]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/sysclk-lwla/protocol.c
Build: Include <config.h> first in all source files
[libsigrok.git] / src / hardware / sysclk-lwla / protocol.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2014 Daniel Elstner <daniel.kitta@gmail.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include <string.h>
22#include "protocol.h"
23
24/* Bit mask for the RLE repeat-count-follows flag. */
25#define RLE_FLAG_LEN_FOLLOWS ((uint64_t)1 << 35)
26
27/* Start address of capture status memory area to read. */
28#define CAP_STAT_ADDR 5
29
30/* Number of 64-bit words read from the capture status memory. */
31#define CAP_STAT_LEN 5
32
33/* The bitstream filenames are indexed by the clock_config enumeration.
34 */
35static const char bitstream_map[][32] = {
36 "sysclk-lwla1034-off.rbf",
37 "sysclk-lwla1034-int.rbf",
38 "sysclk-lwla1034-extpos.rbf",
39 "sysclk-lwla1034-extneg.rbf",
40};
41
42/* Submit an already filled-in USB transfer.
43 */
44static int submit_transfer(struct dev_context *devc,
45 struct libusb_transfer *xfer)
46{
47 int ret;
48
49 ret = libusb_submit_transfer(xfer);
50
51 if (ret != 0) {
52 sr_err("Submit transfer failed: %s.", libusb_error_name(ret));
53 devc->transfer_error = TRUE;
54 return SR_ERR;
55 }
56
57 return SR_OK;
58}
59
60/* Set up the LWLA in preparation for an acquisition session.
61 */
62static int capture_setup(const struct sr_dev_inst *sdi)
63{
64 struct dev_context *devc;
65 struct acquisition_state *acq;
66 uint64_t divider_count;
67 uint64_t trigger_mask;
68 uint64_t memory_limit;
69 uint16_t command[3 + (10 * 4)];
70
71 devc = sdi->priv;
72 acq = devc->acquisition;
73
74 command[0] = LWLA_WORD(CMD_CAP_SETUP);
75 command[1] = LWLA_WORD(0); /* address */
76 command[2] = LWLA_WORD(10); /* length */
77
78 command[3] = LWLA_WORD_0(devc->channel_mask);
79 command[4] = LWLA_WORD_1(devc->channel_mask);
80 command[5] = LWLA_WORD_2(devc->channel_mask);
81 command[6] = LWLA_WORD_3(devc->channel_mask);
82
83 /* Set the clock divide counter maximum for samplerates of up to
84 * 100 MHz. At the highest samplerate of 125 MHz the clock divider
85 * is bypassed.
86 */
87 if (!acq->bypass_clockdiv && devc->samplerate > 0)
88 divider_count = SR_MHZ(100) / devc->samplerate - 1;
89 else
90 divider_count = 0;
91
92 command[7] = LWLA_WORD_0(divider_count);
93 command[8] = LWLA_WORD_1(divider_count);
94 command[9] = LWLA_WORD_2(divider_count);
95 command[10] = LWLA_WORD_3(divider_count);
96
97 command[11] = LWLA_WORD_0(devc->trigger_values);
98 command[12] = LWLA_WORD_1(devc->trigger_values);
99 command[13] = LWLA_WORD_2(devc->trigger_values);
100 command[14] = LWLA_WORD_3(devc->trigger_values);
101
102 command[15] = LWLA_WORD_0(devc->trigger_edge_mask);
103 command[16] = LWLA_WORD_1(devc->trigger_edge_mask);
104 command[17] = LWLA_WORD_2(devc->trigger_edge_mask);
105 command[18] = LWLA_WORD_3(devc->trigger_edge_mask);
106
107 trigger_mask = devc->trigger_mask;
108 /* Set bits to select external TRG input edge. */
109 if (devc->cfg_trigger_source == TRIGGER_EXT_TRG)
110 switch (devc->cfg_trigger_slope) {
111 case EDGE_POSITIVE:
112 trigger_mask |= (uint64_t)1 << 35;
113 break;
114 case EDGE_NEGATIVE:
115 trigger_mask |= (uint64_t)1 << 34;
116 break;
117 }
118
119 command[19] = LWLA_WORD_0(trigger_mask);
120 command[20] = LWLA_WORD_1(trigger_mask);
121 command[21] = LWLA_WORD_2(trigger_mask);
122 command[22] = LWLA_WORD_3(trigger_mask);
123
124 /* Set the capture memory full threshold. This is slightly less
125 * than the actual maximum, most likely in order to compensate for
126 * pipeline latency.
