]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/link-mso19/link-mso19.c
link-mso19: Properly initialize the protocol trigger block
[libsigrok.git] / hardware / link-mso19 / link-mso19.c
... / ...
CommitLineData
1/*
2 * This file is part of the sigrok project.
3 *
4 * Copyright (C) 2011 Daniel Ribeiro <drwyrm@gmail.com>
5 * Copyright (C) 2012 Renato Caldas <rmsc@fe.up.pt>
6 *
7 * This program is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21#include <stdio.h>
22#include <stdlib.h>
23#include <string.h>
24#include <unistd.h>
25#include <fcntl.h>
26#include <sys/time.h>
27#include <inttypes.h>
28#include <glib.h>
29#include <libudev.h>
30#include <arpa/inet.h>
31#include "sigrok.h"
32#include "sigrok-internal.h"
33#include "config.h"
34#include "link-mso19.h"
35
36#define USB_VENDOR "3195"
37#define USB_PRODUCT "f190"
38
39#define NUM_PROBES 8
40
41static int capabilities[] = {
42 SR_HWCAP_LOGIC_ANALYZER,
43// SR_HWCAP_OSCILLOSCOPE,
44// SR_HWCAP_PAT_GENERATOR,
45
46 SR_HWCAP_SAMPLERATE,
47// SR_HWCAP_CAPTURE_RATIO,
48 SR_HWCAP_LIMIT_SAMPLES,
49 0,
50};
51
52static const char *probe_names[NUM_PROBES + 1] = {
53 "0",
54 "1",
55 "2",
56 "3",
57 "4",
58 "5",
59 "6",
60 "7",
61 NULL,
62};
63
64static uint64_t supported_samplerates[] = {
65 SR_HZ(100),
66 SR_HZ(200),
67 SR_HZ(500),
68 SR_KHZ(1),
69 SR_KHZ(2),
70 SR_KHZ(5),
71 SR_KHZ(10),
72 SR_KHZ(20),
73 SR_KHZ(50),
74 SR_KHZ(100),
75 SR_KHZ(200),
76 SR_KHZ(500),
77 SR_MHZ(1),
78 SR_MHZ(2),
79 SR_MHZ(5),
80 SR_MHZ(10),
81 SR_MHZ(20),
82 SR_MHZ(50),
83 SR_MHZ(100),
84 SR_MHZ(200),
85 0,
86};
87
88static struct sr_samplerates samplerates = {
89 SR_HZ(100),
90 SR_MHZ(200),
91 SR_HZ(0),
92 supported_samplerates,
93};
94
95static GSList *device_instances = NULL;
96
97static int mso_send_control_message(struct sr_device_instance *sdi,
98 uint16_t payload[], int n)
99{
100 int fd = sdi->serial->fd;
101 int i, w, ret, s = n * 2 + sizeof(mso_head) + sizeof(mso_foot);
102 char *p, *buf;
103
104 ret = SR_ERR;
105
106 if (fd < 0)
107 goto ret;
108
109 if (!(buf = g_try_malloc(s))) {
110 sr_err("mso19: %s: buf malloc failed", __func__);
111 ret = SR_ERR_MALLOC;
112 goto ret;
113 }
114
115 p = buf;
116 memcpy(p, mso_head, sizeof(mso_head));
117 p += sizeof(mso_head);
118
119 for (i = 0; i < n; i++) {
120 *(uint16_t *) p = htons(payload[i]);
121 p += 2;
122 }
123 memcpy(p, mso_foot, sizeof(mso_foot));
124
125 w = 0;
126 while (w < s) {
127 ret = serial_write(fd, buf + w, s - w);
128 if (ret < 0) {
129 ret = SR_ERR;
130 goto free;
131 }
132 w += ret;
133 }
134 ret = SR_OK;
135free:
136 g_free(buf);
137ret:
138 return ret;
139}
140
141static int mso_reset_adc(struct sr_device_instance *sdi)
142{
143 struct mso *mso = sdi->priv;
144 uint16_t ops[2];
145
146 ops[0] = mso_trans(REG_CTL1, (mso->ctlbase1 | BIT_CTL1_RESETADC));
147 ops[1] = mso_trans(REG_CTL1, mso->ctlbase1);
148 mso->ctlbase1 |= BIT_CTL1_ADC_UNKNOWN4;
149
150 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
151}
152
153static int mso_reset_fsm(struct sr_device_instance *sdi)
154{
155 struct mso *mso = sdi->priv;
156 uint16_t ops[1];
157
158 mso->ctlbase1 |= BIT_CTL1_RESETFSM;
159 ops[0] = mso_trans(REG_CTL1, mso->ctlbase1);
160
161 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
162}
163
