]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/hameg-hmo/protocol.c
drivers: Use std_*idx*() helpers in some more places.
[libsigrok.git] / src / hardware / hameg-hmo / protocol.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2013 poljar (Damir Jelić) <poljarinho@gmail.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include <math.h>
22#include <stdlib.h>
23#include "scpi.h"
24#include "protocol.h"
25
26SR_PRIV void hmo_queue_logic_data(struct dev_context *devc,
27 size_t group, GByteArray *pod_data);
28SR_PRIV void hmo_send_logic_packet(struct sr_dev_inst *sdi,
29 struct dev_context *devc);
30SR_PRIV void hmo_cleanup_logic_data(struct dev_context *devc);
31
32static const char *hameg_scpi_dialect[] = {
33 [SCPI_CMD_GET_DIG_DATA] = ":FORM UINT,8;:POD%d:DATA?",
34 [SCPI_CMD_GET_TIMEBASE] = ":TIM:SCAL?",
35 [SCPI_CMD_SET_TIMEBASE] = ":TIM:SCAL %s",
36 [SCPI_CMD_GET_COUPLING] = ":CHAN%d:COUP?",
37 [SCPI_CMD_SET_COUPLING] = ":CHAN%d:COUP %s",
38 [SCPI_CMD_GET_SAMPLE_RATE] = ":ACQ:SRAT?",
39 [SCPI_CMD_GET_SAMPLE_RATE_LIVE] = ":%s:DATA:POINTS?",
40 [SCPI_CMD_GET_ANALOG_DATA] = ":FORM:BORD %s;" \
41 ":FORM REAL,32;:CHAN%d:DATA?",
42 [SCPI_CMD_GET_VERTICAL_DIV] = ":CHAN%d:SCAL?",
43 [SCPI_CMD_SET_VERTICAL_DIV] = ":CHAN%d:SCAL %s",
44 [SCPI_CMD_GET_DIG_POD_STATE] = ":POD%d:STAT?",
45 [SCPI_CMD_SET_DIG_POD_STATE] = ":POD%d:STAT %d",
46 [SCPI_CMD_GET_TRIGGER_SLOPE] = ":TRIG:A:EDGE:SLOP?",
47 [SCPI_CMD_SET_TRIGGER_SLOPE] = ":TRIG:A:EDGE:SLOP %s",
48 [SCPI_CMD_GET_TRIGGER_SOURCE] = ":TRIG:A:SOUR?",
49 [SCPI_CMD_SET_TRIGGER_SOURCE] = ":TRIG:A:SOUR %s",
50 [SCPI_CMD_GET_DIG_CHAN_STATE] = ":LOG%d:STAT?",
51 [SCPI_CMD_SET_DIG_CHAN_STATE] = ":LOG%d:STAT %d",
52 [SCPI_CMD_GET_VERTICAL_OFFSET] = ":CHAN%d:POS?",
53 [SCPI_CMD_GET_HORIZ_TRIGGERPOS] = ":TIM:POS?",
54 [SCPI_CMD_SET_HORIZ_TRIGGERPOS] = ":TIM:POS %s",
55 [SCPI_CMD_GET_ANALOG_CHAN_STATE] = ":CHAN%d:STAT?",
56 [SCPI_CMD_SET_ANALOG_CHAN_STATE] = ":CHAN%d:STAT %d",
57 [SCPI_CMD_GET_PROBE_UNIT] = ":PROB%d:SET:ATT:UNIT?",
58};
59
60static const uint32_t devopts[] = {
61 SR_CONF_OSCILLOSCOPE,
62 SR_CONF_LIMIT_FRAMES | SR_CONF_GET | SR_CONF_SET,
63 SR_CONF_SAMPLERATE | SR_CONF_GET,
64 SR_CONF_TIMEBASE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
65 SR_CONF_NUM_HDIV | SR_CONF_GET,
66 SR_CONF_HORIZ_TRIGGERPOS | SR_CONF_GET | SR_CONF_SET,
67 SR_CONF_TRIGGER_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
68 SR_CONF_TRIGGER_SLOPE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
69};
70
71static const uint32_t devopts_cg_analog[] = {
72 SR_CONF_NUM_VDIV | SR_CONF_GET,
73 SR_CONF_VDIV | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
74 SR_CONF_COUPLING | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
75};
76
77static const char *coupling_options[] = {
78 "AC", // AC with 50 Ohm termination (152x, 202x, 30xx, 1202)
79 "ACL", // AC with 1 MOhm termination
80 "DC", // DC with 50 Ohm termination
81 "DCL", // DC with 1 MOhm termination
82 "GND",
83};
84
85static const char *scope_trigger_slopes[] = {
86 "POS",
87 "NEG",
88 "EITH",
89};
90
91static const char *compact2_trigger_sources[] = {
92 "CH1", "CH2",
93 "LINE", "EXT", "PATT", "BUS1", "BUS2",
94 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
95};
96
97static const char *compact4_trigger_sources[] = {
98 "CH1", "CH2", "CH3", "CH4",
99 "LINE", "EXT", "PATT", "BUS1", "BUS2",
100 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
101};
102