127 */
128 memory_limit = MEMORY_DEPTH - 16;
129
130 command[23] = LWLA_WORD_0(memory_limit);
131 command[24] = LWLA_WORD_1(memory_limit);
132 command[25] = LWLA_WORD_2(memory_limit);
133 command[26] = LWLA_WORD_3(memory_limit);
134
135 /* Fill remaining 64-bit words with zeroes. */
136 memset(&command[27], 0, 16 * sizeof(uint16_t));
137
138 return lwla_send_command(sdi->conn, command, ARRAY_SIZE(command));
139}
140
141/* Issue a register write command as an asynchronous USB transfer.
142 */
143static int issue_write_reg(const struct sr_dev_inst *sdi,
144 unsigned int reg, unsigned int value)
145{
146 struct dev_context *devc;
147 struct acquisition_state *acq;
148
149 devc = sdi->priv;
150 acq = devc->acquisition;
151
152 acq->xfer_buf_out[0] = LWLA_WORD(CMD_WRITE_REG);
153 acq->xfer_buf_out[1] = LWLA_WORD(reg);
154 acq->xfer_buf_out[2] = LWLA_WORD_0(value);
155 acq->xfer_buf_out[3] = LWLA_WORD_1(value);
156
157 acq->xfer_out->length = 4 * sizeof(uint16_t);
158
159 return submit_transfer(devc, acq->xfer_out);
160}
161
162/* Issue a register write command as an asynchronous USB transfer for the
163 * next register/value pair of the currently active register write sequence.
164 */
165static int issue_next_write_reg(const struct sr_dev_inst *sdi)
166{
167 struct dev_context *devc;
168 struct regval_pair *regval;
169 int ret;
170
171 devc = sdi->priv;
172
173 if (devc->reg_write_pos >= devc->reg_write_len) {
174 sr_err("Already written all registers in sequence.");
175 return SR_ERR_BUG;
176 }
177 regval = &devc->reg_write_seq[devc->reg_write_pos];
178
179 ret = issue_write_reg(sdi, regval->reg, regval->val);
180 if (ret != SR_OK)
181 return ret;
182
183 ++devc->reg_write_pos;
184 return SR_OK;
185}
186
187/* Issue a capture status request as an asynchronous USB transfer.
188 */
189static void request_capture_status(const struct sr_dev_inst *sdi)
190{
191 struct dev_context *devc;
192 struct acquisition_state *acq;
193
194 devc = sdi->priv;
195 acq = devc->acquisition;
196
197 acq->xfer_buf_out[0] = LWLA_WORD(CMD_CAP_STATUS);
198 acq->xfer_buf_out[1] = LWLA_WORD(CAP_STAT_ADDR);
199 acq->xfer_buf_out[2] = LWLA_WORD(CAP_STAT_LEN);
200
201 acq->xfer_out->length = 3 * sizeof(uint16_t);
202
203 if (submit_transfer(devc, acq->xfer_out) == SR_OK)
204 devc->state = STATE_STATUS_REQUEST;
205}
206
207/* Issue a request for the capture buffer fill level as
208 * an asynchronous USB transfer.
209 */
210static void request_capture_length(const struct sr_dev_inst *sdi)
211{
212 struct dev_context *devc;
213 struct acquisition_state *acq;
214
215 devc = sdi->priv;
216 acq = devc->acquisition;
217
218 acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_REG);
219 acq->xfer_buf_out[1] = LWLA_WORD(REG_MEM_FILL);
220
221 acq->xfer_out->length = 2 * sizeof(uint16_t);
222
223 if (submit_transfer(devc, acq->xfer_out) == SR_OK)
224 devc->state = STATE_LENGTH_REQUEST;
225}
226
227/* Initiate the capture memory read operation: Reset the acquisition state
228 * and start a sequence of register writes in order to set up the device for
229 * reading from the capture buffer.
230 */
231static void issue_read_start(const struct sr_dev_inst *sdi)
232{
233 struct dev_context *devc;
234 struct acquisition_state *acq;
235 struct regval_pair *regvals;
236
237 devc = sdi->priv;
238 acq = devc->acquisition;
239
240 /* Reset RLE state. */
241 acq->rle = RLE_STATE_DATA;
242 acq->sample = 0;
243 acq->run_len = 0;
244
245 acq->samples_done = 0;
246
247 /* For some reason, the start address is 4 rather than 0. */
248 acq->mem_addr_done = 4;
249 acq->mem_addr_next = 4;
250 acq->mem_addr_stop = acq->mem_addr_fill;
251
252 /* Sample position in the packet output buffer. */
253 acq->out_index = 0;
254
255 regvals = devc->reg_write_seq;
256
257 regvals[0].reg = REG_DIV_BYPASS;
258 regvals[0].val = 1;
259
260 regvals[1].reg = REG_MEM_CTRL2;
261 regvals[1].val = 2;
262
263 regvals[2].reg = REG_MEM_CTRL4;
264 regvals[2].val = 4;
265
266 devc->reg_write_pos = 0;
267 devc->reg_write_len = 3;
268
269 if (issue_next_write_reg(sdi) == SR_OK)
270 devc->state = STATE_READ_PREPARE;
271}
272
273/* Issue a command as an asynchronous USB transfer which returns the device
274 * to normal state after a read operation. Sets a new device context state
275 * on success.
