]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/asix-sigma/protocol.c
Constify sr_dev_driver::name and sr_dev_driver::long_name.
[libsigrok.git] / src / hardware / asix-sigma / protocol.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA/SIGMA2 logic analyzer driver
24 */
25
26#include <config.h>
27#include "protocol.h"
28
29#define USB_VENDOR 0xa600
30#define USB_PRODUCT 0xa000
31#define USB_DESCRIPTION "ASIX SIGMA"
32#define USB_VENDOR_NAME "ASIX"
33#define USB_MODEL_NAME "SIGMA"
34
35SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
36
37/*
38 * The ASIX Sigma supports arbitrary integer frequency divider in
39 * the 50MHz mode. The divider is in range 1...256 , allowing for
40 * very precise sampling rate selection. This driver supports only
41 * a subset of the sampling rates.
42 */
43SR_PRIV const uint64_t samplerates[] = {
44 SR_KHZ(200), /* div=250 */
45 SR_KHZ(250), /* div=200 */
46 SR_KHZ(500), /* div=100 */
47 SR_MHZ(1), /* div=50 */
48 SR_MHZ(5), /* div=10 */
49 SR_MHZ(10), /* div=5 */
50 SR_MHZ(25), /* div=2 */
51 SR_MHZ(50), /* div=1 */
52 SR_MHZ(100), /* Special FW needed */
53 SR_MHZ(200), /* Special FW needed */
54};
55
56SR_PRIV const int SAMPLERATES_COUNT = ARRAY_SIZE(samplerates);
57
58static const char sigma_firmware_files[][24] = {
59 /* 50 MHz, supports 8 bit fractions */
60 "asix-sigma-50.fw",
61 /* 100 MHz */
62 "asix-sigma-100.fw",
63 /* 200 MHz */
64 "asix-sigma-200.fw",
65 /* Synchronous clock from pin */
66 "asix-sigma-50sync.fw",
67 /* Frequency counter */
68 "asix-sigma-phasor.fw",
69};
70
71static int sigma_read(void *buf, size_t size, struct dev_context *devc)
72{
73 int ret;
74
75 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
76 if (ret < 0) {
77 sr_err("ftdi_read_data failed: %s",
78 ftdi_get_error_string(&devc->ftdic));
79 }
80
81 return ret;
82}
83
84static int sigma_write(void *buf, size_t size, struct dev_context *devc)
85{
86 int ret;
87
88 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
89 if (ret < 0) {
90 sr_err("ftdi_write_data failed: %s",
91 ftdi_get_error_string(&devc->ftdic));
92 } else if ((size_t) ret != size) {
93 sr_err("ftdi_write_data did not complete write.");
94 }
95
96 return ret;
97}
98
99/*
100 * NOTE: We chose the buffer size to be large enough to hold any write to the
101 * device. We still print a message just in case.
102 */
103SR_PRIV int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
104 struct dev_context *devc)
105{
106 size_t i;
107 uint8_t buf[80];
108 int idx = 0;
109
110 if ((len + 2) > sizeof(buf)) {
111 sr_err("Attempted to write %zu bytes, but buffer is too small.",
112 len + 2);
113 return SR_ERR_BUG;
114 }
115
116 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
117 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
118
119 for (i = 0; i < len; ++i) {
120 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
121 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
122 }
123
124 return sigma_write(buf, idx, devc);
125}
126
127SR_PRIV int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
128{
129 return sigma_write_register(reg, &value, 1, devc);
130}
131
132static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
133 struct dev_context *devc)
134{
135 uint8_t buf[3];
136
137 buf[0] = REG_ADDR_LOW | (reg & 0xf);
138 buf[1] = REG_ADDR_HIGH | (reg >> 4);
139 buf[2] = REG_READ_ADDR;
140
141 sigma_write(buf, sizeof(buf), devc);
142
143 return sigma_read(data, len, devc);
144}
145
146static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
147{
148 uint8_t value;
149
