]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/kingst-la2016/protocol.c
bindings: add u32/SR_T_UINT32 support for config keys
[libsigrok.git] / src / hardware / kingst-la2016 / protocol.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2022 Gerhard Sittig <gerhard.sittig@gmx.net>
5 * Copyright (C) 2020 Florian Schmidt <schmidt_florian@gmx.de>
6 * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
7 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
8 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
9 *
10 * This program is free software: you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 3 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 */
23
24#include <config.h>
25
26#include <libsigrok/libsigrok.h>
27#include <string.h>
28
29#include "libsigrok-internal.h"
30#include "protocol.h"
31
32/* USB PID dependent MCU firmware. Model dependent FPGA bitstream. */
33#define MCU_FWFILE_FMT "kingst-la-%04x.fw"
34#define FPGA_FWFILE_FMT "kingst-%s-fpga.bitstream"
35
36/*
37 * List of known devices and their features. See @ref kingst_model
38 * for the fields' type and meaning. Table is sorted by EEPROM magic.
39 * More specific items need to go first (additional byte[2/6]). Not
40 * all devices are covered by this driver implementation, but telling
41 * users what was detected is considered useful.
42 *
43 * TODO Verify the identification of models that were not tested before.
44 */
45static const struct kingst_model models[] = {
46 { 0x02, 0x01, "LA2016", "la2016a1", SR_MHZ(200), 16, 1, 0, },
47 { 0x02, 0x00, "LA2016", "la2016", SR_MHZ(200), 16, 1, 0, },
48 { 0x03, 0x01, "LA1016", "la1016a1", SR_MHZ(100), 16, 1, 0, },
49 { 0x03, 0x00, "LA1016", "la1016", SR_MHZ(100), 16, 1, 0, },
50 { 0x04, 0x00, "LA1010", "la1010a0", SR_MHZ(100), 16, 0, SR_MHZ(800), },
51 { 0x05, 0x00, "LA5016", "la5016a1", SR_MHZ(500), 16, 2, SR_MHZ(800), },
52 { 0x06, 0x00, "LA5032", "la5032a0", SR_MHZ(500), 32, 4, SR_MHZ(800), },
53 { 0x07, 0x00, "LA1010", "la1010a1", SR_MHZ(100), 16, 0, SR_MHZ(800), },
54 { 0x08, 0x00, "LA2016", "la2016a1", SR_MHZ(200), 16, 1, 0, },
55 { 0x09, 0x00, "LA1016", "la1016a1", SR_MHZ(100), 16, 1, 0, },
56 { 0x0a, 0x00, "LA1010", "la1010a2", SR_MHZ(100), 16, 0, SR_MHZ(800), },
57 { 0x0c, 0x10, "LA5016", "la5016a2", SR_MHZ(500), 16, 2, SR_MHZ(800), },
58 { 0x0c, 0x00, "LA5016", "la5016a2", SR_MHZ(500), 16, 2, SR_MHZ(800), },
59 { 0x41, 0x00, "LA5016", "la5016a1", SR_MHZ(500), 16, 2, SR_MHZ(800), },
60};
61
62/* USB vendor class control requests, executed by the Cypress FX2 MCU. */
63#define CMD_FPGA_ENABLE 0x10
64#define CMD_FPGA_SPI 0x20 /* R/W access to FPGA registers via SPI. */
65#define CMD_BULK_START 0x30 /* Start sample data download via USB EP6 IN. */
66#define CMD_BULK_RESET 0x38 /* Flush FIFO of FX2 USB EP6 IN. */
67#define CMD_FPGA_INIT 0x50 /* Used before and after FPGA bitstream upload. */
68#define CMD_KAUTH 0x60 /* Communicate to auth IC (U10). Not used. */
69#define CMD_EEPROM 0xa2 /* R/W access to EEPROM content. */
70
71/*
72 * FPGA register addresses (base addresses when registers span multiple
73 * bytes, in that case data is kept in little endian format). Passed to
74 * CMD_FPGA_SPI requests. The FX2 MCU transparently handles the detail
75 * of SPI transfers encoding the read (1) or write (0) direction in the
76 * MSB of the address field. There are some 60 byte-wide FPGA registers.
77 *
78 * Unfortunately the FPGA registers change their meaning between the
79 * read and write directions of access, or exclusively provide one of
80 * these directions and not the other. This is an arbitrary vendor's
81 * choice, there is nothing which the sigrok driver could do about it.
82 * Values written to registers typically cannot get read back, neither
83 * verified after writing a configuration, nor queried upon startup for
84 * automatic detection of the current configuration. Neither appear to
85 * be there echo registers for presence and communication checks, nor
86 * version identifying registers, as far as we know.
87 */
88#define REG_RUN 0x00 /* Read capture status, write start capture. */
89#define REG_PWM_EN 0x02 /* User PWM channels on/off. */
90#define REG_CAPT_MODE 0x03 /* Write 0x00 capture to SDRAM, 0x01 streaming. */
91#define REG_PIN_STATE 0x04 /* Read current pin state (real time display). */
92#define REG_BULK 0x08 /* Write start addr, byte count to download samples. */
93#define REG_SAMPLING 0x10 /* Write capture config, read capture SDRAM location. */
94#define REG_TRIGGER 0x20 /* Write level and edge trigger config. */
95#define REG_UNKNOWN_30 0x30
96#define REG_THRESHOLD 0x68 /* Write PWM config to setup input threshold DAC. */
97#define REG_PWM1 0x70 /* Write config for user PWM1. */
98#define REG_PWM2 0x78 /* Write config for user PWM2. */
99
100/* Bit patterns to write to REG_CAPT_MODE. */
101#define CAPTMODE_TO_RAM 0x00
102#define CAPTMODE_STREAM 0x01
103
104/* Bit patterns to write to REG_RUN, setup run mode. */
105#define RUNMODE_HALT 0x00
106#define RUNMODE_RUN 0x03
107
108/* Bit patterns when reading from REG_RUN, get run state. */
109#define RUNSTATE_IDLE_BIT (1UL << 0)
110#define RUNSTATE_DRAM_BIT (1UL << 1)
111#define RUNSTATE_TRGD_BIT (1UL << 2)
112#define RUNSTATE_POST_BIT (1UL << 3)
113
114static int ctrl_in(const struct sr_dev_inst *sdi,
115 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
116 void *data, uint16_t wLength)
117{
118 struct sr_usb_dev_inst *usb;
119 int ret;
120
121 usb = sdi->conn;
122
123 ret = libusb_control_transfer(usb->devhdl,
124 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
125 bRequest, wValue, wIndex, data, wLength,
126 DEFAULT_TIMEOUT_MS);
127 if (ret != wLength) {
128 sr_dbg("USB ctrl in: %d bytes, req %d val %#x idx %d: %s.",
129 wLength, bRequest, wValue, wIndex,
130 libusb_error_name(ret));
131 sr_err("Cannot read %d bytes from USB: %s.",
132 wLength, libusb_error_name(ret));
133 return SR_ERR_IO;
134 }
135
136 return SR_OK;
137}
138
139static int ctrl_out(const struct sr_dev_inst *sdi,
140 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
141 void *data, uint16_t wLength)
142{
143 struct sr_usb_dev_inst *usb;
144 int ret;
145
146 usb = sdi->conn;
147
148 ret = libusb_control_transfer(usb->devhdl,
149 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
150 bRequest, wValue, wIndex, data, wLength,
151 DEFAULT_TIMEOUT_MS);
152 if (ret != wLength) {
153 sr_dbg("USB ctrl out: %d bytes, req %d val %#x idx %d: %s.",
154 wLength, bRequest, wValue, wIndex,
155 libusb_error_name(ret));
156 sr_err("Cannot write %d bytes to USB: %s.",
157 wLength, libusb_error_name(ret));
158 return SR_ERR_IO;
159 }
160
161 return SR_OK;
162}
163
164/* HACK Experiment to spot FPGA registers of interest. */
165static void la2016_dump_fpga_registers(const struct sr_dev_inst *sdi,
166 const char *caption, size_t reg_lower, size_t reg_upper)
167{
168 static const size_t dump_chunk_len = 16;
169
170 size_t rdlen;
171 uint8_t rdbuf[0x80 - 0x00]; /* Span all FPGA registers. */
172 const uint8_t *rdptr;
173 int ret;
174 size_t dump_addr, indent, dump_len;
175 GString *txt;
176
177 if (sr_log_loglevel_get() < SR_LOG_SPEW)
178 return;
179
180 if (!reg_lower && !reg_upper) {
181 reg_lower = 0;
182 reg_upper = sizeof(rdbuf);
183 }
184 if (reg_upper - reg_lower > sizeof(rdbuf))
185 reg_upper = sizeof(rdbuf) - reg_lower;
186
187 rdlen = reg_upper - reg_lower;
188 ret = ctrl_in(sdi, CMD_FPGA_SPI, reg_lower, 0, rdbuf, rdlen);
189 if (ret != SR_OK) {
190 sr_err("Cannot get registers space.");
191 return;
192 }
193 rdptr = rdbuf;
194
195 sr_spew("FPGA registers dump: %s", caption ? : "for fun");
196 dump_addr = reg_lower;
197 while (rdlen) {
198 dump_len = rdlen;
199 indent = dump_addr % dump_chunk_len;
200 if (dump_len > dump_chunk_len)
201 dump_len = dump_chunk_len;
202 if (dump_len + indent > dump_chunk_len)
203 dump_len = dump_chunk_len - indent;
204 txt = sr_hexdump_new(rdptr, dump_len);
205 sr_spew(" %04zx %*s%s",
206 dump_addr, (int)(3 * indent), "", txt->str);
207 sr_hexdump_free(txt);
208 dump_addr += dump_len;
209 rdptr += dump_len;
210 rdlen -= dump_len;
211 }
212}
213
214/*
215 * Check the necessity for FPGA bitstream upload, because another upload
216 * would take some 600ms which is undesirable after program startup. Try
217 * to access some FPGA registers and check the values' plausibility. The
218 * check should fail on the safe side, request another upload when in
219 * doubt. A positive response (the request to continue operation with the
220 * currently active bitstream) should be conservative. Accessing multiple
221 * registers is considered cheap compared to the cost of bitstream upload.