276 */
277static void issue_read_end(const struct sr_dev_inst *sdi)
278{
279 struct dev_context *devc;
280
281 devc = sdi->priv;
282
283 if (issue_write_reg(sdi, REG_DIV_BYPASS, 0) == SR_OK)
284 devc->state = STATE_READ_END;
285}
286
287/* Decode an incoming response to a buffer fill level request and act on it
288 * as appropriate. Note that this function changes the device context state.
289 */
290static void process_capture_length(const struct sr_dev_inst *sdi)
291{
292 struct dev_context *devc;
293 struct acquisition_state *acq;
294
295 devc = sdi->priv;
296 acq = devc->acquisition;
297
298 if (acq->xfer_in->actual_length != 4) {
299 sr_err("Received size %d doesn't match expected size 4.",
300 acq->xfer_in->actual_length);
301 devc->transfer_error = TRUE;
302 return;
303 }
304 acq->mem_addr_fill = LWLA_TO_UINT32(acq->xfer_buf_in[0]);
305
306 sr_dbg("%zu words in capture buffer.", acq->mem_addr_fill);
307
308 if (acq->mem_addr_fill > 0 && sdi->status == SR_ST_ACTIVE)
309 issue_read_start(sdi);
310 else
311 issue_read_end(sdi);
312}
313
314/* Initiate a sequence of register write commands with the effect of
315 * cancelling a running capture operation. This sets a new device state
316 * if issuing the first command succeeds.
317 */
318static void issue_stop_capture(const struct sr_dev_inst *sdi)
319{
320 struct dev_context *devc;
321 struct regval_pair *regvals;
322
323 devc = sdi->priv;
324
325 if (devc->stopping_in_progress)
326 return;
327
328 regvals = devc->reg_write_seq;
329
330 regvals[0].reg = REG_CMD_CTRL2;
331 regvals[0].val = 10;
332
333 regvals[1].reg = REG_CMD_CTRL3;
334 regvals[1].val = 0;
335
336 regvals[2].reg = REG_CMD_CTRL4;
337 regvals[2].val = 0;
338
339 regvals[3].reg = REG_CMD_CTRL1;
340 regvals[3].val = 0;
341
342 regvals[4].reg = REG_DIV_BYPASS;
343 regvals[4].val = 0;
344
345 devc->reg_write_pos = 0;
346 devc->reg_write_len = 5;
347
348 if (issue_next_write_reg(sdi) == SR_OK) {
349 devc->stopping_in_progress = TRUE;
350 devc->state = STATE_STOP_CAPTURE;
351 }
352}
353
354/* Decode an incoming capture status response and act on it as appropriate.
355 * Note that this function changes the device state.
356 */
357static void process_capture_status(const struct sr_dev_inst *sdi)
358{
359 uint64_t duration;
360 struct dev_context *devc;
361 struct acquisition_state *acq;
362 unsigned int mem_fill;
363 unsigned int flags;
364
365 devc = sdi->priv;
366 acq = devc->acquisition;
367
368 if (acq->xfer_in->actual_length != CAP_STAT_LEN * 8) {
369 sr_err("Received size %d doesn't match expected size %d.",
370 acq->xfer_in->actual_length, CAP_STAT_LEN * 8);
371 devc->transfer_error = TRUE;
372 return;
373 }
374
375 /* TODO: Find out the actual bit width of these fields as stored
376 * in the FPGA. These fields are definitely less than 64 bit wide
377 * internally, and the unused bits occasionally even contain garbage.
378 */
379 mem_fill = LWLA_TO_UINT32(acq->xfer_buf_in[0]);
380 duration = LWLA_TO_UINT32(acq->xfer_buf_in[4]);
381 flags = LWLA_TO_UINT32(acq->xfer_buf_in[8]) & STATUS_FLAG_MASK;
382
383 /* The LWLA1034 runs at 125 MHz if the clock divider is bypassed.