150 if (1 != sigma_read_register(reg, &value, 1, devc)) {
151 sr_err("sigma_get_register: 1 byte expected");
152 return 0;
153 }
154
155 return value;
156}
157
158static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
159 struct dev_context *devc)
160{
161 uint8_t buf[] = {
162 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
163
164 REG_READ_ADDR | NEXT_REG,
165 REG_READ_ADDR | NEXT_REG,
166 REG_READ_ADDR | NEXT_REG,
167 REG_READ_ADDR | NEXT_REG,
168 REG_READ_ADDR | NEXT_REG,
169 REG_READ_ADDR | NEXT_REG,
170 };
171 uint8_t result[6];
172
173 sigma_write(buf, sizeof(buf), devc);
174
175 sigma_read(result, sizeof(result), devc);
176
177 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
178 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
179
180 /* Not really sure why this must be done, but according to spec. */
181 if ((--*stoppos & 0x1ff) == 0x1ff)
182 *stoppos -= 64;
183
184 if ((*--triggerpos & 0x1ff) == 0x1ff)
185 *triggerpos -= 64;
186
187 return 1;
188}
189
190static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
191 uint8_t *data, struct dev_context *devc)
192{
193 size_t i;
194 uint8_t buf[4096];
195 int idx = 0;
196
197 /* Send the startchunk. Index start with 1. */
198 buf[0] = startchunk >> 8;
199 buf[1] = startchunk & 0xff;
200 sigma_write_register(WRITE_MEMROW, buf, 2, devc);
201
202 /* Read the DRAM. */
203 buf[idx++] = REG_DRAM_BLOCK;
204 buf[idx++] = REG_DRAM_WAIT_ACK;
205
206 for (i = 0; i < numchunks; ++i) {
207 /* Alternate bit to copy from DRAM to cache. */
208 if (i != (numchunks - 1))
209 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
210
211 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
212
213 if (i != (numchunks - 1))
214 buf[idx++] = REG_DRAM_WAIT_ACK;
215 }
216
217 sigma_write(buf, idx, devc);
218
219 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
220}
221
222/* Upload trigger look-up tables to Sigma. */
223SR_PRIV int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
224{
225 int i;
226 uint8_t tmp[2];
227 uint16_t bit;
228
229 /* Transpose the table and send to Sigma. */
230 for (i = 0; i < 16; ++i) {
231 bit = 1 << i;
232
233 tmp[0] = tmp[1] = 0;
234
235 if (lut->m2d[0] & bit)
236 tmp[0] |= 0x01;
237 if (lut->m2d[1] & bit)
238 tmp[0] |= 0x02;
239 if (lut->m2d[2] & bit)
240 tmp[0] |= 0x04;
241 if (lut->m2d[3] & bit)
242 tmp[0] |= 0x08;
243
244 if (lut->m3 & bit)
245 tmp[0] |= 0x10;
246 if (lut->m3s & bit)
247 tmp[0] |= 0x20;
248 if (lut->m4 & bit)
249 tmp[0] |= 0x40;
250
251 if (lut->m0d[0] & bit)
252 tmp[1] |= 0x01;
253 if (lut->m0d[1] & bit)
254 tmp[1] |= 0x02;
255 if (lut->m0d[2] & bit)
256 tmp[1] |= 0x04;
257 if (lut->m0d[3] & bit)
258 tmp[1] |= 0x08;
259
260 if (lut->m1d[0] & bit)
261 tmp[1] |= 0x10;
262 if (lut->m1d[1] & bit)
263 tmp[1] |= 0x20;
264 if (lut->m1d[2] & bit)
265 tmp[1] |= 0x40;
266 if (lut->m1d[3] & bit)
267 tmp[1] |= 0x80;
268
269 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
270 devc);
271 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
272 }
273
274 /* Send the parameters */
275 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
276 sizeof(lut->params), devc);
277
278 return SR_OK;
279}
280
281SR_PRIV void sigma_clear_helper(void *priv)
282{
283 struct dev_context *devc;
284
285 devc = priv;
286
287 ftdi_deinit(&devc->ftdic);
288}
289
290/*
291 * Configure the FPGA for bitbang mode.
292 * This sequence is documented in section 2. of the ASIX Sigma programming
293 * manual. This sequence is necessary to configure the FPGA in the Sigma
294 * into Bitbang mode, in which it can be programmed with the firmware.