222 *
223 * It helps though that both the vendor software and the sigrok driver
224 * use the same bundle of MCU firmware and FPGA bitstream for any of the
225 * supported models. We don't expect to successfully communicate to the
226 * device yet disagree on its protocol. Ideally we would access version
227 * identifying registers for improved robustness, but are not aware of
228 * any. A bitstream reload can always be forced by a power cycle.
229 */
230static int check_fpga_bitstream(const struct sr_dev_inst *sdi)
231{
232 uint8_t init_rsp;
233 uint8_t buff[REG_PWM_EN - REG_RUN]; /* Larger of REG_RUN, REG_PWM_EN. */
234 int ret;
235 uint16_t run_state;
236 uint8_t pwm_en;
237 size_t read_len;
238 const uint8_t *rdptr;
239
240 sr_dbg("Checking operation of the FPGA bitstream.");
241 la2016_dump_fpga_registers(sdi, "bitstream check", 0, 0);
242
243 init_rsp = ~0;
244 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &init_rsp, sizeof(init_rsp));
245 if (ret != SR_OK || init_rsp != 0) {
246 sr_dbg("FPGA init query failed, or unexpected response.");
247 return SR_ERR_IO;
248 }
249
250 read_len = sizeof(run_state);
251 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, read_len);
252 if (ret != SR_OK) {
253 sr_dbg("FPGA register access failed (run state).");
254 return SR_ERR_IO;
255 }
256 rdptr = buff;
257 run_state = read_u16le_inc(&rdptr);
258 sr_spew("FPGA register: run state 0x%04x.", run_state);
259 if (run_state && (run_state & 0x3) != 0x1) {
260 sr_dbg("Unexpected FPGA register content (run state).");
261 return SR_ERR_DATA;
262 }
263 if (run_state && (run_state & ~0xf) != 0x85e0) {
264 sr_dbg("Unexpected FPGA register content (run state).");
265 return SR_ERR_DATA;
266 }
267
268 read_len = sizeof(pwm_en);
269 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, buff, read_len);
270 if (ret != SR_OK) {
271 sr_dbg("FPGA register access failed (PWM enable).");
272 return SR_ERR_IO;
273 }
274 rdptr = buff;
275 pwm_en = read_u8_inc(&rdptr);
276 sr_spew("FPGA register: PWM enable 0x%02x.", pwm_en);
277 if ((pwm_en & 0x3) != 0x0) {
278 sr_dbg("Unexpected FPGA register content (PWM enable).");
279 return SR_ERR_DATA;
280 }
281
282 sr_info("Could re-use current FPGA bitstream. No upload required.");
283 return SR_OK;
284}
285
286static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
287 const char *bitstream_fname)
288{
289 struct drv_context *drvc;
290 struct sr_usb_dev_inst *usb;
291 struct sr_resource bitstream;
292 uint32_t bitstream_size;
293 uint8_t buffer[sizeof(uint32_t)];
294 uint8_t *wrptr;
295 uint8_t block[4096];
296 int len, act_len;
297 unsigned int pos;
298 int ret;
299 unsigned int zero_pad_to;
300
301 drvc = sdi->driver->context;
302 usb = sdi->conn;
303
304 sr_info("Uploading FPGA bitstream '%s'.", bitstream_fname);
305
306 ret = sr_resource_open(drvc->sr_ctx, &bitstream,
307 SR_RESOURCE_FIRMWARE, bitstream_fname);
308 if (ret != SR_OK) {
309 sr_err("Cannot find FPGA bitstream %s.", bitstream_fname);
310 return ret;
311 }
312
313 bitstream_size = (uint32_t)bitstream.size;
314 wrptr = buffer;
315 write_u32le_inc(&wrptr, bitstream_size);
316 ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer);
317 if (ret != SR_OK) {
318 sr_err("Cannot initiate FPGA bitstream upload.");
319 sr_resource_close(drvc->sr_ctx, &bitstream);
320 return ret;
321 }
322 zero_pad_to = bitstream_size;
323 zero_pad_to += LA2016_EP2_PADDING - 1;
324 zero_pad_to /= LA2016_EP2_PADDING;
325 zero_pad_to *= LA2016_EP2_PADDING;
326
327 pos = 0;
328 while (1) {
329 if (pos < bitstream.size) {
330 len = (int)sr_resource_read(drvc->sr_ctx, &bitstream,
331 block, sizeof(block));
332 if (len < 0) {
333 sr_err("Cannot read FPGA bitstream.");
334 sr_resource_close(drvc->sr_ctx, &bitstream);
335 return SR_ERR_IO;
336 }
337 } else {
338 /* Zero-pad until 'zero_pad_to'. */
339 len = zero_pad_to - pos;
340 if ((unsigned)len > sizeof(block))
341 len = sizeof(block);
342 memset(&block, 0, len);
343 }
344 if (len == 0)
345 break;
346
347 ret = libusb_bulk_transfer(usb->devhdl, USB_EP_FPGA_BITSTREAM,
348 &block[0], len, &act_len, DEFAULT_TIMEOUT_MS);
349 if (ret != 0) {
350 sr_dbg("Cannot write FPGA bitstream, block %#x len %d: %s.",
351 pos, (int)len, libusb_error_name(ret));
352 ret = SR_ERR_IO;
353 break;
354 }
355 if (act_len != len) {
356 sr_dbg("Short write for FPGA bitstream, block %#x len %d: got %d.",
357 pos, (int)len, act_len);
358 ret = SR_ERR_IO;
359 break;
360 }
361 pos += len;
362 }
363 sr_resource_close(drvc->sr_ctx, &bitstream);
364 if (ret != SR_OK)
365 return ret;
366 sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.",
367 bitstream.size);
368
369 return SR_OK;
370}
371
372static int enable_fpga_bitstream(const struct sr_dev_inst *sdi)
373{
374 int ret;
375 uint8_t resp;
376
377 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &resp, sizeof(resp));
378 if (ret != SR_OK) {
379 sr_err("Cannot read response after FPGA bitstream upload.");
380 return ret;
381 }
382 if (resp != 0) {
383 sr_err("Unexpected FPGA bitstream upload response, got 0x%02x, want 0.",
384 resp);
385 return SR_ERR_DATA;
386 }
387 g_usleep(30 * 1000);
388
389 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0);
390 if (ret != SR_OK) {
391 sr_err("Cannot enable FPGA after bitstream upload.");
392 return ret;
393 }
394 g_usleep(40 * 1000);
395
396 return SR_OK;
397}
398
399static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage)
400{
401 int ret;
402 uint16_t duty_R79, duty_R56;
403 uint8_t buf[REG_PWM1 - REG_THRESHOLD]; /* Width of REG_THRESHOLD. */
404 uint8_t *wrptr;
405
406 /* Clamp threshold setting to valid range for LA2016. */
407 if (voltage > LA2016_THR_VOLTAGE_MAX) {
408 voltage = LA2016_THR_VOLTAGE_MAX;
409 } else if (voltage < -LA2016_THR_VOLTAGE_MAX) {
410 voltage = -LA2016_THR_VOLTAGE_MAX;
411 }
412
413 /*
414 * Two PWM output channels feed one DAC which generates a bias
415 * voltage, which offsets the input probe's voltage level, and
416 * in combination with the FPGA pins' fixed threshold result in
417 * a programmable input threshold from the user's perspective.
418 * The PWM outputs can be seen on R79 and R56 respectively, the
419 * frequency is 100kHz and the duty cycle varies. The R79 PWM
420 * uses three discrete settings. The R56 PWM varies with desired
421 * thresholds and depends on the R79 PWM configuration. See the
422 * schematics comments which discuss the formulae.
423 */
424 if (voltage >= 2.9) {
425 duty_R79 = 0; /* PWM off (0V). */
426 duty_R56 = (uint16_t)(302 * voltage - 363);
427 } else if (voltage > -0.4) {
428 duty_R79 = 0x00f2; /* 25% duty cycle. */
429 duty_R56 = (uint16_t)(302 * voltage + 121);
430 } else {
431 duty_R79 = 0x02d7; /* 72% duty cycle. */
432 duty_R56 = (uint16_t)(302 * voltage + 1090);
433 }
434
435 /* Clamp duty register values to sensible limits. */
436 if (duty_R56 < 10) {
437 duty_R56 = 10;
438 } else if (duty_R56 > 1100) {
439 duty_R56 = 1100;
440 }
441
442 sr_dbg("Set threshold voltage %.2fV.", voltage);
443 sr_dbg("Duty cycle values: R56 0x%04x, R79 0x%04x.", duty_R56, duty_R79);
444
445 wrptr = buf;
446 write_u16le_inc(&wrptr, duty_R56);
447 write_u16le_inc(&wrptr, duty_R79);
448
449 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_THRESHOLD, 0, buf, wrptr - buf);
450 if (ret != SR_OK) {
451 sr_err("Cannot set threshold voltage %.2fV.", voltage);
452 return ret;
453 }
454
455 return SR_OK;
456}
457
458/*
459 * Communicates a channel's configuration to the device after the
460 * parameters may have changed. Configuration of one channel may
461 * interfere with other channels since they share FPGA registers.