384 * However, the time base used for the duration is apparently not
385 * adjusted for this "boost" mode. Whereas normally the duration
386 * unit is 1 ms, it is 0.8 ms when the clock divider is bypassed.
387 * As 0.8 = 100 MHz / 125 MHz, it seems that the internal cycle
388 * counter period is the same as at the 100 MHz setting.
389 */
390 if (acq->bypass_clockdiv)
391 acq->duration_now = duration * 4 / 5;
392 else
393 acq->duration_now = duration;
394
395 sr_spew("Captured %u words, %" PRIu64 " ms, flags 0x%02X.",
396 mem_fill, acq->duration_now, flags);
397
398 if ((flags & STATUS_TRIGGERED) > (acq->capture_flags & STATUS_TRIGGERED))
399 sr_info("Capture triggered.");
400
401 acq->capture_flags = flags;
402
403 if (acq->duration_now >= acq->duration_max) {
404 sr_dbg("Time limit reached, stopping capture.");
405 issue_stop_capture(sdi);
406 return;
407 }
408 devc->state = STATE_STATUS_WAIT;
409
410 if ((acq->capture_flags & STATUS_TRIGGERED) == 0) {
411 sr_spew("Waiting for trigger.");
412 } else if ((acq->capture_flags & STATUS_MEM_AVAIL) == 0) {
413 sr_dbg("Capture memory filled.");
414 request_capture_length(sdi);
415 } else if ((acq->capture_flags & STATUS_CAPTURING) != 0) {
416 sr_spew("Sampling in progress.");
417 }
418}
419
420/* Issue a capture buffer read request as an asynchronous USB transfer.
421 * The address and size of the memory area to read are derived from the
422 * current acquisition state.
423 */
424static void request_read_mem(const struct sr_dev_inst *sdi)
425{
426 struct dev_context *devc;
427 struct acquisition_state *acq;
428 size_t count;
429
430 devc = sdi->priv;
431 acq = devc->acquisition;
432
433 if (acq->mem_addr_next >= acq->mem_addr_stop)
434 return;
435
436 /* Always read a multiple of 8 device words. */
437 count = (acq->mem_addr_stop - acq->mem_addr_next + 7) / 8 * 8;
438 count = MIN(count, READ_CHUNK_LEN);
439
440 acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM);
441 acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
442 acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
443 acq->xfer_buf_out[3] = LWLA_WORD_0(count);
444 acq->xfer_buf_out[4] = LWLA_WORD_1(count);
445
446 acq->xfer_out->length = 5 * sizeof(uint16_t);
447
448 if (submit_transfer(devc, acq->xfer_out) == SR_OK) {
449 acq->mem_addr_next += count;
450 devc->state = STATE_READ_REQUEST;
451 }
452}
453
454/* Demangle and decompress incoming sample data from the capture buffer.
455 * The data chunk is taken from the acquisition state, and is expected to
456 * contain a multiple of 8 device words.
457 * All data currently in the acquisition buffer will be processed. Packets
458 * of decoded samples are sent off to the session bus whenever the output
459 * buffer becomes full while decoding.
460 */
461static int process_sample_data(const struct sr_dev_inst *sdi)
462{
463 uint64_t sample;
464 uint64_t high_nibbles;
465 uint64_t word;
466 struct dev_context *devc;
467 struct acquisition_state *acq;
468 uint8_t *out_p;
469 uint32_t *slice;
470 struct sr_datafeed_packet packet;
471 struct sr_datafeed_logic logic;
472 size_t expect_len;
473 size_t actual_len;
474 size_t out_max_samples;
475 size_t out_run_samples;
476 size_t ri;
477 size_t in_words_left;
478 size_t si;
479
480 devc = sdi->priv;
481 acq = devc->acquisition;
482
483 if (acq->mem_addr_done >= acq->mem_addr_stop
484 || acq->samples_done >= acq->samples_max)
485 return SR_OK;
486
487 in_words_left = MIN(acq->mem_addr_stop - acq->mem_addr_done,
488 READ_CHUNK_LEN);