295 */
296static int sigma_fpga_init_bitbang(struct dev_context *devc)
297{
298 uint8_t suicide[] = {
299 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
300 };
301 uint8_t init_array[] = {
302 0x01, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01,
303 0x01, 0x01,
304 };
305 int i, ret, timeout = (10 * 1000);
306 uint8_t data;
307
308 /* Section 2. part 1), do the FPGA suicide. */
309 sigma_write(suicide, sizeof(suicide), devc);
310 sigma_write(suicide, sizeof(suicide), devc);
311 sigma_write(suicide, sizeof(suicide), devc);
312 sigma_write(suicide, sizeof(suicide), devc);
313
314 /* Section 2. part 2), do pulse on D1. */
315 sigma_write(init_array, sizeof(init_array), devc);
316 ftdi_usb_purge_buffers(&devc->ftdic);
317
318 /* Wait until the FPGA asserts D6/INIT_B. */
319 for (i = 0; i < timeout; i++) {
320 ret = sigma_read(&data, 1, devc);
321 if (ret < 0)
322 return ret;
323 /* Test if pin D6 got asserted. */
324 if (data & (1 << 5))
325 return 0;
326 /* The D6 was not asserted yet, wait a bit. */
327 g_usleep(10 * 1000);
328 }
329
330 return SR_ERR_TIMEOUT;
331}
332
333/*
334 * Configure the FPGA for logic-analyzer mode.
335 */
336static int sigma_fpga_init_la(struct dev_context *devc)
337{
338 /* Initialize the logic analyzer mode. */
339 uint8_t logic_mode_start[] = {
340 REG_ADDR_LOW | (READ_ID & 0xf),
341 REG_ADDR_HIGH | (READ_ID >> 8),
342 REG_READ_ADDR, /* Read ID register. */
343
344 REG_ADDR_LOW | (WRITE_TEST & 0xf),
345 REG_DATA_LOW | 0x5,
346 REG_DATA_HIGH_WRITE | 0x5,
347 REG_READ_ADDR, /* Read scratch register. */
348
349 REG_DATA_LOW | 0xa,
350 REG_DATA_HIGH_WRITE | 0xa,
351 REG_READ_ADDR, /* Read scratch register. */
352
353 REG_ADDR_LOW | (WRITE_MODE & 0xf),
354 REG_DATA_LOW | 0x0,
355 REG_DATA_HIGH_WRITE | 0x8,
356 };
357
358 uint8_t result[3];
359 int ret;
360
361 /* Initialize the logic analyzer mode. */
362 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
363
364 /* Expect a 3 byte reply since we issued three READ requests. */
365 ret = sigma_read(result, 3, devc);
366 if (ret != 3)
367 goto err;
368
369 if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
370 goto err;
371
372 return SR_OK;
373err:
374 sr_err("Configuration failed. Invalid reply received.");
375 return SR_ERR;
376}
377
378/*
379 * Read the firmware from a file and transform it into a series of bitbang
380 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
381 * by the caller of this function.
382 */
383static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
384 uint8_t **bb_cmd, gsize *bb_cmd_size)
385{
386 size_t i, file_size, bb_size;
387 char *firmware;
388 uint8_t *bb_stream, *bbs;
389 uint32_t imm;
390 int bit, v;
391 int ret = SR_OK;
392
393 firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE,
394 name, &file_size, 256 * 1024);
395 if (!firmware)
396 return SR_ERR;
397
398 /* Weird magic transformation below, I have no idea what it does. */
399 imm = 0x3f6df2ab;
400 for (i = 0; i < file_size; i++) {
401 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
402 firmware[i] ^= imm & 0xff;
403 }
404
405 /*
406 * Now that the firmware is "transformed", we will transcribe the
407 * firmware blob into a sequence of toggles of the Dx wires. This
408 * sequence will be fed directly into the Sigma, which must be in
409 * the FPGA bitbang programming mode.