462 */
463static int set_pwm_config(const struct sr_dev_inst *sdi, size_t idx)
464{
465 static uint8_t reg_bases[] = { REG_PWM1, REG_PWM2, };
466
467 struct dev_context *devc;
468 struct pwm_setting *params;
469 uint8_t reg_base;
470 double val_f;
471 uint32_t val_u;
472 uint32_t period, duty;
473 size_t ch;
474 int ret;
475 uint8_t enable_all, enable_cfg, reg_val;
476 uint8_t buf[REG_PWM2 - REG_PWM1]; /* Width of one REG_PWMx. */
477 uint8_t *wrptr;
478
479 devc = sdi->priv;
480 if (idx >= ARRAY_SIZE(devc->pwm_setting))
481 return SR_ERR_ARG;
482 params = &devc->pwm_setting[idx];
483 if (idx >= ARRAY_SIZE(reg_bases))
484 return SR_ERR_ARG;
485 reg_base = reg_bases[idx];
486
487 /*
488 * Map application's specs to hardware register values. Do math
489 * in floating point initially, but convert to u32 eventually.
490 */
491 sr_dbg("PWM config, app spec, ch %zu, en %d, freq %.1f, duty %.1f.",
492 idx, params->enabled ? 1 : 0, params->freq, params->duty);
493 val_f = PWM_CLOCK;
494 val_f /= params->freq;
495 val_u = val_f;
496 period = val_u;
497 val_f = period;
498 val_f *= params->duty;
499 val_f /= 100.0;
500 val_f += 0.5;
501 val_u = val_f;
502 duty = val_u;
503 sr_dbg("PWM config, reg 0x%04x, freq %u, duty %u.",
504 (unsigned)reg_base, (unsigned)period, (unsigned)duty);
505
506 /* Get the "enabled" state of all supported PWM channels. */
507 enable_all = 0;
508 for (ch = 0; ch < ARRAY_SIZE(devc->pwm_setting); ch++) {
509 if (!devc->pwm_setting[ch].enabled)
510 continue;
511 enable_all |= 1U << ch;
512 }
513 enable_cfg = 1U << idx;
514 sr_spew("PWM config, enable all 0x%02hhx, cfg 0x%02hhx.",
515 enable_all, enable_cfg);
516
517 /*
518 * Disable the to-get-configured channel before its parameters
519 * will change. Or disable and exit when the channel is supposed
520 * to get turned off.
521 */
522 sr_spew("PWM config, disabling before param change.");
523 reg_val = enable_all & ~enable_cfg;
524 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0,
525 &reg_val, sizeof(reg_val));
526 if (ret != SR_OK) {
527 sr_err("Cannot adjust PWM enabled state.");
528 return ret;
529 }
530 if (!params->enabled)
531 return SR_OK;
532
533 /* Write register values to device. */
534 sr_spew("PWM config, sending new parameters.");
535 wrptr = buf;
536 write_u32le_inc(&wrptr, period);
537 write_u32le_inc(&wrptr, duty);
538 ret = ctrl_out(sdi, CMD_FPGA_SPI, reg_base, 0, buf, wrptr - buf);
539 if (ret != SR_OK) {
540 sr_err("Cannot change PWM parameters.");
541 return ret;
542 }
543
544 /* Enable configured channel after write completion. */
545 sr_spew("PWM config, enabling after param change.");
546 reg_val = enable_all | enable_cfg;
547 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0,
548 &reg_val, sizeof(reg_val));
549 if (ret != SR_OK) {
550 sr_err("Cannot adjust PWM enabled state.");
551 return ret;
552 }
553
554 return SR_OK;
555}
556
557/*
558 * Determine the number of enabled channels as well as their bitmask
559 * representation. Derive data here which later simplifies processing
560 * of raw capture data memory content in streaming mode.
561 */
562static void la2016_prepare_stream(const struct sr_dev_inst *sdi)
563{
564 struct dev_context *devc;
565 struct stream_state_t *stream;
566 size_t channel_mask;
567 GSList *l;
568 struct sr_channel *ch;
569
570 devc = sdi->priv;
571 stream = &devc->stream;
572 memset(stream, 0, sizeof(*stream));
573
574 stream->enabled_count = 0;
575 for (l = sdi->channels; l; l = l->next) {
576 ch = l->data;
577 if (ch->type != SR_CHANNEL_LOGIC)
578 continue;
579 if (!ch->enabled)
580 continue;
581 channel_mask = 1UL << ch->index;
582 stream->enabled_mask |= channel_mask;
583 stream->channel_masks[stream->enabled_count++] = channel_mask;
584 }
585 stream->channel_index = 0;
586}
587
588/*
589 * This routine configures the set of enabled channels, as well as the
590 * trigger condition (if one was specified). Also prepares the capture
591 * data processing in stream mode, where the memory layout dramatically
592 * differs from normal mode.
593 */
594static int set_trigger_config(const struct sr_dev_inst *sdi)
595{
596 struct dev_context *devc;
597 struct sr_trigger *trigger;
598 struct trigger_cfg {
599 uint32_t channels; /* Actually: Enabled channels? */
600 uint32_t enabled; /* Actually: Triggering channels? */
601 uint32_t level;
602 uint32_t high_or_falling;
603 } cfg;
604 GSList *stages;
605 GSList *channel;
606 struct sr_trigger_stage *stage1;
607 struct sr_trigger_match *match;
608 uint32_t ch_mask;
609 int ret;
610 uint8_t buf[REG_UNKNOWN_30 - REG_TRIGGER]; /* Width of REG_TRIGGER. */
611 uint8_t *wrptr;
612
613 devc = sdi->priv;
614
615 la2016_prepare_stream(sdi);
616
617 memset(&cfg, 0, sizeof(cfg));
618 cfg.channels = devc->stream.enabled_mask;
619 if (!cfg.channels) {
620 sr_err("Need at least one enabled logic channel.");
621 return SR_ERR_ARG;
622 }
623 trigger = sr_session_trigger_get(sdi->session);
624 if (trigger && trigger->stages) {
625 stages = trigger->stages;
626 stage1 = stages->data;
627 if (stages->next) {
628 sr_err("Only one trigger stage supported for now.");
629 return SR_ERR_ARG;
630 }
631 channel = stage1->matches;
632 while (channel) {
633 match = channel->data;
634 ch_mask = 1UL << match->channel->index;
635
636 switch (match->match) {
637 case SR_TRIGGER_ZERO:
638 cfg.level |= ch_mask;
639 cfg.high_or_falling &= ~ch_mask;
640 break;
641 case SR_TRIGGER_ONE:
642 cfg.level |= ch_mask;
643 cfg.high_or_falling |= ch_mask;
644 break;
645 case SR_TRIGGER_RISING:
646 if ((cfg.enabled & ~cfg.level)) {
647 sr_err("Device only supports one edge trigger.");
648 return SR_ERR_ARG;
649 }
650 cfg.level &= ~ch_mask;
651 cfg.high_or_falling &= ~ch_mask;
652 break;
653 case SR_TRIGGER_FALLING:
654 if ((cfg.enabled & ~cfg.level)) {
655 sr_err("Device only supports one edge trigger.");
656 return SR_ERR_ARG;
657 }
658 cfg.level &= ~ch_mask;
659 cfg.high_or_falling |= ch_mask;
660 break;
661 default:
662 sr_err("Unknown trigger condition.");
663 return SR_ERR_ARG;
664 }
665 cfg.enabled |= ch_mask;
666 channel = channel->next;
667 }
668 }
669 sr_dbg("Set trigger config: "
670 "enabled-channels 0x%04x, triggering-channels 0x%04x, "
671 "level-triggered 0x%04x, high/falling 0x%04x.",
672 cfg.channels, cfg.enabled, cfg.level, cfg.high_or_falling);
673
674 /*
675 * Don't configure hardware trigger parameters in streaming mode
676 * or when the device lacks local memory. Yet the above dump of
677 * derived parameters from user specs is considered valueable.
678 *
679 * TODO Add support for soft triggers when hardware triggers in
680 * the device are not used or are not available at all.
681 */
682 if (!devc->model->memory_bits || devc->continuous) {
683 if (!devc->model->memory_bits)
684 sr_dbg("Device without memory. No hardware triggers.");
685 else if (devc->continuous)
686 sr_dbg("Streaming mode. No hardware triggers.");
687 cfg.enabled = 0;
688 cfg.level = 0;
689 cfg.high_or_falling = 0;
690 }
691
692 devc->trigger_involved = cfg.enabled != 0;
693
694 wrptr = buf;
695 write_u32le_inc(&wrptr, cfg.channels);
696 write_u32le_inc(&wrptr, cfg.enabled);
697 write_u32le_inc(&wrptr, cfg.level);
698 write_u32le_inc(&wrptr, cfg.high_or_falling);
699 /* TODO
700 * Comment on this literal 16. Origin, meaning? Cannot be the
701 * register offset, nor the transfer length. Is it a channels
702 * count that is relevant for 16 and 32 channel models? Is it
703 * an obsolete experiment?
