]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/asix-sigma/asix-sigma.c
Build: Include <config.h> first in all source files
[libsigrok.git] / src / hardware / asix-sigma / asix-sigma.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA/SIGMA2 logic analyzer driver
24 */
25
26#include <config.h>
27#include <glib.h>
28#include <glib/gstdio.h>
29#include <ftdi.h>
30#include <string.h>
31#include <unistd.h>
32#include <libsigrok/libsigrok.h>
33#include "libsigrok-internal.h"
34#include "asix-sigma.h"
35
36#define USB_VENDOR 0xa600
37#define USB_PRODUCT 0xa000
38#define USB_DESCRIPTION "ASIX SIGMA"
39#define USB_VENDOR_NAME "ASIX"
40#define USB_MODEL_NAME "SIGMA"
41
42SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
43static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
44
45/*
46 * The ASIX Sigma supports arbitrary integer frequency divider in
47 * the 50MHz mode. The divider is in range 1...256 , allowing for
48 * very precise sampling rate selection. This driver supports only
49 * a subset of the sampling rates.
50 */
51static const uint64_t samplerates[] = {
52 SR_KHZ(200), /* div=250 */
53 SR_KHZ(250), /* div=200 */
54 SR_KHZ(500), /* div=100 */
55 SR_MHZ(1), /* div=50 */
56 SR_MHZ(5), /* div=10 */
57 SR_MHZ(10), /* div=5 */
58 SR_MHZ(25), /* div=2 */
59 SR_MHZ(50), /* div=1 */
60 SR_MHZ(100), /* Special FW needed */
61 SR_MHZ(200), /* Special FW needed */
62};
63
64/*
65 * Channel numbers seem to go from 1-16, according to this image:
66 * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
67 * (the cable has two additional GND pins, and a TI and TO pin)
68 */
69static const char *channel_names[] = {
70 "1", "2", "3", "4", "5", "6", "7", "8",
71 "9", "10", "11", "12", "13", "14", "15", "16",
72};
73
74static const uint32_t drvopts[] = {
75 SR_CONF_LOGIC_ANALYZER,
76};
77
78static const uint32_t devopts[] = {
79 SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
80 SR_CONF_LIMIT_SAMPLES | SR_CONF_SET,
81 SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
82 SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
83 SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
84};
85
86static const int32_t trigger_matches[] = {
87 SR_TRIGGER_ZERO,
88 SR_TRIGGER_ONE,
89 SR_TRIGGER_RISING,
90 SR_TRIGGER_FALLING,
91};
92
93static const char *sigma_firmware_files[] = {
94 /* 50 MHz, supports 8 bit fractions */
95 FIRMWARE_DIR "/asix-sigma-50.fw",
96 /* 100 MHz */
97 FIRMWARE_DIR "/asix-sigma-100.fw",
98 /* 200 MHz */
99 FIRMWARE_DIR "/asix-sigma-200.fw",
100 /* Synchronous clock from pin */
101 FIRMWARE_DIR "/asix-sigma-50sync.fw",
102 /* Frequency counter */
103 FIRMWARE_DIR "/asix-sigma-phasor.fw",
104};
105
106static int sigma_read(void *buf, size_t size, struct dev_context *devc)
107{
108 int ret;
109
110 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
111 if (ret < 0) {
112 sr_err("ftdi_read_data failed: %s",
113 ftdi_get_error_string(&devc->ftdic));
114 }
115
116 return ret;
117}
118
119static int sigma_write(void *buf, size_t size, struct dev_context *devc)
120{
121 int ret;
122
123 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
124 if (ret < 0) {
125 sr_err("ftdi_write_data failed: %s",
126 ftdi_get_error_string(&devc->ftdic));
127 } else if ((size_t) ret != size) {
128 sr_err("ftdi_write_data did not complete write.");
129 }
130
131 return ret;
132}
133
134/*
135 * NOTE: We chose the buffer size to be large enough to hold any write to the
136 * device. We still print a message just in case.
137 */
138static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
139 struct dev_context *devc)
140{
141 size_t i;
142 uint8_t buf[80];
143 int idx = 0;
144
145 if ((len + 2) > sizeof(buf)) {
146 sr_err("Attempted to write %zu bytes, but buffer is too small.",
147 len + 2);
148 return SR_ERR_BUG;
149 }
150
151 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
152 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
153
154 for (i = 0; i < len; ++i) {
155 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
156 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
157 }
158
159 return sigma_write(buf, idx, devc);
160}
161
162static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
163{
164 return sigma_write_register(reg, &value, 1, devc);
165}
166
167static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
168 struct dev_context *devc)
169{
170 uint8_t buf[3];
171
172 buf[0] = REG_ADDR_LOW | (reg & 0xf);
173 buf[1] = REG_ADDR_HIGH | (reg >> 4);
174 buf[2] = REG_READ_ADDR;
175
176 sigma_write(buf, sizeof(buf), devc);
177
178 return sigma_read(data, len, devc);
179}
180
181static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
182{
183 uint8_t value;
184
185 if (1 != sigma_read_register(reg, &value, 1, devc)) {
186 sr_err("sigma_get_register: 1 byte expected");
187 return 0;
188 }
189
190 return value;
191}
192
193static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
194 struct dev_context *devc)
195{
196 uint8_t buf[] = {
197 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
198
199 REG_READ_ADDR | NEXT_REG,
200 REG_READ_ADDR | NEXT_REG,
201 REG_READ_ADDR | NEXT_REG,
202 REG_READ_ADDR | NEXT_REG,
203 REG_READ_ADDR | NEXT_REG,
204 REG_READ_ADDR | NEXT_REG,
205 };
206 uint8_t result[6];
207
208 sigma_write(buf, sizeof(buf), devc);
209
210 sigma_read(result, sizeof(result), devc);
211