410 */
411
412 /* Each bit of firmware is transcribed as two toggles of Dx wires. */
413 bb_size = file_size * 8 * 2;
414 bb_stream = (uint8_t *)g_try_malloc(bb_size);
415 if (!bb_stream) {
416 sr_err("%s: Failed to allocate bitbang stream", __func__);
417 ret = SR_ERR_MALLOC;
418 goto exit;
419 }
420
421 bbs = bb_stream;
422 for (i = 0; i < file_size; i++) {
423 for (bit = 7; bit >= 0; bit--) {
424 v = (firmware[i] & (1 << bit)) ? 0x40 : 0x00;
425 *bbs++ = v | 0x01;
426 *bbs++ = v;
427 }
428 }
429
430 /* The transformation completed successfully, return the result. */
431 *bb_cmd = bb_stream;
432 *bb_cmd_size = bb_size;
433
434exit:
435 g_free(firmware);
436 return ret;
437}
438
439static int upload_firmware(struct sr_context *ctx,
440 int firmware_idx, struct dev_context *devc)
441{
442 int ret;
443 unsigned char *buf;
444 unsigned char pins;
445 size_t buf_size;
446 const char *firmware = sigma_firmware_files[firmware_idx];
447 struct ftdi_context *ftdic = &devc->ftdic;
448
449 /* Make sure it's an ASIX SIGMA. */
450 ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT,
451 USB_DESCRIPTION, NULL);
452 if (ret < 0) {
453 sr_err("ftdi_usb_open failed: %s",
454 ftdi_get_error_string(ftdic));
455 return 0;
456 }
457
458 ret = ftdi_set_bitmode(ftdic, 0xdf, BITMODE_BITBANG);
459 if (ret < 0) {
460 sr_err("ftdi_set_bitmode failed: %s",
461 ftdi_get_error_string(ftdic));
462 return 0;
463 }
464
465 /* Four times the speed of sigmalogan - Works well. */
466 ret = ftdi_set_baudrate(ftdic, 750 * 1000);
467 if (ret < 0) {
468 sr_err("ftdi_set_baudrate failed: %s",
469 ftdi_get_error_string(ftdic));
470 return 0;
471 }
472
473 /* Initialize the FPGA for firmware upload. */
474 ret = sigma_fpga_init_bitbang(devc);
475 if (ret)
476 return ret;
477
478 /* Prepare firmware. */
479 ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
480 if (ret != SR_OK) {
481 sr_err("An error occurred while reading the firmware: %s",
482 firmware);
483 return ret;
484 }
485
486 /* Upload firmware. */
487 sr_info("Uploading firmware file '%s'.", firmware);
488 sigma_write(buf, buf_size, devc);
489
490 g_free(buf);
491
492 ret = ftdi_set_bitmode(ftdic, 0x00, BITMODE_RESET);
493 if (ret < 0) {
494 sr_err("ftdi_set_bitmode failed: %s",
495 ftdi_get_error_string(ftdic));
496 return SR_ERR;
497 }
498
499 ftdi_usb_purge_buffers(ftdic);
500
501 /* Discard garbage. */
502 while (sigma_read(&pins, 1, devc) == 1)
503 ;
504
505 /* Initialize the FPGA for logic-analyzer mode. */
506 ret = sigma_fpga_init_la(devc);
507 if (ret != SR_OK)
508 return ret;
509
510 devc->cur_firmware = firmware_idx;
511
512 sr_info("Firmware uploaded.");
513
514 return SR_OK;
515}
516
517SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
518{
519 struct dev_context *devc;
520 struct drv_context *drvc;
521 unsigned int i;
522 int ret;
523
524 devc = sdi->priv;
525 drvc = sdi->driver->context;
526 ret = SR_OK;
527
528 for (i = 0; i < ARRAY_SIZE(samplerates); i++) {
529 if (samplerates[i] == samplerate)
530 break;
531 }
532 if (samplerates[i] == 0)
533 return SR_ERR_SAMPLERATE;
534
535 if (samplerate <= SR_MHZ(50)) {
536 ret = upload_firmware(drvc->sr_ctx, 0, devc);
537 devc->num_channels = 16;
538 } else if (samplerate == SR_MHZ(100)) {
539 ret = upload_firmware(drvc->sr_ctx, 1, devc);
540 devc->num_channels = 8;
541 } else if (samplerate == SR_MHZ(200)) {
542 ret = upload_firmware(drvc->sr_ctx, 2, devc);
543 devc->num_channels = 4;
544 }
545
546 if (ret == SR_OK) {
547 devc->cur_samplerate = samplerate;
548 devc->period_ps = 1000000000000ULL / samplerate;
549 devc->samples_per_event = 16 / devc->num_channels;
550 devc->state.state = SIGMA_IDLE;
551 }
552
553 return ret;
554}
555
556/*
557 * In 100 and 200 MHz mode, only a single pin rising/falling can be
558 * set as trigger. In other modes, two rising/falling triggers can be set,
559 * in addition to value/mask trigger for any number of channels.
560 *
561 * The Sigma supports complex triggers using boolean expressions, but this
562 * has not been implemented yet.