164static int mso_toggle_led(struct sr_device_instance *sdi, int state)
165{
166 struct mso *mso = sdi->priv;
167 uint16_t ops[1];
168
169 mso->ctlbase1 &= BIT_CTL1_LED;
170 if (state)
171 mso->ctlbase1 |= BIT_CTL1_LED;
172 ops[0] = mso_trans(REG_CTL1, mso->ctlbase1);
173
174 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
175}
176
177static int mso_check_trigger(struct sr_device_instance *sdi,
178 uint8_t *info)
179{
180 uint16_t ops[] = { mso_trans(REG_TRIGGER, 0) };
181 char buf[1];
182 int ret;
183
184 ret = mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
185 if (info == NULL || ret != SR_OK)
186 return ret;
187
188 buf[0] = 0;
189 if (serial_read(sdi->serial->fd, buf, 1) != 1) /* FIXME: Need timeout */
190 ret = SR_ERR;
191 *info = buf[0];
192
193 return ret;
194}
195
196static int mso_read_buffer(struct sr_device_instance *sdi)
197{
198 uint16_t ops[] = { mso_trans(REG_BUFFER, 0) };
199
200 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
201}
202
203static int mso_arm(struct sr_device_instance *sdi)
204{
205 struct mso *mso = sdi->priv;
206 uint16_t ops[] = {
207 mso_trans(REG_CTL1, mso->ctlbase1 | BIT_CTL1_RESETFSM),
208 mso_trans(REG_CTL1, mso->ctlbase1 | BIT_CTL1_ARM),
209 mso_trans(REG_CTL1, mso->ctlbase1),
210 };
211
212 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
213}
214
215static int mso_force_capture(struct sr_device_instance *sdi)
216{
217 struct mso *mso = sdi->priv;
218 uint16_t ops[] = {
219 mso_trans(REG_CTL1, mso->ctlbase1 | 8),
220 mso_trans(REG_CTL1, mso->ctlbase1),
221 };
222
223 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
224}
225
226static int mso_dac_out(struct sr_device_instance *sdi, uint16_t val)
227{
228 struct mso *mso = sdi->priv;
229 uint16_t ops[] = {
230 mso_trans(REG_DAC1, (val >> 8) & 0xff),
231 mso_trans(REG_DAC2, val & 0xff),
232 mso_trans(REG_CTL1, mso->ctlbase1 | BIT_CTL1_RESETADC),
233 };
234
235 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
236}
237
238static int mso_clkrate_out(struct sr_device_instance *sdi, uint16_t val)
239{
240 uint16_t ops[] = {
241 mso_trans(REG_CLKRATE1, (val >> 8) & 0xff),
242 mso_trans(REG_CLKRATE2, val & 0xff),
243 };
244
245 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
246}
247
248static int mso_configure_rate(struct sr_device_instance *sdi,
249 uint32_t rate)
250{
251 struct mso *mso = sdi->priv;
252 unsigned int i;
253 int ret = SR_ERR;
254
255 for (i = 0; i < ARRAY_SIZE(rate_map); i++) {
256 if (rate_map[i].rate == rate) {
257 mso->ctlbase2 = rate_map[i].slowmode;
258 ret = mso_clkrate_out(sdi, rate_map[i].val);
259 if (ret == SR_OK)
260 mso->cur_rate = rate;
261 return ret;
262 }
263 }
264 return ret;
265}
266
267static inline uint16_t mso_calc_raw_from_mv(struct mso *mso)
268{
269 return (uint16_t) (0x200 -
270 ((mso->dso_trigger_voltage / mso->dso_probe_attn) /
271 mso->vbit));
272}
273
274static int mso_configure_trigger(struct sr_device_instance *sdi)
275{
276 struct mso *mso = sdi->priv;
277 uint16_t ops[16];
278 uint16_t dso_trigger = mso_calc_raw_from_mv(mso);
279
280 dso_trigger &= 0x3ff;
281 if ((!mso->trigger_slope && mso->trigger_chan == 1) ||
282 (mso->trigger_slope &&
283 (mso->trigger_chan == 0 ||
284 mso->trigger_chan == 2 ||
285 mso->trigger_chan == 3)))
286 dso_trigger |= 0x400;
287
288 switch (mso->trigger_chan) {