212 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
213 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
214
215 /* Not really sure why this must be done, but according to spec. */
216 if ((--*stoppos & 0x1ff) == 0x1ff)
217 *stoppos -= 64;
218
219 if ((*--triggerpos & 0x1ff) == 0x1ff)
220 *triggerpos -= 64;
221
222 return 1;
223}
224
225static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
226 uint8_t *data, struct dev_context *devc)
227{
228 size_t i;
229 uint8_t buf[4096];
230 int idx = 0;
231
232 /* Send the startchunk. Index start with 1. */
233 buf[0] = startchunk >> 8;
234 buf[1] = startchunk & 0xff;
235 sigma_write_register(WRITE_MEMROW, buf, 2, devc);
236
237 /* Read the DRAM. */
238 buf[idx++] = REG_DRAM_BLOCK;
239 buf[idx++] = REG_DRAM_WAIT_ACK;
240
241 for (i = 0; i < numchunks; ++i) {
242 /* Alternate bit to copy from DRAM to cache. */
243 if (i != (numchunks - 1))
244 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
245
246 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
247
248 if (i != (numchunks - 1))
249 buf[idx++] = REG_DRAM_WAIT_ACK;
250 }
251
252 sigma_write(buf, idx, devc);
253
254 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
255}
256
257/* Upload trigger look-up tables to Sigma. */
258static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
259{
260 int i;
261 uint8_t tmp[2];
262 uint16_t bit;
263
264 /* Transpose the table and send to Sigma. */
265 for (i = 0; i < 16; ++i) {
266 bit = 1 << i;
267
268 tmp[0] = tmp[1] = 0;
269
270 if (lut->m2d[0] & bit)
271 tmp[0] |= 0x01;
272 if (lut->m2d[1] & bit)
273 tmp[0] |= 0x02;
274 if (lut->m2d[2] & bit)
275 tmp[0] |= 0x04;
276 if (lut->m2d[3] & bit)
277 tmp[0] |= 0x08;
278
279 if (lut->m3 & bit)
280 tmp[0] |= 0x10;
281 if (lut->m3s & bit)
282 tmp[0] |= 0x20;
283 if (lut->m4 & bit)
284 tmp[0] |= 0x40;
285
286 if (lut->m0d[0] & bit)
287 tmp[1] |= 0x01;
288 if (lut->m0d[1] & bit)
289 tmp[1] |= 0x02;
290 if (lut->m0d[2] & bit)
291 tmp[1] |= 0x04;
292 if (lut->m0d[3] & bit)
293 tmp[1] |= 0x08;
294
295 if (lut->m1d[0] & bit)
296 tmp[1] |= 0x10;
297 if (lut->m1d[1] & bit)
298 tmp[1] |= 0x20;
299 if (lut->m1d[2] & bit)
300 tmp[1] |= 0x40;
301 if (lut->m1d[3] & bit)
302 tmp[1] |= 0x80;
303
304 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
305 devc);
306 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
307 }
308
309 /* Send the parameters */
310 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
311 sizeof(lut->params), devc);
312
313 return SR_OK;
314}
315
316static void clear_helper(void *priv)
317{
318 struct dev_context *devc;
319
320 devc = priv;
321
322 ftdi_deinit(&devc->ftdic);
323}
324
325static int dev_clear(const struct sr_dev_driver *di)
326{
327 return std_dev_clear(di, clear_helper);
328}
329
330static int init(struct sr_dev_driver *di, struct sr_context *sr_ctx)
331{
332 return std_init(sr_ctx, di, LOG_PREFIX);
333}
334
335static GSList *scan(struct sr_dev_driver *di, GSList *options)
336{
337 struct sr_dev_inst *sdi;
338 struct drv_context *drvc;
339 struct dev_context *devc;
340 GSList *devices;
341 struct ftdi_device_list *devlist;
342 char serial_txt[10];
343 uint32_t serial;
344 int ret;
345 unsigned int i;
346
347 (void)options;
348
349 drvc = di->context;
350
351 devices = NULL;
352
353 devc = g_malloc0(sizeof(struct dev_context));
354
355 ftdi_init(&devc->ftdic);
356
357 /* Look for SIGMAs. */
358
359 if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
360 USB_VENDOR, USB_PRODUCT)) <= 0) {
361 if (ret < 0)
362 sr_err("ftdi_usb_find_all(): %d", ret);
363 goto free;
364 }
365
366 /* Make sure it's a version 1 or 2 SIGMA. */
367 ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
368 serial_txt, sizeof(serial_txt));
369 sscanf(serial_txt, "%x", &serial);
370
371 if (serial < 0xa6010000 || serial > 0xa602ffff) {
372 sr_err("Only SIGMA and SIGMA2 are supported "
373 "in this version of libsigrok.");
374 goto free;
375 }
376
377 sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
378
379 devc->cur_samplerate = samplerates[0];
380 devc->period_ps = 0;
381 devc->limit_msec = 0;
382 devc->cur_firmware = -1;
383 devc->num_channels = 0;
384 devc->samples_per_event = 0;
385 devc->capture_ratio = 50;
386 devc->use_triggers = 0;
387
388 /* Register SIGMA device. */
389 sdi = g_malloc0(sizeof(struct sr_dev_inst));
390 sdi->status = SR_ST_INITIALIZING;
391 sdi->vendor = g_strdup(USB_VENDOR_NAME);
392 sdi->model = g_strdup(USB_MODEL_NAME);
393 sdi->driver = di;
394
395 for (i = 0; i < ARRAY_SIZE(channel_names); i++)
396 sr_channel_new(sdi, i, SR_CHANNEL_LOGIC, TRUE, channel_names[i]);
397
398 devices = g_slist_append(devices, sdi);
399 drvc->instances = g_slist_append(drvc->instances, sdi);
400 sdi->priv = devc;
401
402 /* We will open the device again when we need it. */
403 ftdi_list_free(&devlist);
404
405 return devices;
406
407free:
408 ftdi_deinit(&devc->ftdic);
409 g_free(devc);
410 return NULL;
411}
412
413static GSList *dev_list(const struct sr_dev_driver *di)
414{
415 return ((struct drv_context *)(di->context))->instances;
416}
417
418/*
419 * Configure the FPGA for bitbang mode.
420 * This sequence is documented in section 2. of the ASIX Sigma programming
421 * manual. This sequence is necessary to configure the FPGA in the Sigma
422 * into Bitbang mode, in which it can be programmed with the firmware.