704 */
705 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_TRIGGER, 16, buf, wrptr - buf);
706 if (ret != SR_OK) {
707 sr_err("Cannot setup trigger configuration.");
708 return ret;
709 }
710
711 return SR_OK;
712}
713
714/*
715 * This routine communicates the sample configuration to the device:
716 * Total samples count and samplerate, pre-trigger configuration.
717 */
718static int set_sample_config(const struct sr_dev_inst *sdi)
719{
720 struct dev_context *devc;
721 uint64_t baseclock;
722 uint64_t min_samplerate, eff_samplerate;
723 uint64_t stream_bandwidth;
724 uint16_t divider_u16;
725 uint64_t limit_samples;
726 uint64_t pre_trigger_samples;
727 uint64_t pre_trigger_memory;
728 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
729 uint8_t *wrptr;
730 int ret;
731
732 devc = sdi->priv;
733
734 /*
735 * The base clock need not be identical to the maximum samplerate,
736 * and differs between models. The 500MHz devices even use a base
737 * clock of 800MHz, and communicate divider 1 to the hardware to
738 * configure the 500MHz samplerate. This allows them to operate at
739 * a 200MHz samplerate which uses divider 4.
740 */
741 if (devc->samplerate > devc->model->samplerate) {
742 sr_err("Too high a sample rate: %" PRIu64 ".",
743 devc->samplerate);
744 return SR_ERR_ARG;
745 }
746 baseclock = devc->model->baseclock;
747 if (!baseclock)
748 baseclock = devc->model->samplerate;
749 min_samplerate = baseclock;
750 min_samplerate /= 65536;
751 if (devc->samplerate < min_samplerate) {
752 sr_err("Too low a sample rate: %" PRIu64 ".",
753 devc->samplerate);
754 return SR_ERR_ARG;
755 }
756 divider_u16 = baseclock / devc->samplerate;
757 eff_samplerate = baseclock / divider_u16;
758 if (eff_samplerate > devc->model->samplerate)
759 eff_samplerate = devc->model->samplerate;
760
761 ret = sr_sw_limits_get_remain(&devc->sw_limits,
762 &limit_samples, NULL, NULL, NULL);
763 if (ret != SR_OK) {
764 sr_err("Cannot get acquisition limits.");
765 return ret;
766 }
767 if (limit_samples > LA2016_NUM_SAMPLES_MAX) {
768 sr_warn("Too high a sample depth: %" PRIu64 ", capping.",
769 limit_samples);
770 limit_samples = LA2016_NUM_SAMPLES_MAX;
771 }
772 if (limit_samples == 0) {
773 limit_samples = LA2016_NUM_SAMPLES_MAX;
774 sr_dbg("Passing %" PRIu64 " to HW for unlimited samples.",
775 limit_samples);
776 }
777
778 /*
779 * The acquisition configuration communicates "pre-trigger"
780 * specs in several formats. sigrok users provide a percentage
781 * (0-100%), which translates to a pre-trigger samples count
782 * (assuming that a total samples count limit was specified).
783 * The device supports hardware compression, which depends on
784 * slowly changing input data to be effective. Fast changing
785 * input data may occupy more space in sample memory than its
786 * uncompressed form would. This is why a third parameter can
787 * limit the amount of sample memory to use for pre-trigger
788 * data. Only the upper 24 bits of that memory size spec get
789 * communicated to the device (written to its FPGA register).
790 */
791 if (!devc->model->memory_bits) {
792 sr_dbg("Memory-less device, skipping pre-trigger config.");
793 pre_trigger_samples = 0;
794 pre_trigger_memory = 0;
795 } else if (devc->trigger_involved) {
796 pre_trigger_samples = limit_samples;
797 pre_trigger_samples *= devc->capture_ratio;
798 pre_trigger_samples /= 100;
799 pre_trigger_memory = devc->model->memory_bits;
800 pre_trigger_memory *= UINT64_C(1024 * 1024 * 1024);
801 pre_trigger_memory /= 8; /* devc->model->channel_count ? */
802 pre_trigger_memory *= devc->capture_ratio;
803 pre_trigger_memory /= 100;
804 } else {
805 sr_dbg("No trigger setup, skipping pre-trigger config.");
806 pre_trigger_samples = 0;
807 pre_trigger_memory = 0;
808 }
809 /* Ensure non-zero value after LSB shift out in HW reg. */
810 if (pre_trigger_memory < 0x100)
811 pre_trigger_memory = 0x100;
812
813 sr_dbg("Set sample config: %" PRIu64 "kHz (div %" PRIu16 "), %" PRIu64 " samples.",
814 eff_samplerate / SR_KHZ(1), divider_u16, limit_samples);
815 sr_dbg("Capture ratio %" PRIu64 "%%, count %" PRIu64 ", mem %" PRIu64 ".",
816 devc->capture_ratio, pre_trigger_samples, pre_trigger_memory);
817
818 if (devc->continuous) {
819 stream_bandwidth = eff_samplerate;
820 stream_bandwidth *= devc->stream.enabled_count;
821 sr_dbg("Streaming: channel count %zu, product %" PRIu64 ".",
822 devc->stream.enabled_count, stream_bandwidth);
823 stream_bandwidth /= 1000 * 1000;
824 if (stream_bandwidth >= LA2016_STREAM_MBPS_MAX) {
825 sr_warn("High USB stream bandwidth: %" PRIu64 "Mbps.",
826 stream_bandwidth);
827 }
828 if (stream_bandwidth < LA2016_STREAM_PUSH_THR) {
829 sr_dbg("Streaming: low Mbps, suggest periodic flush.");
830 devc->stream.flush_period_ms = LA2016_STREAM_PUSH_IVAL;
831 }
832 }
833
834 /*
835 * The acquisition configuration occupies a total of 16 bytes:
836 * - A 34bit total samples count limit (up to 10 billions) that
837 * is kept in a 40bit register.
838 * - A 34bit pre-trigger samples count limit (up to 10 billions)
839 * in another 40bit register.
840 * - A 32bit pre-trigger memory space limit (in bytes) of which
841 * the upper 24bits are kept in an FPGA register.
842 * - A 16bit clock divider which gets applied to the maximum
843 * samplerate of the device.
844 * - An 8bit register of unknown meaning. Currently always 0.
845 */
846 wrptr = buf;
847 write_u40le_inc(&wrptr, limit_samples);
848 write_u40le_inc(&wrptr, pre_trigger_samples);
849 write_u24le_inc(&wrptr, pre_trigger_memory >> 8);
850 write_u16le_inc(&wrptr, divider_u16);
851 write_u8_inc(&wrptr, 0);
852 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, wrptr - buf);
853 if (ret != SR_OK) {
854 sr_err("Cannot setup acquisition configuration.");
855 return ret;
856 }
857
858 return SR_OK;
859}
860
861/*
862 * FPGA register REG_RUN holds the run state (u16le format). Bit fields
863 * of interest:
864 * bit 0: value 1 = idle
865 * bit 1: value 1 = writing to SDRAM
866 * bit 2: value 0 = waiting for trigger, 1 = trigger seen
867 * bit 3: value 0 = pretrigger sampling, 1 = posttrigger sampling
868 * The meaning of other bit fields is unknown.
869 *
870 * Typical values in order of appearance during execution:
871 * 0x85e1: idle, no acquisition pending
872 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
873 * "In idle state." Takes precedence over all others.
874 * 0x85e2: pre-sampling, samples before the trigger position,
875 * when capture ratio > 0%
876 * IDLE clear, TRGD clear, POST clear; DRAM don't care
877 * "Not idle any more, no post yet, not triggered yet."
878 * 0x85ea: pre-sampling complete, now waiting for the trigger
879 * (whilst sampling continuously)
880 * IDLE clear, TRGD clear, POST set; DRAM don't care
881 * "Post set thus after pre, not triggered yet"
882 * 0x85ee: trigger seen, capturing post-trigger samples, running
883 * IDLE clear, TRGD set, POST set; DRAM don't care
884 * "Triggered and in post, not idle yet."
885 * 0x85ed: idle
886 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
887 * "In idle state." TRGD/POST don't care, same meaning as above.
888 */
889static const uint16_t runstate_mask_idle = RUNSTATE_IDLE_BIT;
890static const uint16_t runstate_patt_idle = RUNSTATE_IDLE_BIT;
891static const uint16_t runstate_mask_step =
892 RUNSTATE_IDLE_BIT | RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
893static const uint16_t runstate_patt_pre_trig = 0;
894static const uint16_t runstate_patt_wait_trig = RUNSTATE_POST_BIT;
895static const uint16_t runstate_patt_post_trig =
896 RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
897
898static uint16_t run_state(const struct sr_dev_inst *sdi)
899{
900 static uint16_t previous_state;
901
902 int ret;
903 uint16_t state;
904 uint8_t buff[REG_PWM_EN - REG_RUN]; /* Width of REG_RUN. */
905 const uint8_t *rdptr;
906 const char *label;
907
908 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, sizeof(state));
909 if (ret != SR_OK) {
910 sr_err("Cannot read run state.");
911 return ret;
912 }
913 rdptr = buff;
914 state = read_u16le_inc(&rdptr);
915
916 /*
917 * Avoid flooding the log, only dump values as they change.
918 * The routine is called about every 50ms.
