]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/link-mso19/protocol.c
Added limit samples Eveything seems to work find up to 1024 samples
[libsigrok.git] / hardware / link-mso19 / protocol.c
... / ...
CommitLineData
1/*
2 * This file is part of the sigrok project.
3 *
4 * Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "protocol.h"
21#include <arpa/inet.h>
22
23extern SR_PRIV struct sr_dev_driver link_mso19_driver_info;
24static struct sr_dev_driver *di = &link_mso19_driver_info;
25
26SR_PRIV int mso_send_control_message(struct sr_serial_dev_inst *serial,
27 uint16_t payload[], int n)
28{
29 int i, w, ret, s = n * 2 + sizeof(mso_head) + sizeof(mso_foot);
30 char *p, *buf;
31
32 ret = SR_ERR;
33
34 if (serial->fd < 0)
35 goto ret;
36
37 if (!(buf = g_try_malloc(s))) {
38 sr_err("Failed to malloc message buffer.");
39 ret = SR_ERR_MALLOC;
40 goto ret;
41 }
42
43 p = buf;
44 memcpy(p, mso_head, sizeof(mso_head));
45 p += sizeof(mso_head);
46
47 for (i = 0; i < n; i++) {
48 *(uint16_t *) p = htons(payload[i]);
49 p += 2;
50 }
51 memcpy(p, mso_foot, sizeof(mso_foot));
52
53 w = 0;
54 while (w < s) {
55 ret = serial_write(serial, buf + w, s - w);
56 if (ret < 0) {
57 ret = SR_ERR;
58 goto free;
59 }
60 w += ret;
61 }
62 ret = SR_OK;
63free:
64 g_free(buf);
65ret:
66 return ret;
67}
68
69
70SR_PRIV int mso_configure_trigger(struct sr_dev_inst *sdi)
71{
72 struct dev_context *devc = sdi->priv;
73 uint16_t threshold_value = mso_calc_raw_from_mv(devc);
74
75
76 threshold_value = 0x153C;
77 uint8_t trigger_config = 0;
78
79 if (devc->trigger_slope)
80 trigger_config |= 0x04; //Trigger on falling edge
81
82 switch (devc->trigger_outsrc) {
83 case 1:
84 trigger_config |= 0x00; //Trigger pulse output
85 break;
86 case 2:
87 trigger_config |= 0x08; //PWM DAC from the pattern generator buffer
88 break;
89 case 3:
90 trigger_config |= 0x18; //White noise
91 break;
92 }
93
94 switch (devc->trigger_chan) {
95 case 0:
96 trigger_config |= 0x00; //DSO level trigger //b00000000
97 break;
98 case 1:
99 trigger_config |= 0x20; //DSO level trigger & width < trigger_width
100 break;
101 case 2:
102 trigger_config |= 0x40; //DSO level trigger & width >= trigger_width
103 break;
104 case 3:
105 trigger_config |= 0x60; //LA combination trigger
106 break;
107 }
108
109 //Last bit of trigger config reg 4 needs to be 1 for trigger enable,
110 //otherwise the trigger is not enabled
111 if (devc->use_trigger)
112 trigger_config |= 0x80;
113
114 uint16_t ops[18];
115 ops[0] = mso_trans(3, threshold_value & 0xff);
116 //The trigger_config also holds the 2 MSB bits from the threshold value
117 ops[1] = mso_trans(4, trigger_config | (threshold_value >> 8) & 0x03);
118 ops[2] = mso_trans(5, devc->la_trigger);
119 ops[3] = mso_trans(6, devc->la_trigger_mask);
120 ops[4] = mso_trans(7, devc->trigger_holdoff[0]);
121 ops[5] = mso_trans(8, devc->trigger_holdoff[1]);
122
123 ops[6] = mso_trans(11,
124 devc->dso_trigger_width / SR_HZ_TO_NS(devc->cur_rate));
125
126 /* Select the SPI/I2C trigger config bank */
127 ops[7] = mso_trans(REG_CTL2, (devc->ctlbase2 | BITS_CTL2_BANK(2)));
128 /* Configure the SPI/I2C protocol trigger */
129 ops[8] = mso_trans(REG_PT_WORD(0), devc->protocol_trigger.word[0]);
130 ops[9] = mso_trans(REG_PT_WORD(1), devc->protocol_trigger.word[1]);