423 */
424static int sigma_fpga_init_bitbang(struct dev_context *devc)
425{
426 uint8_t suicide[] = {
427 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
428 };
429 uint8_t init_array[] = {
430 0x01, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01,
431 0x01, 0x01,
432 };
433 int i, ret, timeout = (10 * 1000);
434 uint8_t data;
435
436 /* Section 2. part 1), do the FPGA suicide. */
437 sigma_write(suicide, sizeof(suicide), devc);
438 sigma_write(suicide, sizeof(suicide), devc);
439 sigma_write(suicide, sizeof(suicide), devc);
440 sigma_write(suicide, sizeof(suicide), devc);
441
442 /* Section 2. part 2), do pulse on D1. */
443 sigma_write(init_array, sizeof(init_array), devc);
444 ftdi_usb_purge_buffers(&devc->ftdic);
445
446 /* Wait until the FPGA asserts D6/INIT_B. */
447 for (i = 0; i < timeout; i++) {
448 ret = sigma_read(&data, 1, devc);
449 if (ret < 0)
450 return ret;
451 /* Test if pin D6 got asserted. */
452 if (data & (1 << 5))
453 return 0;
454 /* The D6 was not asserted yet, wait a bit. */
455 g_usleep(10 * 1000);
456 }
457
458 return SR_ERR_TIMEOUT;
459}
460
461/*
462 * Configure the FPGA for logic-analyzer mode.
463 */
464static int sigma_fpga_init_la(struct dev_context *devc)
465{
466 /* Initialize the logic analyzer mode. */
467 uint8_t logic_mode_start[] = {
468 REG_ADDR_LOW | (READ_ID & 0xf),
469 REG_ADDR_HIGH | (READ_ID >> 8),
470 REG_READ_ADDR, /* Read ID register. */
471
472 REG_ADDR_LOW | (WRITE_TEST & 0xf),
473 REG_DATA_LOW | 0x5,
474 REG_DATA_HIGH_WRITE | 0x5,
475 REG_READ_ADDR, /* Read scratch register. */
476
477 REG_DATA_LOW | 0xa,
478 REG_DATA_HIGH_WRITE | 0xa,
479 REG_READ_ADDR, /* Read scratch register. */
480
481 REG_ADDR_LOW | (WRITE_MODE & 0xf),
482 REG_DATA_LOW | 0x0,
483 REG_DATA_HIGH_WRITE | 0x8,
484 };
485
486 uint8_t result[3];
487 int ret;
488
489 /* Initialize the logic analyzer mode. */
490 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
491
492 /* Expect a 3 byte reply since we issued three READ requests. */
493 ret = sigma_read(result, 3, devc);
494 if (ret != 3)
495 goto err;
496
497 if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
498 goto err;
499
500 return SR_OK;
501err:
502 sr_err("Configuration failed. Invalid reply received.");
503 return SR_ERR;
504}
505
506/*
507 * Read the firmware from a file and transform it into a series of bitbang
508 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
509 * by the caller of this function.
510 */
511static int sigma_fw_2_bitbang(const char *filename,
512 uint8_t **bb_cmd, gsize *bb_cmd_size)
513{
514 GMappedFile *file;
515 GError *error;
516 gsize i, file_size, bb_size;
517 gchar *firmware;
518 uint8_t *bb_stream, *bbs;
519 uint32_t imm;
520 int bit, v;
521 int ret = SR_OK;
522
523 /*
524 * Map the file and make the mapped buffer writable.
525 * NOTE: Using writable=TRUE does _NOT_ mean that file that is mapped
526 * will be modified. It will not be modified until someone uses
527 * g_file_set_contents() on it.
528 */
529 error = NULL;
530 file = g_mapped_file_new(filename, TRUE, &error);
531 g_assert_no_error(error);
532
533 file_size = g_mapped_file_get_length(file);
534 firmware = g_mapped_file_get_contents(file);
535 g_assert(firmware);
536
537 /* Weird magic transformation below, I have no idea what it does. */
538 imm = 0x3f6df2ab;
539 for (i = 0; i < file_size; i++) {
540 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
541 firmware[i] ^= imm & 0xff;
542 }
543
544 /*
545 * Now that the firmware is "transformed", we will transcribe the
546 * firmware blob into a sequence of toggles of the Dx wires. This
547 * sequence will be fed directly into the Sigma, which must be in
548 * the FPGA bitbang programming mode.