289 case 1:
290 dso_trigger |= 0xe000;
291 case 2:
292 dso_trigger |= 0x4000;
293 break;
294 case 3:
295 dso_trigger |= 0x2000;
296 break;
297 case 4:
298 dso_trigger |= 0xa000;
299 break;
300 case 5:
301 dso_trigger |= 0x8000;
302 break;
303 default:
304 case 0:
305 break;
306 }
307
308 switch (mso->trigger_outsrc) {
309 case 1:
310 dso_trigger |= 0x800;
311 break;
312 case 2:
313 dso_trigger |= 0x1000;
314 break;
315 case 3:
316 dso_trigger |= 0x1800;
317 break;
318
319 }
320
321 ops[0] = mso_trans(5, mso->la_trigger);
322 ops[1] = mso_trans(6, mso->la_trigger_mask);
323 ops[2] = mso_trans(3, dso_trigger & 0xff);
324 ops[3] = mso_trans(4, (dso_trigger >> 8) & 0xff);
325 ops[4] = mso_trans(11,
326 mso->dso_trigger_width / SR_HZ_TO_NS(mso->cur_rate));
327
328 /* Select the SPI/I2C trigger config bank */
329 ops[5] = mso_trans(REG_CTL2, (mso->ctlbase2 | BITS_CTL2_BANK(2)));
330 /* Configure the SPI/I2C protocol trigger */
331 ops[6] = mso_trans(REG_PT_WORD(0), mso->protocol_trigger.word[0]);
332 ops[7] = mso_trans(REG_PT_WORD(1), mso->protocol_trigger.word[1]);
333 ops[8] = mso_trans(REG_PT_WORD(2), mso->protocol_trigger.word[2]);
334 ops[9] = mso_trans(REG_PT_WORD(3), mso->protocol_trigger.word[3]);
335 ops[10] = mso_trans(REG_PT_MASK(0), mso->protocol_trigger.mask[0]);
336 ops[11] = mso_trans(REG_PT_MASK(1), mso->protocol_trigger.mask[1]);
337 ops[12] = mso_trans(REG_PT_MASK(2), mso->protocol_trigger.mask[2]);
338 ops[13] = mso_trans(REG_PT_MASK(3), mso->protocol_trigger.mask[3]);
339 ops[14] = mso_trans(REG_PT_SPIMODE, mso->protocol_trigger.spimode);
340 /* Select the default config bank */
341 ops[15] = mso_trans(REG_CTL2, mso->ctlbase2);
342
343 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
344}
345
346static int mso_configure_threshold_level(struct sr_device_instance *sdi)
347{
348 struct mso *mso = sdi->priv;
349
350 return mso_dac_out(sdi, la_threshold_map[mso->la_threshold]);
351}
352
353static int mso_parse_serial(const char *iSerial, const char *iProduct,
354 struct mso *mso)
355{
356 unsigned int u1, u2, u3, u4, u5, u6;
357
358 iProduct = iProduct;
359 /* FIXME: This code is in the original app, but I think its
360 * used only for the GUI */
361/* if (strstr(iProduct, "REV_02") || strstr(iProduct, "REV_03"))
362 mso->num_sample_rates = 0x16;
363 else
364 mso->num_sample_rates = 0x10; */
365
366 /* parse iSerial */
367 if (iSerial[0] != '4' || sscanf(iSerial, "%5u%3u%3u%1u%1u%6u",
368 &u1, &u2, &u3, &u4, &u5, &u6) != 6)
369 return SR_ERR;
370 mso->hwmodel = u4;
371 mso->hwrev = u5;
372 mso->serial = u6;
373 mso->vbit = u1 / 10000;
374 if (mso->vbit == 0)
375 mso->vbit = 4.19195;
376 mso->dac_offset = u2;
377 if (mso->dac_offset == 0)
378 mso->dac_offset = 0x1ff;
379 mso->offset_range = u3;
380 if (mso->offset_range == 0)
381 mso->offset_range = 0x17d;
382
383 /*
384 * FIXME: There is more code on the original software to handle
385 * bigger iSerial strings, but as I can't test on my device
386 * I will not implement it yet
387 */
388
389 return SR_OK;
390}
391
392static int hw_init(const char *deviceinfo)
393{
394 struct sr_device_instance *sdi;
395 int devcnt = 0;
396 struct udev *udev;
397 struct udev_enumerate *enumerate;
398 struct udev_list_entry *devices, *dev_list_entry;
399 struct mso *mso;
400