489 expect_len = LWLA1034_MEMBUF_LEN(in_words_left) * sizeof(uint32_t);
490 actual_len = acq->xfer_in->actual_length;
491
492 if (actual_len != expect_len) {
493 sr_err("Received size %zu does not match expected size %zu.",
494 actual_len, expect_len);
495 devc->transfer_error = TRUE;
496 return SR_ERR;
497 }
498 acq->mem_addr_done += in_words_left;
499
500 /* Prepare session packet. */
501 packet.type = SR_DF_LOGIC;
502 packet.payload = &logic;
503 logic.unitsize = UNIT_SIZE;
504 logic.data = acq->out_packet;
505
506 slice = acq->xfer_buf_in;
507 si = 0; /* word index within slice */
508
509 for (;;) {
510 /* Calculate number of samples to write into packet. */
511 out_max_samples = MIN(acq->samples_max - acq->samples_done,
512 PACKET_LENGTH - acq->out_index);
513 out_run_samples = MIN(acq->run_len, out_max_samples);
514
515 /* Expand run-length samples into session packet. */
516 sample = acq->sample;
517 out_p = &acq->out_packet[acq->out_index * UNIT_SIZE];
518
519 for (ri = 0; ri < out_run_samples; ++ri) {
520 out_p[0] = sample & 0xFF;
521 out_p[1] = (sample >> 8) & 0xFF;
522 out_p[2] = (sample >> 16) & 0xFF;
523 out_p[3] = (sample >> 24) & 0xFF;
524 out_p[4] = (sample >> 32) & 0xFF;
525 out_p += UNIT_SIZE;
526 }
527 acq->run_len -= out_run_samples;
528 acq->out_index += out_run_samples;
529 acq->samples_done += out_run_samples;
530
531 /* Packet full or sample count limit reached? */
532 if (out_run_samples == out_max_samples) {
533 logic.length = acq->out_index * UNIT_SIZE;
534 sr_session_send(sdi, &packet);
535 acq->out_index = 0;
536
537 if (acq->samples_done >= acq->samples_max)
538 return SR_OK; /* sample limit reached */
539 if (acq->run_len > 0)
540 continue; /* need another packet */
541 }
542
543 if (in_words_left == 0)
544 break; /* done with current chunk */
545
546 /* Now work on the current slice. */
547 high_nibbles = LWLA_TO_UINT32(slice[8]);
548 word = LWLA_TO_UINT32(slice[si]);
549 word |= (high_nibbles << (4 * si + 4)) & ((uint64_t)0xF << 32);
550
551 if (acq->rle == RLE_STATE_DATA) {
552 acq->sample = word & ALL_CHANNELS_MASK;
553 acq->run_len = ((word >> NUM_CHANNELS) & 1) + 1;
554 if (word & RLE_FLAG_LEN_FOLLOWS)
555 acq->rle = RLE_STATE_LEN;
556 } else {
557 acq->run_len += word << 1;
558 acq->rle = RLE_STATE_DATA;
559 }
560
561 /* Move to next word. */
562 si = (si + 1) % 8;
563 if (si == 0)
564 slice += 9;
565 --in_words_left;
566 }
567
568 /* Send out partially filled packet if this was the last chunk. */
569 if (acq->mem_addr_done >= acq->mem_addr_stop && acq->out_index > 0) {
570 logic.length = acq->out_index * UNIT_SIZE;
571 sr_session_send(sdi, &packet);
572 acq->out_index = 0;
573 }
574 return SR_OK;
575}
576
577/* Finish an acquisition session. This sends the end packet to the session
578 * bus and removes the listener for asynchronous USB transfers.
579 */
580static void end_acquisition(struct sr_dev_inst *sdi)
581{
582 struct drv_context *drvc;
583 struct dev_context *devc;
584 struct sr_datafeed_packet packet;
585
586 drvc = sdi->driver->context;
587 devc = sdi->priv;
588
589 if (devc->state == STATE_IDLE)
590 return;
591
592 devc->state = STATE_IDLE;
593
594 /* Remove USB file descriptors from polling. */
595 usb_source_remove(sdi->session, drvc->sr_ctx);
596
597 packet.type = SR_DF_END;
598 sr_session_send(sdi, &packet);
599
600 lwla_free_acquisition_state(devc->acquisition);
601 devc->acquisition = NULL;
602
603 sdi->status = SR_ST_ACTIVE;
604}
605
606/* USB output transfer completion callback.