549 */
550
551 /* Each bit of firmware is transcribed as two toggles of Dx wires. */
552 bb_size = file_size * 8 * 2;
553 bb_stream = (uint8_t *)g_try_malloc(bb_size);
554 if (!bb_stream) {
555 sr_err("%s: Failed to allocate bitbang stream", __func__);
556 ret = SR_ERR_MALLOC;
557 goto exit;
558 }
559
560 bbs = bb_stream;
561 for (i = 0; i < file_size; i++) {
562 for (bit = 7; bit >= 0; bit--) {
563 v = (firmware[i] & (1 << bit)) ? 0x40 : 0x00;
564 *bbs++ = v | 0x01;
565 *bbs++ = v;
566 }
567 }
568
569 /* The transformation completed successfully, return the result. */
570 *bb_cmd = bb_stream;
571 *bb_cmd_size = bb_size;
572
573exit:
574 g_mapped_file_unref(file);
575 return ret;
576}
577
578static int upload_firmware(int firmware_idx, struct dev_context *devc)
579{
580 int ret;
581 unsigned char *buf;
582 unsigned char pins;
583 size_t buf_size;
584 const char *firmware = sigma_firmware_files[firmware_idx];
585 struct ftdi_context *ftdic = &devc->ftdic;
586
587 /* Make sure it's an ASIX SIGMA. */
588 ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT,
589 USB_DESCRIPTION, NULL);
590 if (ret < 0) {
591 sr_err("ftdi_usb_open failed: %s",
592 ftdi_get_error_string(ftdic));
593 return 0;
594 }
595
596 ret = ftdi_set_bitmode(ftdic, 0xdf, BITMODE_BITBANG);
597 if (ret < 0) {
598 sr_err("ftdi_set_bitmode failed: %s",
599 ftdi_get_error_string(ftdic));
600 return 0;
601 }
602
603 /* Four times the speed of sigmalogan - Works well. */
604 ret = ftdi_set_baudrate(ftdic, 750 * 1000);
605 if (ret < 0) {
606 sr_err("ftdi_set_baudrate failed: %s",
607 ftdi_get_error_string(ftdic));
608 return 0;
609 }
610
611 /* Initialize the FPGA for firmware upload. */
612 ret = sigma_fpga_init_bitbang(devc);
613 if (ret)
614 return ret;
615
616 /* Prepare firmware. */
617 ret = sigma_fw_2_bitbang(firmware, &buf, &buf_size);
618 if (ret != SR_OK) {
619 sr_err("An error occurred while reading the firmware: %s",
620 firmware);
621 return ret;
622 }
623
624 /* Upload firmware. */
625 sr_info("Uploading firmware file '%s'.", firmware);
626 sigma_write(buf, buf_size, devc);
627
628 g_free(buf);
629
630 ret = ftdi_set_bitmode(ftdic, 0x00, BITMODE_RESET);
631 if (ret < 0) {
632 sr_err("ftdi_set_bitmode failed: %s",
633 ftdi_get_error_string(ftdic));
634 return SR_ERR;
635 }
636
637 ftdi_usb_purge_buffers(ftdic);
638
639 /* Discard garbage. */
640 while (sigma_read(&pins, 1, devc) == 1)
641 ;
642
643 /* Initialize the FPGA for logic-analyzer mode. */
644 ret = sigma_fpga_init_la(devc);
645 if (ret != SR_OK)
646 return ret;
647
648 devc->cur_firmware = firmware_idx;
649
650 sr_info("Firmware uploaded.");
651
652 return SR_OK;
653}
654
655static int dev_open(struct sr_dev_inst *sdi)
656{
657 struct dev_context *devc;
658 int ret;
659
660 devc = sdi->priv;
661
662 /* Make sure it's an ASIX SIGMA. */
663 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
664 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
665
666 sr_err("ftdi_usb_open failed: %s",
667 ftdi_get_error_string(&devc->ftdic));
668
669 return 0;
670 }
671
672 sdi->status = SR_ST_ACTIVE;
673
674 return SR_OK;
675}
676
677static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
678{
679 struct dev_context *devc;
680 unsigned int i;
681 int ret;
682
683 devc = sdi->priv;
684 ret = SR_OK;
685
686 for (i = 0; i < ARRAY_SIZE(samplerates); i++) {
687 if (samplerates[i] == samplerate)
688 break;
689 }
690 if (samplerates[i] == 0)
691 return SR_ERR_SAMPLERATE;
692
693 if (samplerate <= SR_MHZ(50)) {
694 ret = upload_firmware(0, devc);
695 devc->num_channels = 16;
696 } else if (samplerate == SR_MHZ(100)) {
697 ret = upload_firmware(1, devc);
698 devc->num_channels = 8;
699 } else if (samplerate == SR_MHZ(200)) {
700 ret = upload_firmware(2, devc);
701 devc->num_channels = 4;
702 }
703
704 if (ret == SR_OK) {
705 devc->cur_samplerate = samplerate;
706 devc->period_ps = 1000000000000ULL / samplerate;
707 devc->samples_per_event = 16 / devc->num_channels;
708 devc->state.state = SIGMA_IDLE;
709 }
710
711 return ret;
712}
713
714/*
715 * In 100 and 200 MHz mode, only a single pin rising/falling can be
716 * set as trigger. In other modes, two rising/falling triggers can be set,
717 * in addition to value/mask trigger for any number of channels.
718 *
719 * The Sigma supports complex triggers using boolean expressions, but this
720 * has not been implemented yet.
721 */
722static int convert_trigger(const struct sr_dev_inst *sdi)
723{
724 struct dev_context *devc;
725 struct sr_trigger *trigger;
726 struct sr_trigger_stage *stage;
727 struct sr_trigger_match *match;
728 const GSList *l, *m;
729 int channelbit, trigger_set;
730
731 devc = sdi->priv;
732 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
733 if (!(trigger = sr_session_trigger_get(sdi->session)))
734 return SR_OK;
735
736 trigger_set = 0;
737 for (l = trigger->stages; l; l = l->next) {
738 stage = l->data;
739 for (m = stage->matches; m; m = m->next) {
740 match = m->data;
741 if (!match->channel->enabled)
742 /* Ignore disabled channels with a trigger. */
743 continue;
744 channelbit = 1 << (match->channel->index);
745 if (devc->cur_samplerate >= SR_MHZ(100)) {
746 /* Fast trigger support. */
747 if (trigger_set) {
748 sr_err("Only a single pin trigger is "
749 "supported in 100 and 200MHz mode.");
750 return SR_ERR;
751 }
752 if (match->match == SR_TRIGGER_FALLING)
753 devc->trigger.fallingmask |= channelbit;
754 else if (match->match == SR_TRIGGER_RISING)
755 devc->trigger.risingmask |= channelbit;
756 else {
757 sr_err("Only rising/falling trigger is "
758 "supported in 100 and 200MHz mode.");
759 return SR_ERR;
760 }
761
762 ++trigger_set;
763 } else {
764 /* Simple trigger support (event). */
765 if (match->match == SR_TRIGGER_ONE) {
766 devc->trigger.simplevalue |= channelbit;
767 devc->trigger.simplemask |= channelbit;
768 }
769 else if (match->match == SR_TRIGGER_ZERO) {
770 devc->trigger.simplevalue &= ~channelbit;
771 devc->trigger.simplemask |= channelbit;
772 }
773 else if (match->match == SR_TRIGGER_FALLING) {
774 devc->trigger.fallingmask |= channelbit;
775 ++trigger_set;
776 }
777 else if (match->match == SR_TRIGGER_RISING) {
778 devc->trigger.risingmask |= channelbit;
779 ++trigger_set;
780 }
781
782 /*
783 * Actually, Sigma supports 2 rising/falling triggers,
784 * but they are ORed and the current trigger syntax
785 * does not permit ORed triggers.