919 */
920 if (state == previous_state)
921 return state;
922
923 previous_state = state;
924 label = NULL;
925 if ((state & runstate_mask_idle) == runstate_patt_idle)
926 label = "idle";
927 if ((state & runstate_mask_step) == runstate_patt_pre_trig)
928 label = "pre-trigger sampling";
929 if ((state & runstate_mask_step) == runstate_patt_wait_trig)
930 label = "sampling, waiting for trigger";
931 if ((state & runstate_mask_step) == runstate_patt_post_trig)
932 label = "post-trigger sampling";
933 if (label && *label)
934 sr_dbg("Run state: 0x%04x (%s).", state, label);
935 else
936 sr_dbg("Run state: 0x%04x.", state);
937
938 return state;
939}
940
941static gboolean la2016_is_idle(const struct sr_dev_inst *sdi)
942{
943 uint16_t state;
944
945 state = run_state(sdi);
946 if ((state & runstate_mask_idle) == runstate_patt_idle)
947 return TRUE;
948
949 return FALSE;
950}
951
952static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t mode)
953{
954 int ret;
955
956 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &mode, sizeof(mode));
957 if (ret != SR_OK) {
958 sr_err("Cannot configure run mode %d.", mode);
959 return ret;
960 }
961
962 return SR_OK;
963}
964
965static int get_capture_info(const struct sr_dev_inst *sdi)
966{
967 struct dev_context *devc;
968 int ret;
969 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
970 const uint8_t *rdptr;
971
972 devc = sdi->priv;
973
974 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf));
975 if (ret != SR_OK) {
976 sr_err("Cannot read capture info.");
977 return ret;
978 }
979
980 rdptr = buf;
981 devc->info.n_rep_packets = read_u32le_inc(&rdptr);
982 devc->info.n_rep_packets_before_trigger = read_u32le_inc(&rdptr);
983 devc->info.write_pos = read_u32le_inc(&rdptr);
984
985 sr_dbg("Capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x/%d.",
986 devc->info.n_rep_packets, devc->info.n_rep_packets,
987 devc->info.n_rep_packets_before_trigger,
988 devc->info.n_rep_packets_before_trigger,
989 devc->info.write_pos, devc->info.write_pos);
990
991 if (devc->info.n_rep_packets % devc->packets_per_chunk) {
992 sr_warn("Unexpected packets count %lu, not a multiple of %lu.",
993 (unsigned long)devc->info.n_rep_packets,
994 (unsigned long)devc->packets_per_chunk);
995 }
996
997 return SR_OK;
998}
999
1000SR_PRIV int la2016_upload_firmware(const struct sr_dev_inst *sdi,
1001 struct sr_context *sr_ctx, libusb_device *dev, gboolean skip_upload)
1002{
1003 struct dev_context *devc;
1004 uint16_t pid;
1005 char *fw;
1006 int ret;
1007
1008 devc = sdi ? sdi->priv : NULL;
1009 if (!devc || !devc->usb_pid)
1010 return SR_ERR_ARG;
1011 pid = devc->usb_pid;
1012
1013 fw = g_strdup_printf(MCU_FWFILE_FMT, pid);
1014 sr_info("USB PID %04hx, MCU firmware '%s'.", pid, fw);
1015 devc->mcu_firmware = g_strdup(fw);
1016
1017 if (skip_upload)
1018 ret = SR_OK;
1019 else
1020 ret = ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw);
1021 g_free(fw);
1022 if (ret != SR_OK)
1023 return ret;
1024
1025 return SR_OK;
1026}
1027
1028static void LIBUSB_CALL receive_transfer(struct libusb_transfer *xfer);
1029
1030static void la2016_usbxfer_release_cb(gpointer p)
1031{
1032 struct libusb_transfer *xfer;
1033
1034 xfer = p;
1035 g_free(xfer->buffer);
1036 libusb_free_transfer(xfer);
1037}
1038
1039static int la2016_usbxfer_release(const struct sr_dev_inst *sdi)
1040{
1041 struct dev_context *devc;
1042
1043 devc = sdi ? sdi->priv : NULL;
1044 if (!devc)
1045 return SR_ERR_ARG;
1046
1047 /* Release all USB transfers. */
1048 g_slist_free_full(devc->transfers, la2016_usbxfer_release_cb);
1049 devc->transfers = NULL;
1050
1051 return SR_OK;
1052}
1053
1054static int la2016_usbxfer_allocate(const struct sr_dev_inst *sdi)
1055{
1056 struct dev_context *devc;
1057 size_t bufsize, xfercount;
1058 uint8_t *buffer;
1059 struct libusb_transfer *xfer;
1060
1061 devc = sdi ? sdi->priv : NULL;
1062 if (!devc)
1063 return SR_ERR_ARG;
1064
1065 /* Transfers were already allocated before? */
1066 if (devc->transfers)
1067 return SR_OK;
1068
1069 /*
1070 * Allocate all USB transfers and their buffers. Arrange for a
1071 * buffer size which is within the device's capabilities, and
1072 * is a multiple of the USB endpoint's size, to make use of the
1073 * RAW_IO performance feature.
1074 *
1075 * Implementation detail: The LA2016_USB_BUFSZ value happens
1076 * to match all those constraints. No additional arithmetics is
1077 * required in this location.
1078 */
1079 bufsize = LA2016_USB_BUFSZ;
1080 xfercount = LA2016_USB_XFER_COUNT;
1081 while (xfercount--) {
1082 buffer = g_try_malloc(bufsize);
1083 if (!buffer) {
1084 sr_err("Cannot allocate USB transfer buffer.");
1085 return SR_ERR_MALLOC;
1086 }
1087 xfer = libusb_alloc_transfer(0);
1088 if (!xfer) {
1089 sr_err("Cannot allocate USB transfer.");
1090 g_free(buffer);
1091 return SR_ERR_MALLOC;
1092 }
1093 xfer->buffer = buffer;
1094 devc->transfers = g_slist_append(devc->transfers, xfer);
1095 }
1096 devc->transfer_bufsize = bufsize;
1097
1098 return SR_OK;
1099}
1100
1101static int la2016_usbxfer_cancel_all(const struct sr_dev_inst *sdi)
1102{
1103 struct dev_context *devc;
1104 GSList *l;
1105 struct libusb_transfer *xfer;
1106
1107 devc = sdi ? sdi->priv : NULL;
1108 if (!devc)
1109 return SR_ERR_ARG;
1110
1111 /* Unconditionally cancel the transfer. Ignore errors. */
1112 for (l = devc->transfers; l; l = l->next) {
1113 xfer = l->data;
1114 if (!xfer)
1115 continue;
1116 libusb_cancel_transfer(xfer);
1117 }
1118
1119 return SR_OK;
1120}
1121
1122static int la2016_usbxfer_resubmit(const struct sr_dev_inst *sdi,
1123 struct libusb_transfer *xfer)
1124{
1125 struct dev_context *devc;
1126 struct sr_usb_dev_inst *usb;
1127 libusb_transfer_cb_fn cb;
1128 int ret;
1129
1130 devc = sdi ? sdi->priv : NULL;
1131 usb = sdi ? sdi->conn : NULL;
1132 if (!devc || !usb)
1133 return SR_ERR_ARG;
1134
1135 if (!xfer)
1136 return SR_ERR_ARG;
1137
1138 cb = receive_transfer;
1139 libusb_fill_bulk_transfer(xfer, usb->devhdl,
1140 USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
1141 xfer->buffer, devc->transfer_bufsize,
1142 cb, (void *)sdi, CAPTURE_TIMEOUT_MS);
1143 ret = libusb_submit_transfer(xfer);
1144 if (ret != 0) {
1145 sr_err("Cannot submit USB transfer: %s.",
1146 libusb_error_name(ret));
1147 return SR_ERR_IO;
1148 }
1149
1150 return SR_OK;
1151}
1152
1153static int la2016_usbxfer_submit_all(const struct sr_dev_inst *sdi)
1154{
1155 struct dev_context *devc;
1156 GSList *l;
1157 struct libusb_transfer *xfer;
1158 int ret;
1159
1160 devc = sdi ? sdi->priv : NULL;
1161 if (!devc)
1162 return SR_ERR_ARG;
1163
1164 for (l = devc->transfers; l; l = l->next) {
1165 xfer = l->data;
1166 if (!xfer)
1167 return SR_ERR_ARG;
1168 ret = la2016_usbxfer_resubmit(sdi, xfer);
1169 if (ret != SR_OK)
1170 return ret;
1171 }
1172
1173 return SR_OK;
1174}
1175
1176SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi,
1177 double voltage)
1178{
1179 struct dev_context *devc;
1180 int ret;
1181 uint8_t cmd;
1182
1183 devc = sdi->priv;
1184
1185 ret = set_threshold_voltage(sdi, voltage);
1186 if (ret != SR_OK)
1187 return ret;
1188
1189 cmd = devc->continuous ? CAPTMODE_STREAM : CAPTMODE_TO_RAM;
1190 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd));
1191 if (ret != SR_OK) {
1192 sr_err("Cannot send command to stop sampling.");
1193 return ret;
1194 }
1195
1196 ret = set_trigger_config(sdi);
1197 if (ret != SR_OK)
1198 return ret;
1199
1200 ret = set_sample_config(sdi);
1201 if (ret != SR_OK)
1202 return ret;
1203
1204 return SR_OK;
1205}
1206
1207SR_PRIV int la2016_start_acquisition(const struct sr_dev_inst *sdi)
1208{
1209 struct dev_context *devc;
1210 int ret;
1211
1212 devc = sdi->priv;
1213
1214 ret = la2016_usbxfer_allocate(sdi);
1215 if (ret != SR_OK)
1216 return ret;
1217
1218 if (devc->continuous) {
1219 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
1220 if (ret != SR_OK)
1221 return ret;
1222
1223 ret = la2016_usbxfer_submit_all(sdi);
1224 if (ret != SR_OK)
1225 return ret;
1226
1227 /*
1228 * Periodic receive callback will set runmode. This
1229 * activity MUST be close to data reception, a pause
1230 * between these steps breaks the stream's operation.
