic;
990 sr_session_send(sdi, &packet);
991
992 g_array_remove_range(data, 0, samples * sizeof(uint8_t));
993
994 return SR_OK;
995}
996
997/**
998 * Attempts to query sample data from the oscilloscope in order to send it
999 * to the session bus for further processing.
1000 *
1001 * @param fd The file descriptor used as the event source.
1002 * @param revents The received events.
1003 * @param cb_data Callback data, in this case our device instance.
1004 *
1005 * @return TRUE in case of success or a recoverable error,
1006 * FALSE when a fatal error was encountered.
1007 */
1008SR_PRIV int dlm_data_receive(int fd, int revents, void *cb_data)
1009{
1010 struct sr_dev_inst *sdi;
1011 struct scope_state *model_state;
1012 struct dev_context *devc;
1013 struct sr_channel *ch;
1014 int chunk_len, num_bytes;
1015 static GArray *data = NULL;
1016
1017 (void)fd;
1018 (void)revents;
1019
1020 if (!(sdi = cb_data))
1021 return FALSE;
1022
1023 if (!(devc = sdi->priv))
1024 return FALSE;
1025
1026 if (!(model_state = (struct scope_state*)devc->model_state))
1027 return FALSE;
1028
1029 /* Are we waiting for a response from the device? */
1030 if (!devc->data_pending)
1031 return TRUE;
1032
1033 /* Check if a new query response is coming our way. */
1034 if (!data) {
1035 if (sr_scpi_read_begin(sdi->conn) == SR_OK)
1036 /* The 16 here accounts for the header and EOL. */
1037 data = g_array_sized_new(FALSE, FALSE, sizeof(uint8_t),
1038 16 + model_state->samples_per_frame);
1039 else
1040 return TRUE;
1041 }
1042
1043 /* Store incoming data. */
1044 chunk_len = sr_scpi_read_data(sdi->conn, devc->receive_buffer,
1045 RECEIVE_BUFFER_SIZE);
1046 if (chunk_len < 0) {
1047 sr_err("Error while reading data: %d", chunk_len);
1048 goto fail;
1049 }
1050 g_array_append_vals(data, devc->receive_buffer, chunk_len);
1051
1052 /* Read the entire query response before processing. */
1053 if (!sr_scpi_read_complete(sdi->conn))
1054 return TRUE;
1055
1056 /* We finished reading and are no longer waiting for data. */
1057 devc->data_pending = FALSE;
1058
1059 /* Signal the beginning of a new frame if this is the first channel. */
1060 if (devc->current_channel == devc->enabled_channels)
1061 std_session_send_df_frame_begin(sdi);
1062
1063 if (dlm_block_data_header_process(data, &num_bytes) != SR_OK) {
1064 sr_err("Encountered malformed block data header.");
1065 goto fail;
1066 }
1067
1068 if (num_bytes == 0) {
1069 sr_warn("Zero-length waveform data packet received. " \
1070 "Live mode not supported yet, stopping " \
1071 "acquisition and retrying.");
1072 /* Don't care about return value here. */
1073 dlm_acquisition_stop(sdi->conn);
1074 g_array_free(data, TRUE);
1075 dlm_channel_data_request(sdi);
1076 return TRUE;
1077 }
1078
1079 ch = devc->current_channel->data;
1080 switch (ch->type) {
1081 case SR_CHANNEL_ANALOG:
1082 if (dlm_analog_samples_send(data,
1083 &model_state->analog_states[ch->index],
1084 sdi) != SR_OK)
1085 goto fail;
1086 break;
1087 case SR_CHANNEL_LOGIC:
1088 if (dlm_digital_samples_send(data, sdi) != SR_OK)
1089 goto fail;
1090 break;
1091 default:
1092 sr_err("Invalid channel type encountered.");
1093 break;
1094 }
1095
1096 g_array_free(data, TRUE);
1097 data = NULL;
1098
1099 /*
1100 * Signal the end of this frame if this was the last enabled channel
1101 * and set the next enabled channel. Then, request its data.
1102 */
1103 if (!devc->current_channel->next) {
1104 std_session_send_df_frame_end(sdi);
1105 devc->current_channel = devc->enabled_channels;
1106
1107 /*
1108 * As of now we only support importing the current acquisition
1109 * data so we're going to stop at this point.
1110 */
1111 sr_dev_acquisition_stop(sdi);
1112 return TRUE;
1113 } else
1114 devc->current_channel = devc->current_channel->next;
1115
1116 if (dlm_channel_data_request(sdi) != SR_OK) {
1117 sr_err("Failed to request acquisition data.");
1118 goto fail;
1119 }
1120
1121 return TRUE;
1122
1123fail:
1124 if (data) {
1125 g_array_free(data, TRUE);
1126 data = NULL;
1127 }
1128
1129 return FALSE;
1130}