607 */
608static void LIBUSB_CALL receive_transfer_out(struct libusb_transfer *transfer)
609{
610 struct sr_dev_inst *sdi;
611 struct dev_context *devc;
612
613 sdi = transfer->user_data;
614 devc = sdi->priv;
615
616 if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
617 sr_err("Transfer to device failed: %d.", transfer->status);
618 devc->transfer_error = TRUE;
619 return;
620 }
621
622 if (devc->reg_write_pos < devc->reg_write_len) {
623 issue_next_write_reg(sdi);
624 } else {
625 switch (devc->state) {
626 case STATE_START_CAPTURE:
627 devc->state = STATE_STATUS_WAIT;
628 break;
629 case STATE_STATUS_REQUEST:
630 devc->state = STATE_STATUS_RESPONSE;
631 submit_transfer(devc, devc->acquisition->xfer_in);
632 break;
633 case STATE_STOP_CAPTURE:
634 if (sdi->status == SR_ST_ACTIVE)
635 request_capture_length(sdi);
636 else
637 end_acquisition(sdi);
638 break;
639 case STATE_LENGTH_REQUEST:
640 devc->state = STATE_LENGTH_RESPONSE;
641 submit_transfer(devc, devc->acquisition->xfer_in);
642 break;
643 case STATE_READ_PREPARE:
644 request_read_mem(sdi);
645 break;
646 case STATE_READ_REQUEST:
647 devc->state = STATE_READ_RESPONSE;
648 submit_transfer(devc, devc->acquisition->xfer_in);
649 break;
650 case STATE_READ_END:
651 end_acquisition(sdi);
652 break;
653 default:
654 sr_err("Unexpected device state %d.", devc->state);
655 break;
656 }
657 }
658}
659
660/* USB input transfer completion callback.
661 */
662static void LIBUSB_CALL receive_transfer_in(struct libusb_transfer *transfer)
663{
664 struct sr_dev_inst *sdi;
665 struct dev_context *devc;
666 struct acquisition_state *acq;
667
668 sdi = transfer->user_data;
669 devc = sdi->priv;
670 acq = devc->acquisition;
671
672 if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
673 sr_err("Transfer from device failed: %d.", transfer->status);
674 devc->transfer_error = TRUE;
675 return;
676 }
677
678 switch (devc->state) {
679 case STATE_STATUS_RESPONSE:
680 process_capture_status(sdi);
681 break;
682 case STATE_LENGTH_RESPONSE:
683 process_capture_length(sdi);
684 break;
685 case STATE_READ_RESPONSE:
686 if (process_sample_data(sdi) == SR_OK
687 && acq->mem_addr_next < acq->mem_addr_stop
688 && acq->samples_done < acq->samples_max)
689 request_read_mem(sdi);
690 else
691 issue_read_end(sdi);
692 break;
693 default:
694 sr_err("Unexpected device state %d.", devc->state);
695 break;
696 }
697}
698
699/* Initialize the LWLA. This downloads a bitstream into the FPGA
700 * and executes a simple device test sequence.
701 */
702SR_PRIV int lwla_init_device(const struct sr_dev_inst *sdi)
703{
704 struct dev_context *devc;
705 int ret;
706 uint32_t value;
707
708 devc = sdi->priv;
709
710 /* Force reload of bitstream */
711 devc->cur_clock_config = CONF_CLOCK_NONE;
712
713 ret = lwla_set_clock_config(sdi);
714
715 if (ret != SR_OK)
716 return ret;
717
718 ret = lwla_write_reg(sdi->conn, REG_CMD_CTRL2, 100);
719 if (ret != SR_OK)
720 return ret;
721
722 ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL1, &value);
723 if (ret != SR_OK)
724 return ret;
725 sr_dbg("Received test word 0x%08X back.", value);
726 if (value != 0x12345678)
727 return SR_ERR;
728
729 ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL4, &value);
730 if (ret != SR_OK)
731 return ret;
732 sr_dbg("Received test word 0x%08X back.", value);
733 if (value != 0x12345678)
734 return SR_ERR;
735
736 ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL3, &value);
737 if (ret != SR_OK)
738 return ret;
739 sr_dbg("Received test word 0x%08X back.", value);
740 if (value != 0x87654321)
741 return SR_ERR;
742
743 return ret;
744}
745
746SR_PRIV int lwla_convert_trigger(const struct sr_dev_inst *sdi)
747{
748 struct dev_context *devc;
749 struct sr_trigger *trigger;
750 struct sr_trigger_stage *stage;
751 struct sr_trigger_match *match;
752 const GSList *l, *m;
753 uint64_t channel_index;
754
755 devc = sdi->priv;
756
757 devc->trigger_mask = 0;
758 devc->trigger_values = 0;
759 devc->trigger_edge_mask = 0;
760
761 if (!(trigger = sr_session_trigger_get(sdi->session)))
762 return SR_OK;
763
764 if (g_slist_length(trigger->stages) > 1) {
765 sr_err("This device only supports 1 trigger stage.");
766 return SR_ERR;
767 }
768
769 for (l = trigger->stages; l; l = l->next) {
770 stage = l->data;
771 for (m = stage->matches; m; m = m->next) {
772 match = m->data;
773 if (!match->channel->enabled)
774 /* Ignore disabled channels with a trigger. */
775 continue;
776 channel_index = (uint64_t)1 << match->channel->index;
777 devc->trigger_mask |= channel_index;
778 switch (match->match) {
779 case SR_TRIGGER_ONE:
780 devc->trigger_values |= channel_index;
781 break;
782 case SR_TRIGGER_RISING:
783 devc->trigger_values |= channel_index;
784 /* Fall through for edge mask. */
785 case SR_TRIGGER_FALLING:
786 devc->trigger_edge_mask |= channel_index;
787 break;
788 }
789 }
790 }
791
792 return SR_OK;
793}
794
795/* Select the LWLA clock configuration. If the clock source changed from
796 * the previous setting, this will download a new bitstream to the FPGA.