786 */
787 if (trigger_set > 1) {
788 sr_err("Only 1 rising/falling trigger "
789 "is supported.");
790 return SR_ERR;
791 }
792 }
793 }
794 }
795
796 return SR_OK;
797}
798
799static int dev_close(struct sr_dev_inst *sdi)
800{
801 struct dev_context *devc;
802
803 devc = sdi->priv;
804
805 /* TODO */
806 if (sdi->status == SR_ST_ACTIVE)
807 ftdi_usb_close(&devc->ftdic);
808
809 sdi->status = SR_ST_INACTIVE;
810
811 return SR_OK;
812}
813
814static int cleanup(const struct sr_dev_driver *di)
815{
816 return dev_clear(di);
817}
818
819static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
820 const struct sr_channel_group *cg)
821{
822 struct dev_context *devc;
823
824 (void)cg;
825
826 if (!sdi)
827 return SR_ERR;
828 devc = sdi->priv;
829
830 switch (key) {
831 case SR_CONF_SAMPLERATE:
832 *data = g_variant_new_uint64(devc->cur_samplerate);
833 break;
834 case SR_CONF_LIMIT_MSEC:
835 *data = g_variant_new_uint64(devc->limit_msec);
836 break;
837 case SR_CONF_CAPTURE_RATIO:
838 *data = g_variant_new_uint64(devc->capture_ratio);
839 break;
840 default:
841 return SR_ERR_NA;
842 }
843
844 return SR_OK;
845}
846
847static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
848 const struct sr_channel_group *cg)
849{
850 struct dev_context *devc;
851 uint64_t tmp;
852 int ret;
853
854 (void)cg;
855
856 if (sdi->status != SR_ST_ACTIVE)
857 return SR_ERR_DEV_CLOSED;
858
859 devc = sdi->priv;
860
861 ret = SR_OK;
862 switch (key) {
863 case SR_CONF_SAMPLERATE:
864 ret = set_samplerate(sdi, g_variant_get_uint64(data));
865 break;
866 case SR_CONF_LIMIT_MSEC:
867 tmp = g_variant_get_uint64(data);
868 if (tmp > 0)
869 devc->limit_msec = g_variant_get_uint64(data);
870 else
871 ret = SR_ERR;
872 break;
873 case SR_CONF_LIMIT_SAMPLES:
874 tmp = g_variant_get_uint64(data);
875 devc->limit_msec = tmp * 1000 / devc->cur_samplerate;
876 break;
877 case SR_CONF_CAPTURE_RATIO:
878 tmp = g_variant_get_uint64(data);
879 if (tmp <= 100)
880 devc->capture_ratio = tmp;
881 else
882 ret = SR_ERR;
883 break;
884 default:
885 ret = SR_ERR_NA;
886 }
887
888 return ret;
889}
890
891static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
892 const struct sr_channel_group *cg)
893{
894 GVariant *gvar;
895 GVariantBuilder gvb;
896
897 (void)cg;
898
899 switch (key) {
900 case SR_CONF_DEVICE_OPTIONS:
901 if (!sdi)
902 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
903 drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
904 else
905 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
906 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
907 break;
908 case SR_CONF_SAMPLERATE:
909 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
910 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
911 ARRAY_SIZE(samplerates), sizeof(uint64_t));
912 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
913 *data = g_variant_builder_end(&gvb);
914 break;
915 case SR_CONF_TRIGGER_MATCH:
916 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
917 trigger_matches, ARRAY_SIZE(trigger_matches),
918 sizeof(int32_t));
919 break;
920 default:
921 return SR_ERR_NA;
922 }
923
924 return SR_OK;
925}
926
927/* Software trigger to determine exact trigger position. */
928static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
929 struct sigma_trigger *t)
930{
931 int i;
932 uint16_t sample = 0;
933
934 for (i = 0; i < 8; ++i) {
935 if (i > 0)
936 last_sample = sample;
937 sample = samples[2 * i] | (samples[2 * i + 1] << 8);
938
939 /* Simple triggers. */
940 if ((sample & t->simplemask) != t->simplevalue)
941 continue;
942
943 /* Rising edge. */
944 if (((last_sample & t->risingmask) != 0) ||
945 ((sample & t->risingmask) != t->risingmask))
946 continue;
947
948 /* Falling edge. */
949 if ((last_sample & t->fallingmask) != t->fallingmask ||
950 (sample & t->fallingmask) != 0)
951 continue;
952
953 break;
954 }
955
956 /* If we did not match, return original trigger pos. */
957 return i & 0x7;
958}
959
960/*
961 * Return the timestamp of "DRAM cluster".
962 */
963static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
964{
965 return (cluster->timestamp_hi << 8) | cluster->timestamp_lo;
966}
967
968static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster,
969 unsigned int events_in_cluster,
970 unsigned int triggered,
971 struct sr_dev_inst *sdi)
972{
973 struct dev_context *devc = sdi->priv;
974 struct sigma_state *ss = &devc->state;
975 struct sr_datafeed_packet packet;
976 struct sr_datafeed_logic logic;
977 uint16_t tsdiff, ts;
978 uint8_t samples[2048];
979 unsigned int i;
980
981 ts = sigma_dram_cluster_ts(dram_cluster);
982 tsdiff = ts - ss->lastts;
983 ss->lastts = ts;
984
985 packet.type = SR_DF_LOGIC;
986 packet.payload = &logic;
987 logic.unitsize = 2;
988 logic.data = samples;
989
990 /*
991 * First of all, send Sigrok a copy of the last sample from
992 * previous cluster as many times as needed to make up for
993 * the differential characteristics of data we get from the
994 * Sigma. Sigrok needs one sample of data per period.
995 *
996 * One DRAM cluster contains a timestamp and seven samples,
997 * the units of timestamp are "devc->period_ps" , the first
998 * sample in the cluster happens at the time of the timestamp
999 * and the remaining samples happen at timestamp +1...+6 .
1000 */
1001 for (ts = 0; ts < tsdiff - (EVENTS_PER_CLUSTER - 1); ts++) {
1002 i = ts % 1024;
1003 samples[2 * i + 0] = ss->lastsample & 0xff;
1004 samples[2 * i + 1] = ss->lastsample >> 8;
1005
1006 /*
1007 * If we have 1024 samples ready or we're at the
1008 * end of submitting the padding samples, submit
1009 * the packet to Sigrok.