401 deviceinfo = deviceinfo;
402
403 /* It's easier to map usb<->serial using udev */
404 /*
405 * FIXME: On windows we can get the same information from the
406 * registry, add an #ifdef here later
407 */
408 udev = udev_new();
409 if (!udev) {
410 sr_warn("Failed to initialize udev.");
411 goto ret;
412 }
413 enumerate = udev_enumerate_new(udev);
414 udev_enumerate_add_match_subsystem(enumerate, "usb-serial");
415 udev_enumerate_scan_devices(enumerate);
416 devices = udev_enumerate_get_list_entry(enumerate);
417 udev_list_entry_foreach(dev_list_entry, devices) {
418 const char *syspath, *sysname, *idVendor, *idProduct,
419 *iSerial, *iProduct;
420 char path[32], manufacturer[32], product[32], hwrev[32];
421 struct udev_device *dev, *parent;
422 size_t s;
423
424 syspath = udev_list_entry_get_name(dev_list_entry);
425 dev = udev_device_new_from_syspath(udev, syspath);
426 sysname = udev_device_get_sysname(dev);
427 parent = udev_device_get_parent_with_subsystem_devtype(
428 dev, "usb", "usb_device");
429 if (!parent) {
430 sr_warn("Unable to find parent usb device for %s",
431 sysname);
432 continue;
433 }
434
435 idVendor = udev_device_get_sysattr_value(parent, "idVendor");
436 idProduct = udev_device_get_sysattr_value(parent, "idProduct");
437 if (strcmp(USB_VENDOR, idVendor)
438 || strcmp(USB_PRODUCT, idProduct))
439 continue;
440
441 iSerial = udev_device_get_sysattr_value(parent, "serial");
442 iProduct = udev_device_get_sysattr_value(parent, "product");
443
444 snprintf(path, sizeof(path), "/dev/%s", sysname);
445
446 s = strcspn(iProduct, " ");
447 if (s > sizeof(product) ||
448 strlen(iProduct) - s > sizeof(manufacturer)) {
449 sr_warn("Could not parse iProduct: %s", iProduct);
450 continue;
451 }
452 strncpy(product, iProduct, s);
453 product[s] = 0;
454 strcpy(manufacturer, iProduct + s);
455
456 if (!(mso = g_try_malloc0(sizeof(struct mso)))) {
457 sr_err("mso19: %s: mso malloc failed", __func__);
458 continue; /* TODO: Errors handled correctly? */
459 }
460
461 if (mso_parse_serial(iSerial, iProduct, mso) != SR_OK) {
462 sr_warn("Invalid iSerial: %s", iSerial);
463 goto err_free_mso;
464 }
465 sprintf(hwrev, "r%d", mso->hwrev);
466
467 /* hardware initial state */
468 mso->ctlbase1 = 0;
469 {
470 /* Initialize the protocol trigger configuration */
471 int i;
472 for (i = 0; i < 4; i++)
473 {
474 mso->protocol_trigger.word[i] = 0;
475 mso->protocol_trigger.mask[i] = 0xff;
476 }
477 mso->protocol_trigger.spimode = 0;
478 }
479
480 sdi = sr_device_instance_new(devcnt, SR_ST_INITIALIZING,
481 manufacturer, product, hwrev);
482 if (!sdi) {
483 sr_warn("Unable to create device instance for %s",
484 sysname);
485 goto err_free_mso;
486 }
487
488 /* save a pointer to our private instance data */
489 sdi->priv = mso;
490
491 sdi->serial = sr_serial_device_instance_new(path, -1);
492 if (!sdi->serial)
493 goto err_device_instance_free;
494
495 device_instances = g_slist_append(device_instances, sdi);
496 devcnt++;
497 continue;
498
499err_device_instance_free:
500 sr_device_instance_free(sdi);
501err_free_mso:
502 free(mso);
503 }
504
505 udev_enumerate_unref(enumerate);
506 udev_unref(udev);
507
508ret:
509 return devcnt;
510}
511
512static void hw_cleanup(void)
513{
514 GSList *l;
515 struct sr_device_instance *sdi;
516