563 */
564SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
565{
566 struct dev_context *devc;
567 struct sr_trigger *trigger;
568 struct sr_trigger_stage *stage;
569 struct sr_trigger_match *match;
570 const GSList *l, *m;
571 int channelbit, trigger_set;
572
573 devc = sdi->priv;
574 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
575 if (!(trigger = sr_session_trigger_get(sdi->session)))
576 return SR_OK;
577
578 trigger_set = 0;
579 for (l = trigger->stages; l; l = l->next) {
580 stage = l->data;
581 for (m = stage->matches; m; m = m->next) {
582 match = m->data;
583 if (!match->channel->enabled)
584 /* Ignore disabled channels with a trigger. */
585 continue;
586 channelbit = 1 << (match->channel->index);
587 if (devc->cur_samplerate >= SR_MHZ(100)) {
588 /* Fast trigger support. */
589 if (trigger_set) {
590 sr_err("Only a single pin trigger is "
591 "supported in 100 and 200MHz mode.");
592 return SR_ERR;
593 }
594 if (match->match == SR_TRIGGER_FALLING)
595 devc->trigger.fallingmask |= channelbit;
596 else if (match->match == SR_TRIGGER_RISING)
597 devc->trigger.risingmask |= channelbit;
598 else {
599 sr_err("Only rising/falling trigger is "
600 "supported in 100 and 200MHz mode.");
601 return SR_ERR;
602 }
603
604 ++trigger_set;
605 } else {
606 /* Simple trigger support (event). */
607 if (match->match == SR_TRIGGER_ONE) {
608 devc->trigger.simplevalue |= channelbit;
609 devc->trigger.simplemask |= channelbit;
610 }
611 else if (match->match == SR_TRIGGER_ZERO) {
612 devc->trigger.simplevalue &= ~channelbit;
613 devc->trigger.simplemask |= channelbit;
614 }
615 else if (match->match == SR_TRIGGER_FALLING) {
616 devc->trigger.fallingmask |= channelbit;
617 ++trigger_set;
618 }
619 else if (match->match == SR_TRIGGER_RISING) {
620 devc->trigger.risingmask |= channelbit;
621 ++trigger_set;
622 }
623
624 /*
625 * Actually, Sigma supports 2 rising/falling triggers,
626 * but they are ORed and the current trigger syntax
627 * does not permit ORed triggers.
628 */
629 if (trigger_set > 1) {
630 sr_err("Only 1 rising/falling trigger "
631 "is supported.");
632 return SR_ERR;
633 }
634 }
635 }
636 }
637
638 return SR_OK;
639}
640
641
642/* Software trigger to determine exact trigger position. */
643static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
644 struct sigma_trigger *t)
645{
646 int i;
647 uint16_t sample = 0;
648
649 for (i = 0; i < 8; ++i) {
650 if (i > 0)
651 last_sample = sample;
652 sample = samples[2 * i] | (samples[2 * i + 1] << 8);
653
654 /* Simple triggers. */
655 if ((sample & t->simplemask) != t->simplevalue)
656 continue;
657
658 /* Rising edge. */
659 if (((last_sample & t->risingmask) != 0) ||
660 ((sample & t->risingmask) != t->risingmask))
661 continue;
662
663 /* Falling edge. */
664 if ((last_sample & t->fallingmask) != t->fallingmask ||
665 (sample & t->fallingmask) != 0)
666 continue;
667
668 break;
669 }
670
671 /* If we did not match, return original trigger pos. */
672 return i & 0x7;
673}
674
675/*
676 * Return the timestamp of "DRAM cluster".
677 */
678static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
679{
680 return (cluster->timestamp_hi << 8) | cluster->timestamp_lo;
681}
682
683static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster,
684 unsigned int events_in_cluster,
685 unsigned int triggered,
686 struct sr_dev_inst *sdi)
687{
688 struct dev_context *devc = sdi->priv;
689 struct sigma_state *ss = &devc->state;
690 struct sr_datafeed_packet packet;
691 struct sr_datafeed_logic logic;
692 uint16_t tsdiff, ts;
693 uint8_t samples[2048];
694 unsigned int i;
695
696 ts = sigma_dram_cluster_ts(dram_cluster);
697 tsdiff = ts - ss->lastts;
698 ss->lastts = ts;
699
700 packet.type = SR_DF_LOGIC;
701 packet.payload = &logic;
702 logic.unitsize = 2;
703 logic.data = samples;
704
705 /*
706 * First of all, send Sigrok a copy of the last sample from
707 * previous cluster as many times as needed to make up for
708 * the differential characteristics of data we get from the
709 * Sigma. Sigrok needs one sample of data per period.
710 *
711 * One DRAM cluster contains a timestamp and seven samples,
712 * the units of timestamp are "devc->period_ps" , the first
713 * sample in the cluster happens at the time of the timestamp
714 * and the remaining samples happen at timestamp +1...+6 .