131 ops[10] = mso_trans(REG_PT_WORD(2), devc->protocol_trigger.word[2]);
132 ops[11] = mso_trans(REG_PT_WORD(3), devc->protocol_trigger.word[3]);
133 ops[12] = mso_trans(REG_PT_MASK(0), devc->protocol_trigger.mask[0]);
134 ops[13] = mso_trans(REG_PT_MASK(1), devc->protocol_trigger.mask[1]);
135 ops[14] = mso_trans(REG_PT_MASK(2), devc->protocol_trigger.mask[2]);
136 ops[15] = mso_trans(REG_PT_MASK(3), devc->protocol_trigger.mask[3]);
137 ops[16] = mso_trans(REG_PT_SPIMODE, devc->protocol_trigger.spimode);
138 /* Select the default config bank */
139 ops[17] = mso_trans(REG_CTL2, devc->ctlbase2);
140
141 return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops));
142}
143
144SR_PRIV int mso_configure_threshold_level(struct sr_dev_inst *sdi)
145{
146 struct dev_context *devc = sdi->priv;
147
148 return mso_dac_out(sdi, la_threshold_map[devc->la_threshold]);
149}
150
151SR_PRIV int mso_read_buffer(struct sr_dev_inst *sdi)
152{
153 uint16_t ops[] = { mso_trans(REG_BUFFER, 0) };
154 struct dev_context *devc = sdi->priv;
155
156 sr_dbg("Requesting buffer dump.");
157 return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops));
158}
159
160SR_PRIV int mso_arm(struct sr_dev_inst *sdi)
161{
162 struct dev_context *devc = sdi->priv;
163 uint16_t ops[] = {
164 mso_trans(REG_CTL1, devc->ctlbase1 | BIT_CTL1_RESETFSM),
165 mso_trans(REG_CTL1, devc->ctlbase1 | BIT_CTL1_ARM),
166 mso_trans(REG_CTL1, devc->ctlbase1),
167 };
168
169 sr_dbg("Requesting trigger arm.");
170 return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops));
171}
172
173SR_PRIV int mso_force_capture(struct sr_dev_inst *sdi)
174{
175 struct dev_context *devc = sdi->priv;
176 uint16_t ops[] = {
177 mso_trans(REG_CTL1, devc->ctlbase1 | 8),
178 mso_trans(REG_CTL1, devc->ctlbase1),
179 };
180
181 sr_dbg("Requesting forced capture.");
182 return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops));
183}
184
185SR_PRIV int mso_dac_out(struct sr_dev_inst *sdi, uint16_t val)
186{
187 struct dev_context *devc = sdi->priv;
188 uint16_t ops[] = {
189 mso_trans(REG_DAC1, (val >> 8) & 0xff),
190 mso_trans(REG_DAC2, val & 0xff),
191 mso_trans(REG_CTL1, devc->ctlbase1 | BIT_CTL1_RESETADC),
192 };
193
194 sr_dbg("Setting dac word to 0x%x.", val);
195 return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops));
196}
197
198SR_PRIV inline uint16_t mso_calc_raw_from_mv(struct dev_context *devc)
199{
200 return (uint16_t) (0x200 -
201 ((devc->dso_trigger_voltage / devc->dso_probe_attn) /
202 devc->vbit));
203}
204
205
206SR_PRIV int mso_parse_serial(const char *iSerial, const char *iProduct,
207 struct dev_context *devc)
208{
209 unsigned int u1, u2, u3, u4, u5, u6;
210
211 iProduct = iProduct;
212 /* FIXME: This code is in the original app, but I think its
213 * used only for the GUI */
214 /* if (strstr(iProduct, "REV_02") || strstr(iProduct, "REV_03"))
215 devc->num_sample_rates = 0x16;
216 else
217 devc->num_sample_rates = 0x10; */
218
219
220 /* parse iSerial */
221 if (iSerial[0] != '4' || sscanf(iSerial, "%5u%3u%3u%1u%1u%6u",
222 &u1, &u2, &u3, &u4, &u5, &u6) != 6)
223 return SR_ERR;
224 devc->hwmodel = u4;
225 devc->hwrev = u5;
226 devc->vbit = u1 / 10000;
227 if (devc->vbit == 0)
228 devc->vbit = 4.19195;
229 devc->dac_offset = u2;
230 if (devc->dac_offset == 0)
231 devc->dac_offset = 0x1ff;