103static const char *compact4_dig16_trigger_sources[] = {
104 "CH1", "CH2", "CH3", "CH4",
105 "LINE", "EXT", "PATT", "BUS1", "BUS2",
106 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
107 "D8", "D9", "D10", "D11", "D12", "D13", "D14", "D15",
108};
109
110static const uint64_t timebases[][2] = {
111 /* nanoseconds */
112 { 2, 1000000000 },
113 { 5, 1000000000 },
114 { 10, 1000000000 },
115 { 20, 1000000000 },
116 { 50, 1000000000 },
117 { 100, 1000000000 },
118 { 200, 1000000000 },
119 { 500, 1000000000 },
120 /* microseconds */
121 { 1, 1000000 },
122 { 2, 1000000 },
123 { 5, 1000000 },
124 { 10, 1000000 },
125 { 20, 1000000 },
126 { 50, 1000000 },
127 { 100, 1000000 },
128 { 200, 1000000 },
129 { 500, 1000000 },
130 /* milliseconds */
131 { 1, 1000 },
132 { 2, 1000 },
133 { 5, 1000 },
134 { 10, 1000 },
135 { 20, 1000 },
136 { 50, 1000 },
137 { 100, 1000 },
138 { 200, 1000 },
139 { 500, 1000 },
140 /* seconds */
141 { 1, 1 },
142 { 2, 1 },
143 { 5, 1 },
144 { 10, 1 },
145 { 20, 1 },
146 { 50, 1 },
147};
148
149static const uint64_t vdivs[][2] = {
150 /* millivolts */
151 { 1, 1000 },
152 { 2, 1000 },
153 { 5, 1000 },
154 { 10, 1000 },
155 { 20, 1000 },
156 { 50, 1000 },
157 { 100, 1000 },
158 { 200, 1000 },
159 { 500, 1000 },
160 /* volts */
161 { 1, 1 },
162 { 2, 1 },
163 { 5, 1 },
164 { 10, 1 },
165 { 20, 1 },
166 { 50, 1 },
167};
168
169static const char *scope_analog_channel_names[] = {
170 "CH1", "CH2", "CH3", "CH4",
171};
172
173static const char *scope_digital_channel_names[] = {
174 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
175 "D8", "D9", "D10", "D11", "D12", "D13", "D14", "D15",
176};
177
178static const struct scope_config scope_models[] = {
179 {
180 /* HMO2522/3032/3042/3052 support 16 digital channels but they're not supported yet. */
181 .name = {"HMO1002", "HMO722", "HMO1022", "HMO1522", "HMO2022", "HMO2522",
182 "HMO3032", "HMO3042", "HMO3052", NULL},
183 .analog_channels = 2,
184 .digital_channels = 8,
185 .digital_pods = 1,
186
187 .analog_names = &scope_analog_channel_names,
188 .digital_names = &scope_digital_channel_names,
189
190 .devopts = &devopts,
191 .num_devopts = ARRAY_SIZE(devopts),
192
193 .devopts_cg_analog = &devopts_cg_analog,
194 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
195
196 .coupling_options = &coupling_options,
197 .num_coupling_options = ARRAY_SIZE(coupling_options),
198
199 .trigger_sources = &compact2_trigger_sources,
200 .num_trigger_sources = ARRAY_SIZE(compact2_trigger_sources),
201
202 .trigger_slopes = &scope_trigger_slopes,
203 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
204
205 .timebases = &timebases,
206 .num_timebases = ARRAY_SIZE(timebases),
207
208 .vdivs = &vdivs,
209 .num_vdivs = ARRAY_SIZE(vdivs),
210
211 .num_xdivs = 12,
212 .num_ydivs = 8,
213
214 .scpi_dialect = &hameg_scpi_dialect,
215 },
216 {
217 .name = {"HMO724", "HMO1024", "HMO1524", "HMO2024", NULL},
218 .analog_channels = 4,
219 .digital_channels = 8,
220 .digital_pods = 1,
221
222 .analog_names = &scope_analog_channel_names,
223 .digital_names = &scope_digital_channel_names,
224
225 .devopts = &devopts,
226 .num_devopts = ARRAY_SIZE(devopts),
227
228 .devopts_cg_analog = &devopts_cg_analog,
229 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
230
231 .coupling_options = &coupling_options,
232 .num_coupling_options = ARRAY_SIZE(coupling_options),
233
234 .trigger_sources = &compact4_trigger_sources,
235 .num_trigger_sources = ARRAY_SIZE(compact4_trigger_sources),