715 */
716 for (ts = 0; ts < tsdiff - (EVENTS_PER_CLUSTER - 1); ts++) {
717 i = ts % 1024;
718 samples[2 * i + 0] = ss->lastsample & 0xff;
719 samples[2 * i + 1] = ss->lastsample >> 8;
720
721 /*
722 * If we have 1024 samples ready or we're at the
723 * end of submitting the padding samples, submit
724 * the packet to Sigrok.
725 */
726 if ((i == 1023) || (ts == (tsdiff - EVENTS_PER_CLUSTER))) {
727 logic.length = (i + 1) * logic.unitsize;
728 sr_session_send(sdi, &packet);
729 }
730 }
731
732 /*
733 * Parse the samples in current cluster and prepare them
734 * to be submitted to Sigrok.
735 */
736 for (i = 0; i < events_in_cluster; i++) {
737 samples[2 * i + 1] = dram_cluster->samples[i].sample_lo;
738 samples[2 * i + 0] = dram_cluster->samples[i].sample_hi;
739 }
740
741 /* Send data up to trigger point (if triggered). */
742 int trigger_offset = 0;
743 if (triggered) {
744 /*
745 * Trigger is not always accurate to sample because of
746 * pipeline delay. However, it always triggers before
747 * the actual event. We therefore look at the next
748 * samples to pinpoint the exact position of the trigger.
749 */
750 trigger_offset = get_trigger_offset(samples,
751 ss->lastsample, &devc->trigger);
752
753 if (trigger_offset > 0) {
754 packet.type = SR_DF_LOGIC;
755 logic.length = trigger_offset * logic.unitsize;
756 sr_session_send(sdi, &packet);
757 events_in_cluster -= trigger_offset;
758 }
759
760 /* Only send trigger if explicitly enabled. */
761 if (devc->use_triggers) {
762 packet.type = SR_DF_TRIGGER;
763 sr_session_send(sdi, &packet);
764 }
765 }
766
767 if (events_in_cluster > 0) {
768 packet.type = SR_DF_LOGIC;
769 logic.length = events_in_cluster * logic.unitsize;
770 logic.data = samples + (trigger_offset * logic.unitsize);
771 sr_session_send(sdi, &packet);
772 }
773
774 ss->lastsample =
775 samples[2 * (events_in_cluster - 1) + 0] |
776 (samples[2 * (events_in_cluster - 1) + 1] << 8);
777
778}
779
780/*
781 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
782 * Each event is 20ns apart, and can contain multiple samples.
783 *
784 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
785 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
786 * For 50 MHz and below, events contain one sample for each channel,
787 * spread 20 ns apart.
788 */
789static int decode_chunk_ts(struct sigma_dram_line *dram_line,
790 uint16_t events_in_line,
791 uint32_t trigger_event,
792 struct sr_dev_inst *sdi)
793{
794 struct sigma_dram_cluster *dram_cluster;
795 struct dev_context *devc = sdi->priv;
796 unsigned int clusters_in_line =
797 (events_in_line + (EVENTS_PER_CLUSTER - 1)) / EVENTS_PER_CLUSTER;
798 unsigned int events_in_cluster;
799 unsigned int i;
800 uint32_t trigger_cluster = ~0, triggered = 0;
801
802 /* Check if trigger is in this chunk. */
803 if (trigger_event < (64 * 7)) {
804 if (devc->cur_samplerate <= SR_MHZ(50)) {
805 trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
806 trigger_event);
807 }
808
809 /* Find in which cluster the trigger occurred. */
810 trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
811 }
812
813 /* For each full DRAM cluster. */
814 for (i = 0; i < clusters_in_line; i++) {
815 dram_cluster = &dram_line->cluster[i];
816
817 /* The last cluster might not be full. */
818 if ((i == clusters_in_line - 1) &&
819 (events_in_line % EVENTS_PER_CLUSTER)) {
820 events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
821 } else {
822 events_in_cluster = EVENTS_PER_CLUSTER;
823 }
824
825 triggered = (i == trigger_cluster);
826 sigma_decode_dram_cluster(dram_cluster, events_in_cluster,
827 triggered, sdi);
828 }
829
830 return SR_OK;
831}
832
833static int download_capture(struct sr_dev_inst *sdi)
834{
835 struct dev_context *devc = sdi->priv;
836 const uint32_t chunks_per_read = 32;
837 struct sigma_dram_line *dram_line;
838 int bufsz;
839 uint32_t stoppos, triggerpos;
840 struct sr_datafeed_packet packet;
841 uint8_t modestatus;
842
843 uint32_t i;
844 uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
845 uint32_t dl_events_in_line = 64 * 7;
846 uint32_t trg_line = ~0, trg_event = ~0;
847
848 dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
849 if (!dram_line)
850 return FALSE;
851
852 sr_info("Downloading sample data.");
853
854 /* Stop acquisition. */
855 sigma_set_register(WRITE_MODE, 0x11, devc);
856
857 /* Set SDRAM Read Enable. */
858 sigma_set_register(WRITE_MODE, 0x02, devc);
859
860 /* Get the current position. */
861 sigma_read_pos(&stoppos, &triggerpos, devc);
862
863 /* Check if trigger has fired. */
864 modestatus = sigma_get_register(READ_MODE, devc);
865 if (modestatus & 0x20) {
866 trg_line = triggerpos >> 9;
867 trg_event = triggerpos & 0x1ff;
868 }
869
870 /*
871 * Determine how many 1024b "DRAM lines" do we need to read from the
872 * Sigma so we have a complete set of samples. Note that the last
873 * line can be only partial, containing less than 64 clusters.