1010 */
1011 if ((i == 1023) || (ts == (tsdiff - EVENTS_PER_CLUSTER))) {
1012 logic.length = (i + 1) * logic.unitsize;
1013 sr_session_send(sdi, &packet);
1014 }
1015 }
1016
1017 /*
1018 * Parse the samples in current cluster and prepare them
1019 * to be submitted to Sigrok.
1020 */
1021 for (i = 0; i < events_in_cluster; i++) {
1022 samples[2 * i + 1] = dram_cluster->samples[i].sample_lo;
1023 samples[2 * i + 0] = dram_cluster->samples[i].sample_hi;
1024 }
1025
1026 /* Send data up to trigger point (if triggered). */
1027 int trigger_offset = 0;
1028 if (triggered) {
1029 /*
1030 * Trigger is not always accurate to sample because of
1031 * pipeline delay. However, it always triggers before
1032 * the actual event. We therefore look at the next
1033 * samples to pinpoint the exact position of the trigger.
1034 */
1035 trigger_offset = get_trigger_offset(samples,
1036 ss->lastsample, &devc->trigger);
1037
1038 if (trigger_offset > 0) {
1039 packet.type = SR_DF_LOGIC;
1040 logic.length = trigger_offset * logic.unitsize;
1041 sr_session_send(sdi, &packet);
1042 events_in_cluster -= trigger_offset;
1043 }
1044
1045 /* Only send trigger if explicitly enabled. */
1046 if (devc->use_triggers) {
1047 packet.type = SR_DF_TRIGGER;
1048 sr_session_send(sdi, &packet);
1049 }
1050 }
1051
1052 if (events_in_cluster > 0) {
1053 packet.type = SR_DF_LOGIC;
1054 logic.length = events_in_cluster * logic.unitsize;
1055 logic.data = samples + (trigger_offset * logic.unitsize);
1056 sr_session_send(sdi, &packet);
1057 }
1058
1059 ss->lastsample =
1060 samples[2 * (events_in_cluster - 1) + 0] |
1061 (samples[2 * (events_in_cluster - 1) + 1] << 8);
1062
1063}
1064
1065/*
1066 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
1067 * Each event is 20ns apart, and can contain multiple samples.
1068 *
1069 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
1070 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
1071 * For 50 MHz and below, events contain one sample for each channel,
1072 * spread 20 ns apart.
1073 */
1074static int decode_chunk_ts(struct sigma_dram_line *dram_line,
1075 uint16_t events_in_line,
1076 uint32_t trigger_event,
1077 struct sr_dev_inst *sdi)
1078{
1079 struct sigma_dram_cluster *dram_cluster;
1080 struct dev_context *devc = sdi->priv;
1081 unsigned int clusters_in_line =
1082 (events_in_line + (EVENTS_PER_CLUSTER - 1)) / EVENTS_PER_CLUSTER;
1083 unsigned int events_in_cluster;
1084 unsigned int i;
1085 uint32_t trigger_cluster = ~0, triggered = 0;
1086
1087 /* Check if trigger is in this chunk. */
1088 if (trigger_event < (64 * 7)) {
1089 if (devc->cur_samplerate <= SR_MHZ(50)) {
1090 trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
1091 trigger_event);
1092 }
1093
1094 /* Find in which cluster the trigger occurred. */
1095 trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
1096 }
1097
1098 /* For each full DRAM cluster. */
1099 for (i = 0; i < clusters_in_line; i++) {
1100 dram_cluster = &dram_line->cluster[i];
1101
1102 /* The last cluster might not be full. */
1103 if ((i == clusters_in_line - 1) &&
1104 (events_in_line % EVENTS_PER_CLUSTER)) {
1105 events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
1106 } else {
1107 events_in_cluster = EVENTS_PER_CLUSTER;
1108 }
1109
1110 triggered = (i == trigger_cluster);
1111 sigma_decode_dram_cluster(dram_cluster, events_in_cluster,
1112 triggered, sdi);
1113 }
1114
1115 return SR_OK;
1116}
1117
1118static int download_capture(struct sr_dev_inst *sdi)
1119{
1120 struct dev_context *devc = sdi->priv;
1121 const uint32_t chunks_per_read = 32;
1122 struct sigma_dram_line *dram_line;
1123 int bufsz;
1124 uint32_t stoppos, triggerpos;
1125 struct sr_datafeed_packet packet;
1126 uint8_t modestatus;
1127
1128 uint32_t i;
1129 uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
1130 uint32_t dl_events_in_line = 64 * 7;
1131 uint32_t trg_line = ~0, trg_event = ~0;
1132
1133 dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
1134 if (!dram_line)
1135 return FALSE;
1136
1137 sr_info("Downloading sample data.");
1138
1139 /* Stop acquisition. */
1140 sigma_set_register(WRITE_MODE, 0x11, devc);
1141
1142 /* Set SDRAM Read Enable. */
1143 sigma_set_register(WRITE_MODE, 0x02, devc);
1144
1145 /* Get the current position. */
1146 sigma_read_pos(&stoppos, &triggerpos, devc);
1147
1148 /* Check if trigger has fired. */
1149 modestatus = sigma_get_register(READ_MODE, devc);
1150 if (modestatus & 0x20) {
1151 trg_line = triggerpos >> 9;
1152 trg_event = triggerpos & 0x1ff;
1153 }
1154
1155 /*
1156 * Determine how many 1024b "DRAM lines" do we need to read from the
1157 * Sigma so we have a complete set of samples. Note that the last
1158 * line can be only partial, containing less than 64 clusters.