232 devc->offset_range = u3;
233 if (devc->offset_range == 0)
234 devc->offset_range = 0x17d;
235
236 /*
237 * FIXME: There is more code on the original software to handle
238 * bigger iSerial strings, but as I can't test on my device
239 * I will not implement it yet
240 */
241
242 return SR_OK;
243}
244
245SR_PRIV int mso_reset_adc(struct sr_dev_inst *sdi)
246{
247 struct dev_context *devc = sdi->priv;
248 uint16_t ops[2];
249
250 ops[0] = mso_trans(REG_CTL1, (devc->ctlbase1 | BIT_CTL1_RESETADC));
251 ops[1] = mso_trans(REG_CTL1, devc->ctlbase1);
252 devc->ctlbase1 |= BIT_CTL1_ADC_UNKNOWN4;
253
254 sr_dbg("Requesting ADC reset.");
255 return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops));
256}
257
258SR_PRIV int mso_reset_fsm(struct sr_dev_inst *sdi)
259{
260 struct dev_context *devc = sdi->priv;
261 uint16_t ops[1];
262
263 devc->ctlbase1 |= BIT_CTL1_RESETFSM;
264 ops[0] = mso_trans(REG_CTL1, devc->ctlbase1);
265
266 sr_dbg("Requesting ADC reset.");
267 return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops));
268}
269
270SR_PRIV int mso_toggle_led(struct sr_dev_inst *sdi, int state)
271{
272 struct dev_context *devc = sdi->priv;
273 uint16_t ops[1];
274
275 devc->ctlbase1 &= ~BIT_CTL1_LED;
276 if (state)
277 devc->ctlbase1 |= BIT_CTL1_LED;
278 ops[0] = mso_trans(REG_CTL1, devc->ctlbase1);
279
280 sr_dbg("Requesting LED toggle.");
281 return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops));
282}
283
284SR_PRIV void stop_acquisition(const struct sr_dev_inst *sdi)
285{
286 struct sr_datafeed_packet packet;
287 struct dev_context *devc;
288
289 devc = sdi->priv;
290 sr_source_remove(devc->serial->fd);
291
292 /* Terminate session */
293 packet.type = SR_DF_END;
294 sr_session_send(sdi, &packet);
295}
296
297SR_PRIV int mso_clkrate_out(struct sr_serial_dev_inst *serial, uint16_t val)
298{
299 uint16_t ops[] = {
300 mso_trans(REG_CLKRATE1, (val >> 8) & 0xff),
301 mso_trans(REG_CLKRATE2, val & 0xff),
302 };
303
304 sr_dbg("Setting clkrate word to 0x%x.", val);
305 return mso_send_control_message(serial, ARRAY_AND_SIZE(ops));
306}
307
308SR_PRIV int mso_configure_rate(struct sr_dev_inst *sdi, uint32_t rate)
309{
310 struct dev_context *devc = sdi->priv;
311 unsigned int i;
312 int ret = SR_ERR;
313
314 for (i = 0; i < ARRAY_SIZE(rate_map); i++) {
315 if (rate_map[i].rate == rate) {
316 devc->ctlbase2 = rate_map[i].slowmode;
317 ret = mso_clkrate_out(devc->serial, rate_map[i].val);
318 if (ret == SR_OK)
319 devc->cur_rate = rate;
320 return ret;
321 }
322 }
323
324 if (ret != SR_OK)
325 sr_err("Unsupported rate.");
326
327 return ret;
328}
329
330
331
332
333
334SR_PRIV int mso_check_trigger(struct sr_serial_dev_inst *serial, uint8_t *info)
335{
336 uint16_t ops[] = { mso_trans(REG_TRIGGER, 0) };
337 int ret;
338
339 sr_dbg("Requesting trigger state.");
340 ret = mso_send_control_message(serial, ARRAY_AND_SIZE(ops));
341 if (info == NULL || ret != SR_OK)
342 return ret;
343
344
345 uint8_t buf = 0;
346 if (serial_read(serial, &buf, 1) != 1) /* FIXME: Need timeout */
347 ret = SR_ERR;
348 *info = buf;
349
350 sr_dbg("Trigger state is: 0x%x.", *info);
351 return ret;
352}
353
354SR_PRIV int mso_receive_data(int fd, int revents, void *cb_data)
355{
356
357 struct sr_datafeed_packet packet;
358 struct sr_datafeed_logic logic;
359 struct sr_dev_inst *sdi;