874 */
875 dl_lines_total = (stoppos >> 9) + 1;
876
877 dl_lines_done = 0;
878
879 while (dl_lines_total > dl_lines_done) {
880 /* We can download only up-to 32 DRAM lines in one go! */
881 dl_lines_curr = MIN(chunks_per_read, dl_lines_total);
882
883 bufsz = sigma_read_dram(dl_lines_done, dl_lines_curr,
884 (uint8_t *)dram_line, devc);
885 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
886 (void)bufsz;
887
888 /* This is the first DRAM line, so find the initial timestamp. */
889 if (dl_lines_done == 0) {
890 devc->state.lastts =
891 sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
892 devc->state.lastsample = 0;
893 }
894
895 for (i = 0; i < dl_lines_curr; i++) {
896 uint32_t trigger_event = ~0;
897 /* The last "DRAM line" can be only partially full. */
898 if (dl_lines_done + i == dl_lines_total - 1)
899 dl_events_in_line = stoppos & 0x1ff;
900
901 /* Test if the trigger happened on this line. */
902 if (dl_lines_done + i == trg_line)
903 trigger_event = trg_event;
904
905 decode_chunk_ts(dram_line + i, dl_events_in_line,
906 trigger_event, sdi);
907 }
908
909 dl_lines_done += dl_lines_curr;
910 }
911
912 /* All done. */
913 packet.type = SR_DF_END;
914 sr_session_send(sdi, &packet);
915
916 sdi->driver->dev_acquisition_stop(sdi, sdi);
917
918 g_free(dram_line);
919
920 return TRUE;
921}
922
923/*
924 * Handle the Sigma when in CAPTURE mode. This function checks:
925 * - Sampling time ended
926 * - DRAM capacity overflow
927 * This function triggers download of the samples from Sigma
928 * in case either of the above conditions is true.
929 */
930static int sigma_capture_mode(struct sr_dev_inst *sdi)
931{
932 struct dev_context *devc = sdi->priv;
933
934 uint64_t running_msec;
935 struct timeval tv;
936
937 uint32_t stoppos, triggerpos;
938
939 /* Check if the selected sampling duration passed. */
940 gettimeofday(&tv, 0);
941 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
942 (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
943 if (running_msec >= devc->limit_msec)
944 return download_capture(sdi);
945
946 /* Get the position in DRAM to which the FPGA is writing now. */
947 sigma_read_pos(&stoppos, &triggerpos, devc);
948 /* Test if DRAM is full and if so, download the data. */
949 if ((stoppos >> 9) == 32767)
950 return download_capture(sdi);
951
952 return TRUE;
953}
954
955SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
956{
957 struct sr_dev_inst *sdi;
958 struct dev_context *devc;
959
960 (void)fd;
961 (void)revents;
962
963 sdi = cb_data;
964 devc = sdi->priv;
965
966 if (devc->state.state == SIGMA_IDLE)
967 return TRUE;
968
969 if (devc->state.state == SIGMA_CAPTURE)
970 return sigma_capture_mode(sdi);
971
972 return TRUE;
973}
974
975/* Build a LUT entry used by the trigger functions. */
976static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
977{
978 int i, j, k, bit;
979
980 /* For each quad channel. */
981 for (i = 0; i < 4; ++i) {
982 entry[i] = 0xffff;
983
984 /* For each bit in LUT. */
985 for (j = 0; j < 16; ++j)
986
987 /* For each channel in quad. */
988 for (k = 0; k < 4; ++k) {
989 bit = 1 << (i * 4 + k);
990
991 /* Set bit in entry */
992 if ((mask & bit) &&
993 ((!(value & bit)) !=
994 (!(j & (1 << k)))))
995 entry[i] &= ~(1 << j);
996 }
997 }
998}
999