1231 */
1232 } else {
1233 ret = set_run_mode(sdi, RUNMODE_RUN);
1234 if (ret != SR_OK)
1235 return ret;
1236 }
1237
1238 return SR_OK;
1239}
1240
1241static int la2016_stop_acquisition(const struct sr_dev_inst *sdi)
1242{
1243 struct dev_context *devc;
1244 int ret;
1245
1246 ret = set_run_mode(sdi, RUNMODE_HALT);
1247 if (ret != SR_OK)
1248 return ret;
1249
1250 devc = sdi->priv;
1251 if (devc->continuous)
1252 devc->download_finished = TRUE;
1253
1254 return SR_OK;
1255}
1256
1257SR_PRIV int la2016_abort_acquisition(const struct sr_dev_inst *sdi)
1258{
1259 int ret;
1260
1261 ret = la2016_stop_acquisition(sdi);
1262 if (ret != SR_OK)
1263 return ret;
1264
1265 (void)la2016_usbxfer_cancel_all(sdi);
1266
1267 return SR_OK;
1268}
1269
1270static int la2016_start_download(const struct sr_dev_inst *sdi)
1271{
1272 struct dev_context *devc;
1273 int ret;
1274 uint8_t wrbuf[REG_SAMPLING - REG_BULK]; /* Width of REG_BULK. */
1275 uint8_t *wrptr;
1276
1277 devc = sdi->priv;
1278
1279 ret = get_capture_info(sdi);
1280 if (ret != SR_OK)
1281 return ret;
1282
1283 devc->n_transfer_packets_to_read = devc->info.n_rep_packets;
1284 devc->n_transfer_packets_to_read /= devc->packets_per_chunk;
1285 devc->n_bytes_to_read = devc->n_transfer_packets_to_read;
1286 devc->n_bytes_to_read *= devc->transfer_size;
1287 devc->read_pos = devc->info.write_pos - devc->n_bytes_to_read;
1288 devc->n_reps_until_trigger = devc->info.n_rep_packets_before_trigger;
1289
1290 sr_dbg("Want to read %u xfer-packets starting from pos %" PRIu32 ".",
1291 devc->n_transfer_packets_to_read, devc->read_pos);
1292
1293 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
1294 if (ret != SR_OK) {
1295 sr_err("Cannot reset USB bulk state.");
1296 return ret;
1297 }
1298 sr_dbg("Will read from 0x%08lx, 0x%08x bytes.",
1299 (unsigned long)devc->read_pos, devc->n_bytes_to_read);
1300 wrptr = wrbuf;
1301 write_u32le_inc(&wrptr, devc->read_pos);
1302 write_u32le_inc(&wrptr, devc->n_bytes_to_read);
1303 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf);
1304 if (ret != SR_OK) {
1305 sr_err("Cannot send USB bulk config.");
1306 return ret;
1307 }
1308
1309 ret = la2016_usbxfer_submit_all(sdi);
1310 if (ret != SR_OK) {
1311 sr_err("Cannot submit USB bulk transfers.");
1312 return ret;
1313 }
1314
1315 ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0);
1316 if (ret != SR_OK) {
1317 sr_err("Cannot start USB bulk transfers.");
1318 return ret;
1319 }
1320
1321 return SR_OK;
1322}
1323
1324/*
1325 * A chunk of sample memory was received via USB. These chunks contain
1326 * transfers of 16 or 32 bytes each (model dependent size and layout).
1327 * Transfers contain a number of packets (5 or 6 per transfer), which
1328 * contain a number of samples (16 or 32 sampled pin values, and an
1329 * 8bit repeat count for these sampled pin values). A sequence number
1330 * follows the packets within the transfer, allows to detect missing or
1331 * out of order reception.
1332 *
1333 * Memory layout for 16-channel models:
1334 * - 16 bytes per transfer
1335 * - 5x (u16 pins, and u8 count)
1336 * - 1x u8 sequence number
1337 *
1338 * Memory layout for 32-channel models:
1339 * - 32 bytes per transfer
1340 * - 6x (u32 pins, and u8 count)
1341 * - 2x u8 sequence number (inverted, and normal)
1342 *
1343 * This implementation silently ignores the (weak) sequence number.
1344 */
1345static void send_chunk(struct sr_dev_inst *sdi,
1346 const uint8_t *data_buffer, size_t data_length)
1347{
1348 struct dev_context *devc;
1349 size_t num_xfers, num_pkts, num_seqs;
1350 const uint8_t *rp;
1351 uint32_t sample_value;
1352 size_t repetitions;
1353 uint8_t sample_buff[sizeof(sample_value)];
1354
1355 devc = sdi->priv;
1356
1357 /* Ignore incoming USB data after complete sample data download. */
1358 if (devc->download_finished)
1359 return;
1360
1361 if (devc->trigger_involved && !devc->trigger_marked && devc->info.n_rep_packets_before_trigger == 0) {
1362 feed_queue_logic_send_trigger(devc->feed_queue);
1363 devc->trigger_marked = TRUE;
1364 }
1365
1366 /*
1367 * Adjust the number of remaining bytes to read from the device
1368 * before the processing of the currently received chunk affects
1369 * the variable which holds the number of received bytes.
1370 */
1371 if (data_length > devc->n_bytes_to_read)
1372 devc->n_bytes_to_read = 0;
1373 else
1374 devc->n_bytes_to_read -= data_length;
1375
1376 /* Process the received chunk of capture data. */
1377 sample_value = 0;
1378 rp = data_buffer;
1379 num_xfers = data_length / devc->transfer_size;
1380 while (num_xfers--) {
1381 num_pkts = devc->packets_per_chunk;
1382 while (num_pkts--) {
1383
1384 if (devc->model->channel_count == 32)
1385 sample_value = read_u32le_inc(&rp);
1386 else if (devc->model->channel_count == 16)
1387 sample_value = read_u16le_inc(&rp);
1388 repetitions = read_u8_inc(&rp);
1389
1390 devc->total_samples += repetitions;
1391
1392 write_u32le(sample_buff, sample_value);
1393 feed_queue_logic_submit(devc->feed_queue,
1394 sample_buff, repetitions);
1395 sr_sw_limits_update_samples_read(&devc->sw_limits,
1396 repetitions);
1397
1398 if (devc->trigger_involved && !devc->trigger_marked) {
1399 if (!--devc->n_reps_until_trigger) {
1400 feed_queue_logic_send_trigger(devc->feed_queue);
1401 devc->trigger_marked = TRUE;
1402 sr_dbg("Trigger position after %" PRIu64 " samples, %.6fms.",
1403 devc->total_samples,
1404 (double)devc->total_samples / devc->samplerate * 1e3);
1405 }
1406 }
1407 }
1408 /* Skip the sequence number bytes. */
1409 num_seqs = devc->sequence_size;
1410 while (num_seqs--)
1411 (void)read_u8_inc(&rp);
1412 }
1413
1414 /*
1415 * Check for several conditions which shall terminate the
1416 * capture data download: When the amount of capture data in
1417 * the device is exhausted. When the user specified samples
1418 * count limit is reached.
1419 */
1420 if (!devc->n_bytes_to_read) {
1421 devc->download_finished = TRUE;
1422 } else {
1423 sr_dbg("%" PRIu32 " more bytes to download from the device.",
1424 devc->n_bytes_to_read);
1425 }
1426 if (!devc->download_finished && sr_sw_limits_check(&devc->sw_limits)) {
1427 sr_dbg("Acquisition limit reached.");
1428 devc->download_finished = TRUE;
1429 }
1430 if (devc->download_finished) {
1431 sr_dbg("Download finished, flushing session feed queue.");
1432 feed_queue_logic_flush(devc->feed_queue);
1433 }
1434 sr_dbg("Total samples after chunk: %" PRIu64 ".", devc->total_samples);
1435}
1436
1437/*
1438 * Process a chunk of capture data in streaming mode. The memory layout
1439 * is rather different from "normal mode" (see the send_chunk() routine
1440 * above). In streaming mode data is not compressed, and memory cells
1441 * neither contain raw sampled pin values at a given point in time. The
1442 * memory content needs transformation.
1443 *
1444 * All enabled channels get iterated over. Disabled channels will not
1445 * occupy space in the streamed sample data. Per channel chunk there is
1446 * one 16bit entity which carries samples that were taken at different
1447 * times. The least significant bit was sampled first, higher bits were
1448 * sampled later. After all 16bit entities for all enabled channels
1449 * were seen, the first enabled channel's next chunk follows.
1450 *
1451 * Implementor's note: This routine is inspired by convert_sample_data()
1452 * in the https://github.com/AlexUg/sigrok implementation. Which in turn
1453 * appears to have been derived from the saleae-logic16 sigrok driver.