797 */
798SR_PRIV int lwla_set_clock_config(const struct sr_dev_inst *sdi)
799{
800 struct dev_context *devc;
801 int ret;
802 enum clock_config choice;
803
804 devc = sdi->priv;
805
806 if (sdi->status == SR_ST_INACTIVE)
807 choice = CONF_CLOCK_NONE;
808 else if (devc->cfg_clock_source == CLOCK_INTERNAL)
809 choice = CONF_CLOCK_INT;
810 else if (devc->cfg_clock_edge == EDGE_POSITIVE)
811 choice = CONF_CLOCK_EXT_RISE;
812 else
813 choice = CONF_CLOCK_EXT_FALL;
814
815 if (choice != devc->cur_clock_config) {
816 devc->cur_clock_config = CONF_CLOCK_NONE;
817 ret = lwla_send_bitstream(sdi->conn, bitstream_map[choice]);
818 if (ret == SR_OK)
819 devc->cur_clock_config = choice;
820 return ret;
821 }
822 return SR_OK;
823}
824
825/* Configure the LWLA in preparation for an acquisition session.
826 */
827SR_PRIV int lwla_setup_acquisition(const struct sr_dev_inst *sdi)
828{
829 struct dev_context *devc;
830 struct sr_usb_dev_inst *usb;
831 struct acquisition_state *acq;
832 struct regval_pair regvals[7];
833 int ret;
834
835 devc = sdi->priv;
836 usb = sdi->conn;
837 acq = devc->acquisition;
838
839 if (devc->limit_msec > 0) {
840 acq->duration_max = devc->limit_msec;
841 sr_info("Acquisition time limit %" PRIu64 " ms.",
842 devc->limit_msec);
843 } else
844 acq->duration_max = MAX_LIMIT_MSEC;
845
846 if (devc->limit_samples > 0) {
847 acq->samples_max = devc->limit_samples;
848 sr_info("Acquisition sample count limit %" PRIu64 ".",
849 devc->limit_samples);
850 } else
851 acq->samples_max = MAX_LIMIT_SAMPLES;
852
853 if (devc->cfg_clock_source == CLOCK_INTERNAL) {
854 sr_info("Internal clock, samplerate %" PRIu64 ".",
855 devc->samplerate);
856 if (devc->samplerate == 0)
857 return SR_ERR_BUG;
858 /* At 125 MHz, the clock divider is bypassed. */
859 acq->bypass_clockdiv = (devc->samplerate > SR_MHZ(100));
860
861 /* If only one of the limits is set, derive the other one. */
862 if (devc->limit_msec == 0 && devc->limit_samples > 0)
863 acq->duration_max = devc->limit_samples
864 * 1000 / devc->samplerate + 1;
865 else if (devc->limit_samples == 0 && devc->limit_msec > 0)
866 acq->samples_max = devc->limit_msec
867 * devc->samplerate / 1000;
868 } else {
869 acq->bypass_clockdiv = TRUE;
870
871 if (devc->cfg_clock_edge == EDGE_NEGATIVE)
872 sr_info("External clock, falling edge.");
873 else
874 sr_info("External clock, rising edge.");
875 }
876
877 regvals[0].reg = REG_MEM_CTRL2;
878 regvals[0].val = 2;
879
880 regvals[1].reg = REG_MEM_CTRL2;
881 regvals[1].val = 1;
882
883 regvals[2].reg = REG_CMD_CTRL2;
884 regvals[2].val = 10;
885
886 regvals[3].reg = REG_CMD_CTRL3;
887 regvals[3].val = 0x74;
888
889 regvals[4].reg = REG_CMD_CTRL4;
890 regvals[4].val = 0;
891
892 regvals[5].reg = REG_CMD_CTRL1;
893 regvals[5].val = 0;
894
895 regvals[6].reg = REG_DIV_BYPASS;
896 regvals[6].val = acq->bypass_clockdiv;
897
898 ret = lwla_write_regs(usb, regvals, ARRAY_SIZE(regvals));
899 if (ret != SR_OK)
900 return ret;
901
902 return capture_setup(sdi);
903}
904
905/* Start the capture operation on the LWLA device. Beginning with this
906 * function, all USB transfers will be asynchronous until the end of the
907 * acquisition session.