236
237 .trigger_slopes = &scope_trigger_slopes,
238 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
239
240 .timebases = &timebases,
241 .num_timebases = ARRAY_SIZE(timebases),
242
243 .vdivs = &vdivs,
244 .num_vdivs = ARRAY_SIZE(vdivs),
245
246 .num_xdivs = 12,
247 .num_ydivs = 8,
248
249 .scpi_dialect = &hameg_scpi_dialect,
250 },
251 {
252 .name = {"HMO2524", "HMO3034", "HMO3044", "HMO3054", "HMO3524", NULL},
253 .analog_channels = 4,
254 .digital_channels = 16,
255 .digital_pods = 2,
256
257 .analog_names = &scope_analog_channel_names,
258 .digital_names = &scope_digital_channel_names,
259
260 .devopts = &devopts,
261 .num_devopts = ARRAY_SIZE(devopts),
262
263 .devopts_cg_analog = &devopts_cg_analog,
264 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
265
266 .coupling_options = &coupling_options,
267 .num_coupling_options = ARRAY_SIZE(coupling_options),
268
269 .trigger_sources = &compact4_dig16_trigger_sources,
270 .num_trigger_sources = ARRAY_SIZE(compact4_dig16_trigger_sources),
271
272 .trigger_slopes = &scope_trigger_slopes,
273 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
274
275 .timebases = &timebases,
276 .num_timebases = ARRAY_SIZE(timebases),
277
278 .vdivs = &vdivs,
279 .num_vdivs = ARRAY_SIZE(vdivs),
280
281 .num_xdivs = 12,
282 .num_ydivs = 8,
283
284 .scpi_dialect = &hameg_scpi_dialect,
285 },
286};
287
288static void scope_state_dump(const struct scope_config *config,
289 struct scope_state *state)
290{
291 unsigned int i;
292 char *tmp;
293
294 for (i = 0; i < config->analog_channels; i++) {
295 tmp = sr_voltage_string((*config->vdivs)[state->analog_channels[i].vdiv][0],
296 (*config->vdivs)[state->analog_channels[i].vdiv][1]);
297 sr_info("State of analog channel %d -> %s : %s (coupling) %s (vdiv) %2.2e (offset)",
298 i + 1, state->analog_channels[i].state ? "On" : "Off",
299 (*config->coupling_options)[state->analog_channels[i].coupling],
300 tmp, state->analog_channels[i].vertical_offset);
301 }
302
303 for (i = 0; i < config->digital_channels; i++) {
304 sr_info("State of digital channel %d -> %s", i,
305 state->digital_channels[i] ? "On" : "Off");
306 }
307
308 for (i = 0; i < config->digital_pods; i++) {
309 sr_info("State of digital POD %d -> %s", i,
310 state->digital_pods[i] ? "On" : "Off");
311 }
312
313 tmp = sr_period_string((*config->timebases)[state->timebase][0],
314 (*config->timebases)[state->timebase][1]);
315 sr_info("Current timebase: %s", tmp);
316 g_free(tmp);
317
318 tmp = sr_samplerate_string(state->sample_rate);
319 sr_info("Current samplerate: %s", tmp);
320 g_free(tmp);
321
322 sr_info("Current trigger: %s (source), %s (slope) %.2f (offset)",
323 (*config->trigger_sources)[state->trigger_source],
324 (*config->trigger_slopes)[state->trigger_slope],
325 state->horiz_triggerpos);
326}
327
328static int scope_state_get_array_option(struct sr_scpi_dev_inst *scpi,
329 const char *command, const char *(*array)[], unsigned int n, int *result)
330{
331 char *tmp;
332 int idx;
333
334 if (sr_scpi_get_string(scpi, command, &tmp) != SR_OK) {
335 g_free(tmp);
336 return SR_ERR;
337 }
338
339 if ((idx = std_str_idx_s(tmp, *array, n)) < 0) {
340 g_free(tmp);
341 return SR_ERR_ARG;
342 }
343
344 *result = idx;
345
346 g_free(tmp);
347
348 return SR_OK;
349}
350
351/**
352 * This function takes a value of the form "2.000E-03" and returns the index
353 * of an array where a matching pair was found.