1159 */
1160 dl_lines_total = (stoppos >> 9) + 1;
1161
1162 dl_lines_done = 0;
1163
1164 while (dl_lines_total > dl_lines_done) {
1165 /* We can download only up-to 32 DRAM lines in one go! */
1166 dl_lines_curr = MIN(chunks_per_read, dl_lines_total);
1167
1168 bufsz = sigma_read_dram(dl_lines_done, dl_lines_curr,
1169 (uint8_t *)dram_line, devc);
1170 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1171 (void)bufsz;
1172
1173 /* This is the first DRAM line, so find the initial timestamp. */
1174 if (dl_lines_done == 0) {
1175 devc->state.lastts =
1176 sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
1177 devc->state.lastsample = 0;
1178 }
1179
1180 for (i = 0; i < dl_lines_curr; i++) {
1181 uint32_t trigger_event = ~0;
1182 /* The last "DRAM line" can be only partially full. */
1183 if (dl_lines_done + i == dl_lines_total - 1)
1184 dl_events_in_line = stoppos & 0x1ff;
1185
1186 /* Test if the trigger happened on this line. */
1187 if (dl_lines_done + i == trg_line)
1188 trigger_event = trg_event;
1189
1190 decode_chunk_ts(dram_line + i, dl_events_in_line,
1191 trigger_event, sdi);
1192 }
1193
1194 dl_lines_done += dl_lines_curr;
1195 }
1196
1197 /* All done. */
1198 packet.type = SR_DF_END;
1199 sr_session_send(sdi, &packet);
1200
1201 dev_acquisition_stop(sdi, sdi);
1202
1203 g_free(dram_line);
1204
1205 return TRUE;
1206}
1207
1208/*
1209 * Handle the Sigma when in CAPTURE mode. This function checks:
1210 * - Sampling time ended
1211 * - DRAM capacity overflow
1212 * This function triggers download of the samples from Sigma
1213 * in case either of the above conditions is true.
1214 */
1215static int sigma_capture_mode(struct sr_dev_inst *sdi)
1216{
1217 struct dev_context *devc = sdi->priv;
1218
1219 uint64_t running_msec;
1220 struct timeval tv;
1221
1222 uint32_t stoppos, triggerpos;
1223
1224 /* Check if the selected sampling duration passed. */
1225 gettimeofday(&tv, 0);
1226 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1227 (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1228 if (running_msec >= devc->limit_msec)
1229 return download_capture(sdi);
1230
1231 /* Get the position in DRAM to which the FPGA is writing now. */
1232 sigma_read_pos(&stoppos, &triggerpos, devc);
1233 /* Test if DRAM is full and if so, download the data. */
1234 if ((stoppos >> 9) == 32767)
1235 return download_capture(sdi);
1236
1237 return TRUE;
1238}
1239
1240static int receive_data(int fd, int revents, void *cb_data)
1241{
1242 struct sr_dev_inst *sdi;
1243 struct dev_context *devc;
1244
1245 (void)fd;
1246 (void)revents;
1247
1248 sdi = cb_data;
1249 devc = sdi->priv;
1250
1251 if (devc->state.state == SIGMA_IDLE)
1252 return TRUE;
1253
1254 if (devc->state.state == SIGMA_CAPTURE)
1255 return sigma_capture_mode(sdi);
1256
1257 return TRUE;
1258}
1259
1260/* Build a LUT entry used by the trigger functions. */
1261static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1262{
1263 int i, j, k, bit;
1264
1265 /* For each quad channel. */
1266 for (i = 0; i < 4; ++i) {
1267 entry[i] = 0xffff;
1268
1269 /* For each bit in LUT. */
1270 for (j = 0; j < 16; ++j)
1271
1272 /* For each channel in quad. */
1273 for (k = 0; k < 4; ++k) {
1274 bit = 1 << (i * 4 + k);
1275
1276 /* Set bit in entry */
1277 if ((mask & bit) &&
1278 ((!(value & bit)) !=
1279 (!(j & (1 << k)))))
1280 entry[i] &= ~(1 << j);
1281 }
1282 }
1283}
1284
1285/* Add a logical function to LUT mask. */
1286static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1287 int index, int neg, uint16_t *mask)
1288{
1289 int i, j;
1290 int x[2][2], tmp, a, b, aset, bset, rset;
1291
1292 memset(x, 0, 4 * sizeof(int));
1293
1294 /* Trigger detect condition. */
1295 switch (oper) {
1296 case OP_LEVEL:
1297 x[0][1] = 1;
1298 x[1][1] = 1;
1299 break;
1300 case OP_NOT:
1301 x[0][0] = 1;
1302 x[1][0] = 1;
1303 break;
1304 case OP_RISE:
1305 x[0][1] = 1;
1306 break;
1307 case OP_FALL:
1308 x[1][0] = 1;
1309 break;
1310 case OP_RISEFALL:
1311 x[0][1] = 1;
1312 x[1][0] = 1;
1313 break;
1314 case OP_NOTRISE:
1315 x[1][1] = 1;
1316 x[0][0] = 1;
1317 x[1][0] = 1;
1318 break;
1319 case OP_NOTFALL:
1320 x[1][1] = 1;
1321 x[0][0] = 1;
1322 x[0][1] = 1;
1323 break;
1324 case OP_NOTRISEFALL:
1325 x[1][1] = 1;
1326 x[0][0] = 1;
1327 break;
1328 }
1329
1330 /* Transpose if neg is set. */
1331 if (neg) {
1332 for (i = 0; i < 2; ++i) {
1333 for (j = 0; j < 2; ++j) {
1334 tmp = x[i][j];
1335 x[i][j] = x[1-i][1-j];
1336 x[1-i][1-j] = tmp;
1337 }
1338 }
1339 }
1340
1341 /* Update mask with function. */
1342 for (i = 0; i < 16; ++i) {
1343 a = (i >> (2 * index + 0)) & 1;
1344 b = (i >> (2 * index + 1)) & 1;
1345
1346 aset = (*mask >> i) & 1;
1347 bset = x[b][a];
1348
1349 rset = 0;
1350 if (func == FUNC_AND || func == FUNC_NAND)
1351 rset = aset & bset;
1352 else if (func == FUNC_OR || func == FUNC_NOR)
1353 rset = aset | bset;
1354 else if (func == FUNC_XOR || func == FUNC_NXOR)
1355 rset = aset ^ bset;
1356
1357 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1358 rset = !rset;
1359
1360 *mask &= ~(1 << i);
1361
1362 if (rset)
1363 *mask |= 1 << i;
1364 }
1365}
1366
1367/*
1368 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1369 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1370 * set at any time, but a full mask and value can be set (0/1).