360 GSList *l;
361 int i;
362
363 struct drv_context *drvc = di->priv;
364
365 /* Find this device's devc struct by its fd. */
366 struct dev_context *devc = NULL;
367 for (l = drvc->instances; l; l = l->next) {
368 sdi = l->data;
369 devc = sdi->priv;
370 if (devc->serial->fd == fd)
371 break;
372 devc = NULL;
373 }
374 if (!devc)
375 /* Shouldn't happen. */
376 return TRUE;
377
378 (void)revents;
379
380 uint8_t in[1024];
381 size_t s = serial_read(devc->serial, in, sizeof(in));
382
383 if (s <= 0)
384 return FALSE;
385
386 /* Check if we triggered, then send a command that we are ready
387 * to read the data */
388 if (devc->trigger_state != MSO_TRIGGER_DATAREADY) {
389 devc->trigger_state = in[0];
390 if (devc->trigger_state == MSO_TRIGGER_DATAREADY) {
391 mso_read_buffer(sdi);
392 devc->buffer_n = 0;
393 } else {
394 mso_check_trigger(devc->serial, NULL);
395 }
396 return TRUE;
397 }
398
399 /* the hardware always dumps 1024 samples, 24bits each */
400 if (devc->buffer_n < 3072) {
401 memcpy(devc->buffer + devc->buffer_n, in, s);
402 devc->buffer_n += s;
403 }
404 if (devc->buffer_n < 3072)
405 return TRUE;
406
407 /* do the conversion */
408 uint8_t logic_out[1024];
409 double analog_out[1024];
410 for (i = 0; i < 1024; i++) {
411 /* FIXME: Need to do conversion to mV */
412 analog_out[i] = (devc->buffer[i * 3] & 0x3f) |
413 ((devc->buffer[i * 3 + 1] & 0xf) << 6);
414 logic_out[i] = ((devc->buffer[i * 3 + 1] & 0x30) >> 4) |
415 ((devc->buffer[i * 3 + 2] & 0x3f) << 2);
416 }
417
418 packet.type = SR_DF_LOGIC;
419 packet.payload = &logic;
420 logic.length = 1024;
421 logic.unitsize = 1;
422 logic.data = logic_out;
423 sr_session_send(cb_data, &packet);
424
425 devc->num_samples += 1024;
426
427 // Dont bother fixing this yet, keep it "old style"
428 /*
429 packet.type = SR_DF_ANALOG;
430 packet.length = 1024;
431 packet.unitsize = sizeof(double);
432 packet.payload = analog_out;
433 sr_session_send(ctx->session_dev_id, &packet);
434 */
435
436 if (devc->limit_samples && devc->num_samples >= devc->limit_samples) {
437 sr_info("Requested number of samples reached.");
438 sdi->driver->dev_acquisition_stop(sdi, cb_data);
439 }
440
441 return TRUE;
442}
443
444SR_PRIV int mso_configure_probes(const struct sr_dev_inst *sdi)
445{
446 struct dev_context *devc;
447 struct sr_probe *probe;
448 GSList *l;
449 int probe_bit, stage, i;
450 char *tc;
451
452
453 devc = sdi->priv;
454
455 devc->la_trigger_mask = 0xFF; //the mask for the LA_TRIGGER (bits set to 0 matter, those set to 1 are ignored).
456 devc->la_trigger = 0x00; //The value of the LA byte that generates a trigger event (in that mode).
457 devc->dso_trigger_voltage = 3;
458 devc->dso_probe_attn = 1;
459 devc->trigger_outsrc = 0;
460 devc->trigger_chan = 3; //LA combination trigger
461 devc->use_trigger = FALSE;
462
463 for (l = sdi->probes; l; l = l->next) {
464 probe = (struct sr_probe *)l->data;
465 if (probe->enabled == FALSE)
466 continue;
467
468 int probe_bit = 1 << (probe->index);
469 if (!(probe->trigger))
470 continue;
471
472 devc->use_trigger = TRUE;
473 //Configure trigger mask and value.
474 for (tc = probe->trigger; *tc; tc++) {
475 devc->la_trigger_mask &= ~probe_bit;
476 if (*tc == '1')
477 devc->la_trigger |= probe_bit;
478 }
479 }
480
481 return SR_OK;
482}
483
484
485