354 *
355 * @param value The string to be parsed.
356 * @param array The array of s/f pairs.
357 * @param array_len The number of pairs in the array.
358 * @param result The index at which a matching pair was found.
359 *
360 * @return SR_ERR on any parsing error, SR_OK otherwise.
361 */
362static int array_float_get(gchar *value, const uint64_t array[][2],
363 int array_len, unsigned int *result)
364{
365 struct sr_rational rval;
366 struct sr_rational aval;
367
368 if (sr_parse_rational(value, &rval) != SR_OK)
369 return SR_ERR;
370
371 for (int i = 0; i < array_len; i++) {
372 sr_rational_set(&aval, array[i][0], array[i][1]);
373 if (sr_rational_eq(&rval, &aval)) {
374 *result = i;
375 return SR_OK;
376 }
377 }
378
379 return SR_ERR;
380}
381
382static int analog_channel_state_get(struct sr_scpi_dev_inst *scpi,
383 const struct scope_config *config,
384 struct scope_state *state)
385{
386 unsigned int i, j;
387 char command[MAX_COMMAND_SIZE];
388 char *tmp_str;
389
390 for (i = 0; i < config->analog_channels; i++) {
391 g_snprintf(command, sizeof(command),
392 (*config->scpi_dialect)[SCPI_CMD_GET_ANALOG_CHAN_STATE],
393 i + 1);
394
395 if (sr_scpi_get_bool(scpi, command,
396 &state->analog_channels[i].state) != SR_OK)
397 return SR_ERR;
398
399 g_snprintf(command, sizeof(command),
400 (*config->scpi_dialect)[SCPI_CMD_GET_VERTICAL_DIV],
401 i + 1);
402
403 if (sr_scpi_get_string(scpi, command, &tmp_str) != SR_OK)
404 return SR_ERR;
405
406 if (array_float_get(tmp_str, ARRAY_AND_SIZE(vdivs), &j) != SR_OK) {
407 g_free(tmp_str);
408 sr_err("Could not determine array index for vertical div scale.");
409 return SR_ERR;
410 }
411
412 g_free(tmp_str);
413 state->analog_channels[i].vdiv = j;
414
415 g_snprintf(command, sizeof(command),
416 (*config->scpi_dialect)[SCPI_CMD_GET_VERTICAL_OFFSET],
417 i + 1);
418
419 if (sr_scpi_get_float(scpi, command,
420 &state->analog_channels[i].vertical_offset) != SR_OK)
421 return SR_ERR;
422
423 g_snprintf(command, sizeof(command),
424 (*config->scpi_dialect)[SCPI_CMD_GET_COUPLING],
425 i + 1);
426
427 if (scope_state_get_array_option(scpi, command, config->coupling_options,
428 config->num_coupling_options,
429 &state->analog_channels[i].coupling) != SR_OK)
430 return SR_ERR;
431
432 g_snprintf(command, sizeof(command),
433 (*config->scpi_dialect)[SCPI_CMD_GET_PROBE_UNIT],
434 i + 1);
435
436 if (sr_scpi_get_string(scpi, command, &tmp_str) != SR_OK)
437 return SR_ERR;
438
439 if (tmp_str[0] == 'A')
440 state->analog_channels[i].probe_unit = 'A';
441 else
442 state->analog_channels[i].probe_unit = 'V';
443 g_free(tmp_str);
444 }
445
446 return SR_OK;
447}
448
449static int digital_channel_state_get(struct sr_scpi_dev_inst *scpi,
450 const struct scope_config *config,
451 struct scope_state *state)
452{
453 unsigned int i;
454 char command[MAX_COMMAND_SIZE];
455
456 for (i = 0; i < config->digital_channels; i++) {
457 g_snprintf(command, sizeof(command),
458 (*config->scpi_dialect)[SCPI_CMD_GET_DIG_CHAN_STATE],
459 i);
460
461 if (sr_scpi_get_bool(scpi, command,
462 &state->digital_channels[i]) != SR_OK)
463 return SR_ERR;
464 }
465
466 for (i = 0; i < config->digital_pods; i++) {
467 g_snprintf(command, sizeof(command),
468 (*config->scpi_dialect)[SCPI_CMD_GET_DIG_POD_STATE],
469 i + 1);
470
471 if (sr_scpi_get_bool(scpi, command,
472 &state->digital_pods[i]) != SR_OK)
473 return SR_ERR;
474 }
475
476 return SR_OK;
477}
478
479SR_PRIV int hmo_update_sample_rate(const struct sr_dev_inst *sdi)
480{
481 struct dev_context *devc;
482 struct scope_state *state;
483 const struct scope_config *config;