1371 */
1372static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1373{
1374 int i,j;
1375 uint16_t masks[2] = { 0, 0 };
1376
1377 memset(lut, 0, sizeof(struct triggerlut));
1378
1379 /* Constant for simple triggers. */
1380 lut->m4 = 0xa000;
1381
1382 /* Value/mask trigger support. */
1383 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1384 lut->m2d);
1385
1386 /* Rise/fall trigger support. */
1387 for (i = 0, j = 0; i < 16; ++i) {
1388 if (devc->trigger.risingmask & (1 << i) ||
1389 devc->trigger.fallingmask & (1 << i))
1390 masks[j++] = 1 << i;
1391 }
1392
1393 build_lut_entry(masks[0], masks[0], lut->m0d);
1394 build_lut_entry(masks[1], masks[1], lut->m1d);
1395
1396 /* Add glue logic */
1397 if (masks[0] || masks[1]) {
1398 /* Transition trigger. */
1399 if (masks[0] & devc->trigger.risingmask)
1400 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1401 if (masks[0] & devc->trigger.fallingmask)
1402 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1403 if (masks[1] & devc->trigger.risingmask)
1404 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1405 if (masks[1] & devc->trigger.fallingmask)
1406 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1407 } else {
1408 /* Only value/mask trigger. */
1409 lut->m3 = 0xffff;
1410 }
1411
1412 /* Triggertype: event. */
1413 lut->params.selres = 3;
1414
1415 return SR_OK;
1416}
1417
1418static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
1419{
1420 struct dev_context *devc;
1421 struct clockselect_50 clockselect;
1422 int frac, triggerpin, ret;
1423 uint8_t triggerselect = 0;
1424 struct triggerinout triggerinout_conf;
1425 struct triggerlut lut;
1426
1427 if (sdi->status != SR_ST_ACTIVE)
1428 return SR_ERR_DEV_CLOSED;
1429
1430 devc = sdi->priv;
1431
1432 if (convert_trigger(sdi) != SR_OK) {
1433 sr_err("Failed to configure triggers.");
1434 return SR_ERR;
1435 }
1436
1437 /* If the samplerate has not been set, default to 200 kHz. */
1438 if (devc->cur_firmware == -1) {
1439 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1440 return ret;
1441 }
1442
1443 /* Enter trigger programming mode. */
1444 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
1445
1446 /* 100 and 200 MHz mode. */
1447 if (devc->cur_samplerate >= SR_MHZ(100)) {
1448 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
1449
1450 /* Find which pin to trigger on from mask. */
1451 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1452 if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
1453 (1 << triggerpin))
1454 break;
1455
1456 /* Set trigger pin and light LED on trigger. */
1457 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1458
1459 /* Default rising edge. */
1460 if (devc->trigger.fallingmask)
1461 triggerselect |= 1 << 3;
1462
1463 /* All other modes. */
1464 } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1465 build_basic_trigger(&lut, devc);
1466
1467 sigma_write_trigger_lut(&lut, devc);
1468
1469 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1470 }
1471
1472 /* Setup trigger in and out pins to default values. */
1473 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1474 triggerinout_conf.trgout_bytrigger = 1;
1475 triggerinout_conf.trgout_enable = 1;
1476
1477 sigma_write_register(WRITE_TRIGGER_OPTION,
1478 (uint8_t *) &triggerinout_conf,
1479 sizeof(struct triggerinout), devc);
1480
1481 /* Go back to normal mode. */
1482 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
1483
1484 /* Set clock select register. */
1485 if (devc->cur_samplerate == SR_MHZ(200))
1486 /* Enable 4 channels. */
1487 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1488 else if (devc->cur_samplerate == SR_MHZ(100))
1489 /* Enable 8 channels. */
1490 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
1491 else {
1492 /*
1493 * 50 MHz mode (or fraction thereof). Any fraction down to
1494 * 50 MHz / 256 can be used, but is not supported by sigrok API.
1495 */
1496 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
1497
1498 clockselect.async = 0;
1499 clockselect.fraction = frac;
1500 clockselect.disabled_channels = 0;
1501
1502 sigma_write_register(WRITE_CLOCK_SELECT,
1503 (uint8_t *) &clockselect,
1504 sizeof(clockselect), devc);
1505 }
1506
1507 /* Setup maximum post trigger time. */
1508 sigma_set_register(WRITE_POST_TRIGGER,
1509 (devc->capture_ratio * 255) / 100, devc);
1510
1511 /* Start acqusition. */
1512 gettimeofday(&devc->start_tv, 0);
1513 sigma_set_register(WRITE_MODE, 0x0d, devc);
1514
1515 devc->cb_data = cb_data;
1516
1517 /* Send header packet to the session bus. */
1518 std_session_send_df_header(sdi, LOG_PREFIX);
1519
1520 /* Add capture source. */
1521 sr_session_source_add(sdi->session, -1, 0, 10, receive_data, (void *)sdi);
1522
1523 devc->state.state = SIGMA_CAPTURE;
1524
1525 return SR_OK;
1526}
1527
1528static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
1529{
1530 struct dev_context *devc;
1531
1532 (void)cb_data;
1533
1534 devc = sdi->priv;
1535 devc->state.state = SIGMA_IDLE;
1536
1537 sr_session_source_remove(sdi->session, -1);
1538
1539 return SR_OK;
1540}
1541
1542SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1543 .name = "asix-sigma",
1544 .longname = "ASIX SIGMA/SIGMA2",
1545 .api_version = 1,
1546 .init = init,
1547 .cleanup = cleanup,
1548 .scan = scan,
1549 .dev_list = dev_list,
1550 .dev_clear = dev_clear,
1551 .config_get = config_get,
1552 .config_set = config_set,
1553 .config_list = config_list,
1554 .dev_open = dev_open,
1555 .dev_close = dev_close,
1556 .dev_acquisition_start = dev_acquisition_start,
1557 .dev_acquisition_stop = dev_acquisition_stop,
1558 .context = NULL,
1559};