1000/* Add a logical function to LUT mask. */
1001static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1002 int index, int neg, uint16_t *mask)
1003{
1004 int i, j;
1005 int x[2][2], tmp, a, b, aset, bset, rset;
1006
1007 memset(x, 0, 4 * sizeof(int));
1008
1009 /* Trigger detect condition. */
1010 switch (oper) {
1011 case OP_LEVEL:
1012 x[0][1] = 1;
1013 x[1][1] = 1;
1014 break;
1015 case OP_NOT:
1016 x[0][0] = 1;
1017 x[1][0] = 1;
1018 break;
1019 case OP_RISE:
1020 x[0][1] = 1;
1021 break;
1022 case OP_FALL:
1023 x[1][0] = 1;
1024 break;
1025 case OP_RISEFALL:
1026 x[0][1] = 1;
1027 x[1][0] = 1;
1028 break;
1029 case OP_NOTRISE:
1030 x[1][1] = 1;
1031 x[0][0] = 1;
1032 x[1][0] = 1;
1033 break;
1034 case OP_NOTFALL:
1035 x[1][1] = 1;
1036 x[0][0] = 1;
1037 x[0][1] = 1;
1038 break;
1039 case OP_NOTRISEFALL:
1040 x[1][1] = 1;
1041 x[0][0] = 1;
1042 break;
1043 }
1044
1045 /* Transpose if neg is set. */
1046 if (neg) {
1047 for (i = 0; i < 2; ++i) {
1048 for (j = 0; j < 2; ++j) {
1049 tmp = x[i][j];
1050 x[i][j] = x[1-i][1-j];
1051 x[1-i][1-j] = tmp;
1052 }
1053 }
1054 }
1055
1056 /* Update mask with function. */
1057 for (i = 0; i < 16; ++i) {
1058 a = (i >> (2 * index + 0)) & 1;
1059 b = (i >> (2 * index + 1)) & 1;
1060
1061 aset = (*mask >> i) & 1;
1062 bset = x[b][a];
1063
1064 rset = 0;
1065 if (func == FUNC_AND || func == FUNC_NAND)
1066 rset = aset & bset;
1067 else if (func == FUNC_OR || func == FUNC_NOR)
1068 rset = aset | bset;
1069 else if (func == FUNC_XOR || func == FUNC_NXOR)
1070 rset = aset ^ bset;
1071
1072 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1073 rset = !rset;
1074
1075 *mask &= ~(1 << i);
1076
1077 if (rset)
1078 *mask |= 1 << i;
1079 }
1080}
1081
1082/*
1083 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1084 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1085 * set at any time, but a full mask and value can be set (0/1).
1086 */
1087SR_PRIV int sigma_build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1088{
1089 int i,j;
1090 uint16_t masks[2] = { 0, 0 };
1091
1092 memset(lut, 0, sizeof(struct triggerlut));
1093
1094 /* Constant for simple triggers. */
1095 lut->m4 = 0xa000;
1096
1097 /* Value/mask trigger support. */
1098 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1099 lut->m2d);
1100
1101 /* Rise/fall trigger support. */
1102 for (i = 0, j = 0; i < 16; ++i) {
1103 if (devc->trigger.risingmask & (1 << i) ||
1104 devc->trigger.fallingmask & (1 << i))
1105 masks[j++] = 1 << i;
1106 }
1107
1108 build_lut_entry(masks[0], masks[0], lut->m0d);
1109 build_lut_entry(masks[1], masks[1], lut->m1d);
1110
1111 /* Add glue logic */
1112 if (masks[0] || masks[1]) {
1113 /* Transition trigger. */
1114 if (masks[0] & devc->trigger.risingmask)
1115 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1116 if (masks[0] & devc->trigger.fallingmask)
1117 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1118 if (masks[1] & devc->trigger.risingmask)
1119 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1120 if (masks[1] & devc->trigger.fallingmask)
1121 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1122 } else {
1123 /* Only value/mask trigger. */
1124 lut->m3 = 0xffff;
1125 }
1126
1127 /* Triggertype: event. */
1128 lut->params.selres = 3;
1129
1130 return SR_OK;
1131}