484
485 int tmp;
486 unsigned int i;
487 float tmp_float;
488 gboolean channel_found;
489 char tmp_str[MAX_COMMAND_SIZE];
490 char chan_name[20];
491
492 devc = sdi->priv;
493 config = devc->model_config;
494 state = devc->model_state;
495 channel_found = FALSE;
496
497 for (i = 0; i < config->analog_channels; i++) {
498 if (state->analog_channels[i].state) {
499 g_snprintf(chan_name, sizeof(chan_name), "CHAN%d", i + 1);
500 g_snprintf(tmp_str, sizeof(tmp_str),
501 (*config->scpi_dialect)[SCPI_CMD_GET_SAMPLE_RATE_LIVE],
502 chan_name);
503 channel_found = TRUE;
504 break;
505 }
506 }
507
508 if (!channel_found) {
509 for (i = 0; i < config->digital_pods; i++) {
510 if (state->digital_pods[i]) {
511 g_snprintf(chan_name, sizeof(chan_name), "POD%d", i);
512 g_snprintf(tmp_str, sizeof(tmp_str),
513 (*config->scpi_dialect)[SCPI_CMD_GET_SAMPLE_RATE_LIVE],
514 chan_name);
515 channel_found = TRUE;
516 break;
517 }
518 }
519 }
520
521 /* No channel is active, ask the instrument for the sample rate
522 * in single shot mode */
523 if (!channel_found) {
524 if (sr_scpi_get_float(sdi->conn,
525 (*config->scpi_dialect)[SCPI_CMD_GET_SAMPLE_RATE],
526 &tmp_float) != SR_OK)
527 return SR_ERR;
528
529 state->sample_rate = tmp_float;
530 } else {
531 if (sr_scpi_get_int(sdi->conn, tmp_str, &tmp) != SR_OK)
532 return SR_ERR;
533 state->sample_rate = tmp / (((float) (*config->timebases)[state->timebase][0] /
534 (*config->timebases)[state->timebase][1]) *
535 config->num_xdivs);
536 }
537
538 return SR_OK;
539}
540
541SR_PRIV int hmo_scope_state_get(struct sr_dev_inst *sdi)
542{
543 struct dev_context *devc;
544 struct scope_state *state;
545 const struct scope_config *config;
546 float tmp_float;
547 unsigned int i;
548 char *tmp_str;
549
550 devc = sdi->priv;
551 config = devc->model_config;
552 state = devc->model_state;
553
554 sr_info("Fetching scope state");
555
556 if (analog_channel_state_get(sdi->conn, config, state) != SR_OK)
557 return SR_ERR;
558
559 if (digital_channel_state_get(sdi->conn, config, state) != SR_OK)
560 return SR_ERR;
561
562 if (sr_scpi_get_float(sdi->conn,
563 (*config->scpi_dialect)[SCPI_CMD_GET_TIMEBASE],
564 &tmp_float) != SR_OK)
565 return SR_ERR;
566
567 if (sr_scpi_get_string(sdi->conn,
568 (*config->scpi_dialect)[SCPI_CMD_GET_TIMEBASE],
569 &tmp_str) != SR_OK)
570 return SR_ERR;
571
572 if (array_float_get(tmp_str, ARRAY_AND_SIZE(timebases), &i) != SR_OK) {
573 g_free(tmp_str);
574 sr_err("Could not determine array index for time base.");
575 return SR_ERR;
576 }
577 g_free(tmp_str);
578
579 state->timebase = i;
580
581 if (sr_scpi_get_float(sdi->conn,
582 (*config->scpi_dialect)[SCPI_CMD_GET_HORIZ_TRIGGERPOS],
583 &tmp_float) != SR_OK)
584 return SR_ERR;
585 state->horiz_triggerpos = tmp_float /
586 (((double) (*config->timebases)[state->timebase][0] /
587 (*config->timebases)[state->timebase][1]) * config->num_xdivs);
588 state->horiz_triggerpos -= 0.5;
589 state->horiz_triggerpos *= -1;
590
591 if (scope_state_get_array_option(sdi->conn,
592 (*config->scpi_dialect)[SCPI_CMD_GET_TRIGGER_SOURCE],
593 config->trigger_sources, config->num_trigger_sources,
594 &state->trigger_source) != SR_OK)
595 return SR_ERR;
596
597 if (scope_state_get_array_option(sdi->conn,
598 (*config->scpi_dialect)[SCPI_CMD_GET_TRIGGER_SLOPE],
599 config->trigger_slopes, config->num_trigger_slopes,
600 &state->trigger_slope) != SR_OK)
601 return SR_ERR;
602
603 if (hmo_update_sample_rate(sdi) != SR_OK)
604 return SR_ERR;
605
606 sr_info("Fetching finished.");
607
608 scope_state_dump(config, state);