1454 * The code is phrased conservatively to verify the layout as discussed
1455 * above, performance was not a priority. Operation was verified with an
1456 * LA2016 device. The LA5032 reportedly shares the 16 samples per channel
1457 * layout, just round-robins through a potentially larger set of enabled
1458 * channels before returning to the first of the channels.
1459 */
1460static void stream_data(struct sr_dev_inst *sdi,
1461 const uint8_t *data_buffer, size_t data_length)
1462{
1463 struct dev_context *devc;
1464 struct stream_state_t *stream;
1465 size_t bit_count;
1466 const uint8_t *rp;
1467 uint32_t sample_value;
1468 uint8_t sample_buff[sizeof(sample_value)];
1469 size_t bit_idx;
1470 uint32_t ch_mask;
1471
1472 devc = sdi->priv;
1473 stream = &devc->stream;
1474
1475 /* Ignore incoming USB data after complete sample data download. */
1476 if (devc->download_finished)
1477 return;
1478 sr_dbg("Stream mode, got another chunk: %p, length %zu.",
1479 data_buffer, data_length);
1480
1481 /* TODO Add soft trigger support when in stream mode? */
1482
1483 /* All channels' chunks carry 16 samples for one channel. */
1484 bit_count = 16;
1485 data_length /= sizeof(uint16_t);
1486
1487 rp = data_buffer;
1488 sample_value = 0;
1489 while (data_length--) {
1490 /* Get another entity. */
1491 sample_value = read_u16le_inc(&rp);
1492
1493 /* Map the entity's bits to a channel's samples. */
1494 ch_mask = stream->channel_masks[stream->channel_index];
1495 for (bit_idx = 0; bit_idx < bit_count; bit_idx++) {
1496 if (sample_value & (1UL << bit_idx))
1497 stream->sample_data[bit_idx] |= ch_mask;
1498 }
1499
1500 /*
1501 * Advance to the next channel. Submit a block of
1502 * samples when all channels' data was seen.
1503 */
1504 stream->channel_index++;
1505 if (stream->channel_index != stream->enabled_count)
1506 continue;
1507 for (bit_idx = 0; bit_idx < bit_count; bit_idx++) {
1508 sample_value = stream->sample_data[bit_idx];
1509 write_u32le(sample_buff, sample_value);
1510 feed_queue_logic_submit(devc->feed_queue, sample_buff, 1);
1511 }
1512 sr_sw_limits_update_samples_read(&devc->sw_limits, bit_count);
1513 devc->total_samples += bit_count;
1514 memset(stream->sample_data, 0, sizeof(stream->sample_data));
1515 stream->channel_index = 0;
1516 }
1517
1518 /*
1519 * Need we count empty or failed USB transfers? This version
1520 * doesn't, assumes that timeouts are perfectly legal because
1521 * transfers are started early, and slow samplerates or trigger
1522 * support in hardware are plausible causes for empty transfers.
1523 *
1524 * TODO Maybe a good condition would be (rather large) a timeout
1525 * after a previous capture data chunk was seen? So that stalled
1526 * streaming gets detected which _is_ an exceptional condition.
1527 * We have observed these when "runmode" is set early but bulk
1528 * transfers start late with a pause after setting the runmode.
1529 */
1530 if (sr_sw_limits_check(&devc->sw_limits)) {
1531 sr_dbg("Acquisition end reached (sw limits).");
1532 devc->download_finished = TRUE;
1533 }
1534 if (devc->download_finished) {
1535 sr_dbg("Stream receive done, flushing session feed queue.");
1536 feed_queue_logic_flush(devc->feed_queue);
1537 }
1538 sr_dbg("Total samples after chunk: %" PRIu64 ".", devc->total_samples);
1539}
1540
1541static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
1542{
1543 struct sr_dev_inst *sdi;
1544 struct dev_context *devc;
1545 gboolean was_cancelled, device_gone;
1546 int ret;
1547
1548 sdi = transfer->user_data;
1549 devc = sdi->priv;
1550
1551 was_cancelled = transfer->status == LIBUSB_TRANSFER_CANCELLED;
1552 device_gone = transfer->status == LIBUSB_TRANSFER_NO_DEVICE;
1553 sr_dbg("receive_transfer(): status %s received %d bytes.",
1554 libusb_error_name(transfer->status), transfer->actual_length);
1555 if (device_gone) {
1556 sr_warn("Lost communication to USB device.");
1557 devc->download_finished = TRUE;
1558 return;
1559 }
1560
1561 /*
1562 * Implementation detail: A USB transfer timeout is not fatal
1563 * here. We just process whatever was received, empty input is
1564 * perfectly acceptable. Reaching (or exceeding) the sw limits
1565 * or exhausting the device's captured data will complete the
1566 * sample data download.
1567 */
1568 if (devc->continuous)
1569 stream_data(sdi, transfer->buffer, transfer->actual_length);
1570 else
1571 send_chunk(sdi, transfer->buffer, transfer->actual_length);
1572
1573 /*
1574 * Re-submit completed transfers (regardless of timeout or
1575 * data reception), unless the transfer was cancelled when
1576 * the acquisition was terminated or has completed.
1577 */
1578 if (!was_cancelled && !devc->download_finished) {
1579 ret = la2016_usbxfer_resubmit(sdi, transfer);
1580 if (ret == SR_OK)
1581 return;
1582 devc->download_finished = TRUE;
1583 }
1584}
1585
1586SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data)
1587{
1588 const struct sr_dev_inst *sdi;
1589 struct dev_context *devc;
1590 struct drv_context *drvc;
1591 struct timeval tv;
1592 int ret;
1593
1594 (void)fd;
1595 (void)revents;
1596
1597 sdi = cb_data;
1598 devc = sdi->priv;
1599 drvc = sdi->driver->context;
1600
1601 /* Arrange for the start of stream mode when requested. */
1602 if (devc->continuous && !devc->frame_begin_sent) {
1603 sr_dbg("First receive callback in stream mode.");
1604 devc->download_finished = FALSE;
1605 devc->trigger_marked = FALSE;
1606 devc->total_samples = 0;
1607
1608 std_session_send_df_frame_begin(sdi);
1609 devc->frame_begin_sent = TRUE;
1610
1611 ret = set_run_mode(sdi, RUNMODE_RUN);
1612 if (ret != SR_OK) {
1613 sr_err("Cannot set 'runmode' to 'run'.");
1614 return FALSE;
1615 }
1616
1617 ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0);
1618 if (ret != SR_OK) {
1619 sr_err("Cannot start USB bulk transfers.");
1620 return FALSE;
1621 }
1622 sr_dbg("Stream data reception initiated.");
1623 }
1624
1625 /*
1626 * Wait for the acquisition to complete in hardware.
1627 * Periodically check a potentially configured msecs timeout.
1628 */
1629 if (!devc->continuous && !devc->completion_seen) {
1630 if (!la2016_is_idle(sdi)) {
1631 if (sr_sw_limits_check(&devc->sw_limits)) {
1632 devc->sw_limits.limit_msec = 0;
1633 sr_dbg("Limit reached. Stopping acquisition.");
1634 la2016_stop_acquisition(sdi);
1635 }
1636 /* Not yet ready for sample data download. */
1637 return TRUE;
1638 }
1639 sr_dbg("Acquisition completion seen (hardware).");
1640 devc->sw_limits.limit_msec = 0;
1641 devc->completion_seen = TRUE;
1642 devc->download_finished = FALSE;
1643 devc->trigger_marked = FALSE;
1644 devc->total_samples = 0;
1645
1646 la2016_dump_fpga_registers(sdi, "acquisition complete", 0, 0);
1647
1648 /* Initiate the download of acquired sample data. */
1649 std_session_send_df_frame_begin(sdi);
1650 devc->frame_begin_sent = TRUE;
1651 ret = la2016_start_download(sdi);
1652 if (ret != SR_OK) {
1653 sr_err("Cannot start acquisition data download.");
1654 return FALSE;
1655 }
1656 sr_dbg("Acquisition data download started.");
1657
1658 return TRUE;
1659 }
1660
1661 /* Handle USB reception. Drives sample data download. */
1662 memset(&tv, 0, sizeof(tv));
1663 libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
1664
1665 /*
1666 * Periodically flush acquisition data in streaming mode.
1667 * Without this nudge, previously received and accumulated data
1668 * keeps sitting in queues and is not seen by applications.