908 */
909SR_PRIV int lwla_start_acquisition(const struct sr_dev_inst *sdi)
910{
911 struct dev_context *devc;
912 struct sr_usb_dev_inst *usb;
913 struct acquisition_state *acq;
914 struct regval_pair *regvals;
915
916 devc = sdi->priv;
917 usb = sdi->conn;
918 acq = devc->acquisition;
919
920 acq->duration_now = 0;
921 acq->mem_addr_fill = 0;
922 acq->capture_flags = 0;
923
924 libusb_fill_bulk_transfer(acq->xfer_out, usb->devhdl, EP_COMMAND,
925 (unsigned char *)acq->xfer_buf_out, 0,
926 &receive_transfer_out,
927 (struct sr_dev_inst *)sdi, USB_TIMEOUT_MS);
928
929 libusb_fill_bulk_transfer(acq->xfer_in, usb->devhdl, EP_REPLY,
930 (unsigned char *)acq->xfer_buf_in,
931 sizeof acq->xfer_buf_in,
932 &receive_transfer_in,
933 (struct sr_dev_inst *)sdi, USB_TIMEOUT_MS);
934
935 regvals = devc->reg_write_seq;
936
937 regvals[0].reg = REG_CMD_CTRL2;
938 regvals[0].val = 10;
939
940 regvals[1].reg = REG_CMD_CTRL3;
941 regvals[1].val = 1;
942
943 regvals[2].reg = REG_CMD_CTRL4;
944 regvals[2].val = 0;
945
946 regvals[3].reg = REG_CMD_CTRL1;
947 regvals[3].val = 0;
948
949 devc->reg_write_pos = 0;
950 devc->reg_write_len = 4;
951
952 devc->state = STATE_START_CAPTURE;
953
954 return issue_next_write_reg(sdi);
955}
956
957/* Allocate an acquisition state object.
958 */
959SR_PRIV struct acquisition_state *lwla_alloc_acquisition_state(void)
960{
961 struct acquisition_state *acq;
962
963 acq = g_malloc0(sizeof(struct acquisition_state));
964
965 acq->xfer_in = libusb_alloc_transfer(0);
966 if (!acq->xfer_in) {
967 sr_err("Transfer malloc failed.");
968 g_free(acq);
969 return NULL;
970 }
971
972 acq->xfer_out = libusb_alloc_transfer(0);
973 if (!acq->xfer_out) {
974 sr_err("Transfer malloc failed.");
975 libusb_free_transfer(acq->xfer_in);
976 g_free(acq);
977 return NULL;
978 }
979
980 return acq;
981}
982
983/* Deallocate an acquisition state object.
984 */
985SR_PRIV void lwla_free_acquisition_state(struct acquisition_state *acq)
986{
987 if (acq) {
988 libusb_free_transfer(acq->xfer_out);
989 libusb_free_transfer(acq->xfer_in);
990 g_free(acq);
991 }
992}
993
994/* USB I/O source callback.
995 */
996SR_PRIV int lwla_receive_data(int fd, int revents, void *cb_data)
997{
998 struct sr_dev_inst *sdi;
999 struct dev_context *devc;
1000 struct drv_context *drvc;
1001 struct timeval tv;
1002 int ret;
1003
1004 (void)fd;
1005
1006 sdi = cb_data;
1007 devc = sdi->priv;
1008 drvc = sdi->driver->context;
1009
1010 if (!devc || !drvc)
1011 return FALSE;
1012
1013 /* No timeout: return immediately. */
1014 tv.tv_sec = 0;
1015 tv.tv_usec = 0;
1016
1017 ret = libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx,
1018 &tv, NULL);
1019 if (ret != 0)
1020 sr_err("Event handling failed: %s.", libusb_error_name(ret));
1021
1022 /* If no event flags are set the timeout must have expired. */
1023 if (revents == 0 && devc->state == STATE_STATUS_WAIT) {
1024 if (sdi->status == SR_ST_STOPPING)
1025 issue_stop_capture(sdi);
1026 else
1027 request_capture_status(sdi);
1028 }
1029
1030 /* Check if an error occurred on a transfer. */
1031 if (devc->transfer_error)
1032 end_acquisition(sdi);
1033
1034 return TRUE;
1035}