609
610 return SR_OK;
611}
612
613static struct scope_state *scope_state_new(const struct scope_config *config)
614{
615 struct scope_state *state;
616
617 state = g_malloc0(sizeof(struct scope_state));
618 state->analog_channels = g_malloc0_n(config->analog_channels,
619 sizeof(struct analog_channel_state));
620 state->digital_channels = g_malloc0_n(
621 config->digital_channels, sizeof(gboolean));
622 state->digital_pods = g_malloc0_n(config->digital_pods,
623 sizeof(gboolean));
624
625 return state;
626}
627
628SR_PRIV void hmo_scope_state_free(struct scope_state *state)
629{
630 g_free(state->analog_channels);
631 g_free(state->digital_channels);
632 g_free(state->digital_pods);
633 g_free(state);
634}
635
636SR_PRIV int hmo_init_device(struct sr_dev_inst *sdi)
637{
638 char tmp[25];
639 int model_index;
640 unsigned int i, j, group;
641 struct sr_channel *ch;
642 struct dev_context *devc;
643
644 devc = sdi->priv;
645 model_index = -1;
646
647 /* Find the exact model. */
648 for (i = 0; i < ARRAY_SIZE(scope_models); i++) {
649 for (j = 0; scope_models[i].name[j]; j++) {
650 if (!strcmp(sdi->model, scope_models[i].name[j])) {
651 model_index = i;
652 break;
653 }
654 }
655 if (model_index != -1)
656 break;
657 }
658
659 if (model_index == -1) {
660 sr_dbg("Unsupported HMO device.");
661 return SR_ERR_NA;
662 }
663
664 devc->analog_groups = g_malloc0(sizeof(struct sr_channel_group*) *
665 scope_models[model_index].analog_channels);
666
667 devc->digital_groups = g_malloc0(sizeof(struct sr_channel_group*) *
668 scope_models[model_index].digital_pods);
669
670 /* Add analog channels. */
671 for (i = 0; i < scope_models[model_index].analog_channels; i++) {
672 ch = sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE,
673 (*scope_models[model_index].analog_names)[i]);
674
675 devc->analog_groups[i] = g_malloc0(sizeof(struct sr_channel_group));
676
677 devc->analog_groups[i]->name = g_strdup(
678 (char *)(*scope_models[model_index].analog_names)[i]);
679 devc->analog_groups[i]->channels = g_slist_append(NULL, ch);
680
681 sdi->channel_groups = g_slist_append(sdi->channel_groups,
682 devc->analog_groups[i]);
683 }
684
685 /* Add digital channel groups. */
686 for (i = 0; i < scope_models[model_index].digital_pods; i++) {
687 g_snprintf(tmp, 25, "POD%d", i);
688
689 devc->digital_groups[i] = g_malloc0(sizeof(struct sr_channel_group));
690
691 devc->digital_groups[i]->name = g_strdup(tmp);
692 sdi->channel_groups = g_slist_append(sdi->channel_groups,
693 devc->digital_groups[i]);
694 }
695
696 /* Add digital channels. */
697 for (i = 0; i < scope_models[model_index].digital_channels; i++) {
698 ch = sr_channel_new(sdi, i, SR_CHANNEL_LOGIC, TRUE,
699 (*scope_models[model_index].digital_names)[i]);
700
701 group = i / 8;
702 devc->digital_groups[group]->channels = g_slist_append(
703 devc->digital_groups[group]->channels, ch);
704 }
705
706 devc->model_config = &scope_models[model_index];
707 devc->frame_limit = 0;
708
709 if (!(devc->model_state = scope_state_new(devc->model_config)))
710 return SR_ERR_MALLOC;
711
712 return SR_OK;
713}
714
715/* Queue data of one channel group, for later submission. */
716SR_PRIV void hmo_queue_logic_data(struct dev_context *devc,
717 size_t group, GByteArray *pod_data)
718{
719 size_t size;
720 GByteArray *store;
721 uint8_t *logic_data;
722 size_t idx, logic_step;
723
724 /*
725 * Upon first invocation, allocate the array which can hold the
726 * combined logic data for all channels. Assume that each channel
727 * will yield an identical number of samples per receive call.