1669 */
1670 if (devc->continuous && devc->stream.flush_period_ms) {
1671 uint64_t now, elapsed;
1672 now = g_get_monotonic_time();
1673 if (!devc->stream.last_flushed)
1674 devc->stream.last_flushed = now;
1675 elapsed = now - devc->stream.last_flushed;
1676 elapsed /= 1000;
1677 if (elapsed >= devc->stream.flush_period_ms) {
1678 sr_dbg("Stream mode, flushing.");
1679 feed_queue_logic_flush(devc->feed_queue);
1680 devc->stream.last_flushed = now;
1681 }
1682 }
1683
1684 /* Postprocess completion of sample data download. */
1685 if (devc->download_finished) {
1686 sr_dbg("Download finished, post processing.");
1687
1688 la2016_stop_acquisition(sdi);
1689 usb_source_remove(sdi->session, drvc->sr_ctx);
1690
1691 la2016_usbxfer_cancel_all(sdi);
1692 memset(&tv, 0, sizeof(tv));
1693 libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
1694
1695 feed_queue_logic_flush(devc->feed_queue);
1696 feed_queue_logic_free(devc->feed_queue);
1697 devc->feed_queue = NULL;
1698 if (devc->frame_begin_sent) {
1699 std_session_send_df_frame_end(sdi);
1700 devc->frame_begin_sent = FALSE;
1701 }
1702 std_session_send_df_end(sdi);
1703
1704 sr_dbg("Download finished, done post processing.");
1705 }
1706
1707 return TRUE;
1708}
1709
1710SR_PRIV int la2016_identify_device(const struct sr_dev_inst *sdi,
1711 gboolean show_message)
1712{
1713 struct dev_context *devc;
1714 uint8_t buf[8]; /* Larger size of manuf date and device type magic. */
1715 size_t rdoff, rdlen;
1716 const uint8_t *rdptr;
1717 uint8_t date_yy, date_mm;
1718 uint8_t dinv_yy, dinv_mm;
1719 uint8_t magic, magic2;
1720 size_t model_idx;
1721 const struct kingst_model *model;
1722 int ret;
1723
1724 devc = sdi->priv;
1725
1726 /*
1727 * Four EEPROM bytes at offset 0x20 are the manufacturing date,
1728 * year and month in BCD format, followed by inverted values for
1729 * consistency checks. For example bytes 20 04 df fb translate
1730 * to 2020-04. This information can help identify the vintage of
1731 * devices when unknown magic numbers are seen.
1732 */
1733 rdoff = 0x20;
1734 rdlen = 4 * sizeof(uint8_t);
1735 ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, buf, rdlen);
1736 if (ret != SR_OK && !show_message) {
1737 /* Non-fatal weak attempt during probe. Not worth logging. */
1738 sr_dbg("Cannot access EEPROM.");
1739 return SR_ERR_IO;
1740 } else if (ret != SR_OK) {
1741 /* Failed attempt in regular use. Non-fatal. Worth logging. */
1742 sr_err("Cannot read manufacture date in EEPROM.");
1743 } else {
1744 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1745 GString *txt;
1746 txt = sr_hexdump_new(buf, rdlen);
1747 sr_spew("Manufacture date bytes %s.", txt->str);
1748 sr_hexdump_free(txt);
1749 }
1750 rdptr = &buf[0];
1751 date_yy = read_u8_inc(&rdptr);
1752 date_mm = read_u8_inc(&rdptr);
1753 dinv_yy = read_u8_inc(&rdptr);
1754 dinv_mm = read_u8_inc(&rdptr);
1755 sr_info("Manufacture date: 20%02hx-%02hx.", date_yy, date_mm);
1756 if ((date_mm ^ dinv_mm) != 0xff || (date_yy ^ dinv_yy) != 0xff)
1757 sr_warn("Manufacture date fails checksum test.");
1758 }
1759
1760 /*
1761 * Several Kingst logic analyzer devices share the same USB VID
1762 * and PID. The product ID determines which MCU firmware to load.
1763 * The MCU firmware provides access to EEPROM content which then
1764 * allows to identify the device model. Which in turn determines
1765 * which FPGA bitstream to load. Eight bytes at offset 0x08 are
1766 * to get inspected.
1767 *
1768 * EEPROM content for model identification is kept redundantly
1769 * in memory. The values are stored in verbatim and in inverted
1770 * form, multiple copies are kept at different offsets. Example
1771 * data:
1772 *
1773 * magic 0x08
1774 * | ~magic 0xf7
1775 * | |
1776 * 08f7000008f710ef
1777 * | |
1778 * | ~magic backup
1779 * magic backup
1780 *
1781 * Exclusively inspecting the magic byte appears to be sufficient,
1782 * other fields seem to be 'don't care'.
1783 *
1784 * magic 2 == LA2016 using "kingst-la2016-fpga.bitstream"
1785 * magic 3 == LA1016 using "kingst-la1016-fpga.bitstream"
1786 * magic 8 == LA2016a using "kingst-la2016a1-fpga.bitstream"
1787 * (latest v1.3.0 PCB, perhaps others)
1788 * magic 9 == LA1016a using "kingst-la1016a1-fpga.bitstream"
1789 * (latest v1.3.0 PCB, perhaps others)
1790 *
1791 * When EEPROM content does not match the hardware configuration
1792 * (the board layout), the software may load but yield incorrect
1793 * results (like swapped channels). The FPGA bitstream itself
1794 * will authenticate with IC U10 and fail when its capabilities
1795 * do not match the hardware model. An LA1016 won't become a
1796 * LA2016 by faking its EEPROM content.
1797 */
1798 devc->identify_magic = 0;
1799 rdoff = 0x08;
1800 rdlen = 8 * sizeof(uint8_t);
1801 ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, &buf, rdlen);
1802 if (ret != SR_OK) {
1803 sr_err("Cannot read EEPROM device identifier bytes.");
1804 return ret;
1805 }
1806 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1807 GString *txt;
1808 txt = sr_hexdump_new(buf, rdlen);
1809 sr_spew("EEPROM magic bytes %s.", txt->str);
1810 sr_hexdump_free(txt);
1811 }
1812 magic = 0;
1813 magic2 = 0;
1814 if ((buf[0] ^ buf[1]) == 0xff && (buf[2] ^ buf[3]) == 0xff) {
1815 /* Primary copy of magic passes complement check (4 bytes). */
1816 magic = buf[0];
1817 magic2 = buf[2];
1818 sr_dbg("Using primary magic 0x%hhx (0x%hhx).", magic, magic2);
1819 } else if ((buf[4] ^ buf[5]) == 0xff && (buf[6] ^ buf[7]) == 0xff) {
1820 /* Backup copy of magic passes complement check (4 bytes). */
1821 magic = buf[4];
1822 magic2 = buf[6];
1823 sr_dbg("Using secondary magic 0x%hhx (0x%hhx).", magic, magic2);
1824 } else if ((buf[0] ^ buf[1]) == 0xff) {
1825 /* Primary copy of magic passes complement check (2 bytes). */
1826 magic = buf[0];
1827 sr_dbg("Using primary magic 0x%hhx.", magic);
1828 } else if ((buf[4] ^ buf[5]) == 0xff) {
1829 /* Backup copy of magic passes complement check (2 bytes). */
1830 magic = buf[4];
1831 sr_dbg("Using secondary magic 0x%hhx.", magic);
1832 } else {
1833 sr_err("Cannot find consistent device type identification.");
1834 }
1835 devc->identify_magic = magic;
1836 devc->identify_magic2 = magic2;
1837
1838 devc->model = NULL;
1839 for (model_idx = 0; model_idx < ARRAY_SIZE(models); model_idx++) {
1840 model = &models[model_idx];
1841 if (model->magic != magic)
1842 continue;
1843 if (model->magic2 && model->magic2 != magic2)
1844 continue;
1845 devc->model = model;
1846 sr_info("Model '%s', %zu channels, max %" PRIu64 "MHz.",
1847 model->name, model->channel_count,
1848 model->samplerate / SR_MHZ(1));
1849 devc->fpga_bitstream = g_strdup_printf(FPGA_FWFILE_FMT,
1850 model->fpga_stem);
1851 sr_info("FPGA bitstream file '%s'.", devc->fpga_bitstream);
1852 if (!model->channel_count) {
1853 sr_warn("Device lacks logic channels. Not supported.");
1854 devc->model = NULL;
1855 }
1856 break;
1857 }
1858 if (!devc->model) {
1859 sr_err("Cannot identify as one of the supported models.");
1860 return SR_ERR_DATA;
1861 }
1862
1863 return SR_OK;
1864}
1865
1866SR_PRIV int la2016_init_hardware(const struct sr_dev_inst *sdi)
1867{
1868 struct dev_context *devc;
1869 const char *bitstream_fn;
1870 int ret;
1871 uint16_t state;
1872
1873 devc = sdi->priv;
1874 bitstream_fn = devc ? devc->fpga_bitstream : "";
1875
1876 ret = check_fpga_bitstream(sdi);
1877 if (ret != SR_OK) {
1878 ret = upload_fpga_bitstream(sdi, bitstream_fn);
1879 if (ret != SR_OK) {
1880 sr_err("Cannot upload FPGA bitstream.");
1881 return ret;
1882 }
1883 }
1884 ret = enable_fpga_bitstream(sdi);
1885 if (ret != SR_OK) {
1886 sr_err("Cannot enable FPGA bitstream after upload.");
1887 return ret;
1888 }
1889
1890 state = run_state(sdi);
1891 if ((state & 0xfff0) != 0x85e0) {
1892 sr_warn("Unexpected run state, want 0x85eX, got 0x%04x.", state);
1893 }
1894
1895 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
1896 if (ret != SR_OK) {
1897 sr_err("Cannot reset USB bulk transfer.");
1898 return ret;
1899 }
1900
1901 sr_dbg("Device should be initialized.");
1902
1903 return SR_OK;
1904}
1905
1906SR_PRIV int la2016_deinit_hardware(const struct sr_dev_inst *sdi)
1907{
1908 int ret;
1909
1910 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0);
1911 if (ret != SR_OK) {
1912 sr_err("Cannot deinitialize device's FPGA.");
1913 return ret;
1914 }
1915
1916 return SR_OK;
1917}
1918
1919SR_PRIV void la2016_release_resources(const struct sr_dev_inst *sdi)
1920{
1921 (void)la2016_usbxfer_release(sdi);
1922}
1923
1924SR_PRIV int la2016_write_pwm_config(const struct sr_dev_inst *sdi, size_t idx)
1925{
1926 return set_pwm_config(sdi, idx);
1927}