728 *
729 * As a poor man's safety measure: (Silently) skip processing
730 * for unexpected sample counts, and ignore samples for
731 * unexpected channel groups. Don't bother with complicated
732 * resize logic, considering that many models only support one
733 * pod, and the most capable supported models have two pods of
734 * identical size. We haven't yet seen any "odd" configuration.
735 */
736 if (!devc->logic_data) {
737 size = pod_data->len * devc->pod_count;
738 store = g_byte_array_sized_new(size);
739 memset(store->data, 0, size);
740 store = g_byte_array_set_size(store, size);
741 devc->logic_data = store;
742 } else {
743 store = devc->logic_data;
744 size = store->len / devc->pod_count;
745 if (size != pod_data->len)
746 return;
747 if (group >= devc->pod_count)
748 return;
749 }
750
751 /*
752 * Fold the data of the most recently received channel group into
753 * the storage, where data resides for all channels combined.
754 */
755 logic_data = store->data;
756 logic_data += group;
757 logic_step = devc->pod_count;
758 for (idx = 0; idx < pod_data->len; idx++) {
759 *logic_data = pod_data->data[idx];
760 logic_data += logic_step;
761 }
762}
763
764/* Submit data for all channels, after the individual groups got collected. */
765SR_PRIV void hmo_send_logic_packet(struct sr_dev_inst *sdi,
766 struct dev_context *devc)
767{
768 struct sr_datafeed_packet packet;
769 struct sr_datafeed_logic logic;
770
771 if (!devc->logic_data)
772 return;
773
774 logic.data = devc->logic_data->data;
775 logic.length = devc->logic_data->len;
776 logic.unitsize = devc->pod_count;
777
778 packet.type = SR_DF_LOGIC;
779 packet.payload = &logic;
780
781 sr_session_send(sdi, &packet);
782}
783
784/* Undo previous resource allocation. */
785SR_PRIV void hmo_cleanup_logic_data(struct dev_context *devc)
786{
787
788 if (devc->logic_data) {
789 g_byte_array_free(devc->logic_data, TRUE);
790 devc->logic_data = NULL;
791 }
792 /*
793 * Keep 'pod_count'! It's required when more frames will be
794 * received, and does not harm when kept after acquisition.
795 */
796}
797
798SR_PRIV int hmo_receive_data(int fd, int revents, void *cb_data)
799{
800 struct sr_channel *ch;
801 struct sr_dev_inst *sdi;
802 struct dev_context *devc;
803 struct scope_state *state;
804 struct sr_datafeed_packet packet;
805 GByteArray *data;
806 struct sr_datafeed_analog analog;
807 struct sr_analog_encoding encoding;
808 struct sr_analog_meaning meaning;
809 struct sr_analog_spec spec;
810 struct sr_datafeed_logic logic;
811 size_t group;
812
813 (void)fd;
814 (void)revents;
815
816 data = NULL;
817
818 if (!(sdi = cb_data))
819 return TRUE;
820
821 if (!(devc = sdi->priv))
822 return TRUE;
823
824 /* Although this is correct in general, the USBTMC libusb implementation
825 * currently does not generate an event prior to the first read. Often
826 * it is ok to start reading just after the 50ms timeout. See bug #785.
827 if (revents != G_IO_IN)
828 return TRUE;
829 */
830
831 ch = devc->current_channel->data;
832 state = devc->model_state;
833
834 /*
835 * Send "frame begin" packet upon reception of data for the
836 * first enabled channel.
837 */
838 if (devc->current_channel == devc->enabled_channels) {
839 packet.type = SR_DF_FRAME_BEGIN;
840 sr_session_send(sdi, &packet);
841 }
842
843 /*
844 * Pass on the received data of the channel(s).
845 */
846 switch (ch->type) {
847 case SR_CHANNEL_ANALOG:
848 if (sr_scpi_get_block(sdi->conn, NULL, &data) != SR_OK) {
849 if (data)
850 g_byte_array_free(data, TRUE);
851
852 return TRUE;
853 }
854
855 packet.type = SR_DF_ANALOG;
856
857 analog.data = data->data;
858 analog.num_samples = data->len / sizeof(float);
859 analog.encoding = &encoding;
860 analog.meaning = &meaning;
861 analog.spec = &spec;
862
863 encoding.unitsize = sizeof(float);
864 encoding.is_signed = TRUE;
865 encoding.is_float = TRUE;
866#ifdef WORDS_BIGENDIAN
867 encoding.is_bigendian = TRUE;
868#else
869 encoding.is_bigendian = FALSE;
870#endif
871 /* TODO: Use proper 'digits' value for this device (and its modes). */
872 encoding.digits = 2;
873 encoding.is_digits_decimal = FALSE;
874 encoding.scale.p = 1;
875 encoding.scale.q = 1;
876 encoding.offset.p = 0;
877 encoding.offset.q = 1;
878 if (state->analog_channels[ch->index].probe_unit == 'V') {
879 meaning.mq = SR_MQ_VOLTAGE;
880 meaning.unit = SR_UNIT_VOLT;
881 } else {
882 meaning.mq = SR_MQ_CURRENT;
883 meaning.unit = SR_UNIT_AMPERE;
884 }
885 meaning.mqflags = 0;
886 meaning.channels = g_slist_append(NULL, ch);
887 /* TODO: Use proper 'digits' value for this device (and its modes). */
888 spec.spec_digits = 2;
889 packet.payload = &analog;
890 sr_session_send(sdi, &packet);
891 g_slist_free(meaning.channels);
892 g_byte_array_free(data, TRUE);
893 data = NULL;
894 break;
895 case SR_CHANNEL_LOGIC:
896 if (sr_scpi_get_block(sdi->conn, NULL, &data) != SR_OK) {
897 g_free(data);
898 return TRUE;
899 }
900
901 /*
902 * If only data from the first pod is involved in the
903 * acquisition, then the raw input bytes can get passed
904 * forward for performance reasons. When the second pod
905 * is involved (either alone, or in combination with the
906 * first pod), then the received bytes need to be put
907 * into memory in such a layout that all channel groups
908 * get combined, and a unitsize larger than a single byte
909 * applies. The "queue" logic transparently copes with
910 * any such configuration. This works around the lack
911 * of support for "meaning" to logic data, which is used
912 * above for analog data.
913 */
914 if (devc->pod_count == 1) {
915 packet.type = SR_DF_LOGIC;
916 logic.data = data->data;
917 logic.length = data->len;
918 logic.unitsize = 1;
919 packet.payload = &logic;
920 sr_session_send(sdi, &packet);
921 } else {
922 group = ch->index / 8;
923 hmo_queue_logic_data(devc, group, data);
924 }
925
926 g_byte_array_free(data, TRUE);
927 data = NULL;
928 break;
929 default:
930 sr_err("Invalid channel type.");
931 break;
932 }
933
934 /*
935 * Advance to the next enabled channel. When data for all enabled
936 * channels was received, then flush potentially queued logic data,
937 * and send the "frame end" packet.
938 */
939 if (devc->current_channel->next) {
940 devc->current_channel = devc->current_channel->next;
941 hmo_request_data(sdi);
942 return TRUE;
943 }
944 hmo_send_logic_packet(sdi, devc);
945
946 /*
947 * Release the logic data storage after each frame. This copes
948 * with sample counts that differ in length per frame. -- Is
949 * this a real constraint when acquiring multiple frames with
950 * identical device settings?
951 */
952 hmo_cleanup_logic_data(devc);
953
954 packet.type = SR_DF_FRAME_END;
955 sr_session_send(sdi, &packet);
956
957 /*
958 * End of frame was reached. Stop acquisition after the specified
959 * number of frames, or continue reception by starting over at
960 * the first enabled channel.
961 */
962 if (++devc->num_frames == devc->frame_limit) {
963 sr_dev_acquisition_stop(sdi);
964 hmo_cleanup_logic_data(devc);
965 } else {
966 devc->current_channel = devc->enabled_channels;
967 hmo_request_data(sdi);
968 }
969
970 return TRUE;
971}