517 /* Properly close all devices. */
518 for (l = device_instances; l; l = l->next) {
519 sdi = l->data;
520 if (sdi->serial->fd != -1)
521 serial_close(sdi->serial->fd);
522 if (sdi->priv != NULL)
523 free(sdi->priv);
524 sr_device_instance_free(sdi);
525 }
526 g_slist_free(device_instances);
527 device_instances = NULL;
528}
529
530static int hw_opendev(int device_index)
531{
532 struct sr_device_instance *sdi;
533 struct mso *mso;
534 int ret = SR_ERR;
535
536 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
537 return ret;
538
539 mso = sdi->priv;
540 sdi->serial->fd = serial_open(sdi->serial->port, O_RDWR);
541 if (sdi->serial->fd == -1)
542 return ret;
543
544 ret = serial_set_params(sdi->serial->fd, 460800, 8, 0, 1, 2);
545 if (ret != SR_OK)
546 return ret;
547
548 sdi->status = SR_ST_ACTIVE;
549
550 /* FIXME: discard serial buffer */
551
552 mso_check_trigger(sdi, &mso->trigger_state);
553// sr_warn("trigger state: %c", mso->trigger_state);
554
555 ret = mso_reset_adc(sdi);
556 if (ret != SR_OK)
557 return ret;
558
559 mso_check_trigger(sdi, &mso->trigger_state);
560// sr_warn("trigger state: %c", mso->trigger_state);
561
562// ret = mso_reset_fsm(sdi);
563// if (ret != SR_OK)
564// return ret;
565
566// return SR_ERR;
567 return SR_OK;
568}
569
570static int hw_closedev(int device_index)
571{
572 struct sr_device_instance *sdi;
573
574 if (!(sdi = sr_get_device_instance(device_instances, device_index))) {
575 sr_err("mso19: %s: sdi was NULL", __func__);
576 return SR_ERR; /* TODO: SR_ERR_ARG? */
577 }
578
579 /* TODO */
580 if (sdi->serial->fd != -1) {
581 serial_close(sdi->serial->fd);
582 sdi->serial->fd = -1;
583 sdi->status = SR_ST_INACTIVE;
584 }
585
586 return SR_OK;
587}
588
589static void *hw_get_device_info(int device_index, int device_info_id)
590{
591 struct sr_device_instance *sdi;
592 struct mso *mso;
593 void *info = NULL;
594
595 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
596 return NULL;
597 mso = sdi->priv;
598
599 switch (device_info_id) {
600 case SR_DI_INSTANCE:
601 info = sdi;
602 break;
603 case SR_DI_NUM_PROBES: /* FIXME: How to report analog probe? */
604 info = GINT_TO_POINTER(NUM_PROBES);
605 break;
606 case SR_DI_PROBE_NAMES:
607 info = probe_names;
608 break;
609 case SR_DI_SAMPLERATES:
610 info = &samplerates;
611 break;
612 case SR_DI_TRIGGER_TYPES:
613 info = "01"; /* FIXME */
614 break;
615 case SR_DI_CUR_SAMPLERATE:
616 info = &mso->cur_rate;
617 break;
618 }
619 return info;
620}
621
622static int hw_get_status(int device_index)
623{
624 struct sr_device_instance *sdi;
625
626 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
627 return SR_ST_NOT_FOUND;
628
629 return sdi->status;
630}
631
632static int *hw_get_capabilities(void)
633{
634 return capabilities;
635}
636
637static int hw_set_configuration(int device_index, int capability, void *value)
638{
639 struct sr_device_instance *sdi;
640
641 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
642 return SR_ERR;
643
644 switch (capability) {
645 case SR_HWCAP_SAMPLERATE:
646 return mso_configure_rate(sdi, *(uint64_t *) value);
647 case SR_HWCAP_PROBECONFIG:
648 case SR_HWCAP_LIMIT_SAMPLES:
649 default:
650 return SR_OK; /* FIXME */
651 }
652}
653
654#define MSO_TRIGGER_UNKNOWN '!'
655#define MSO_TRIGGER_UNKNOWN1 '1'
656#define MSO_TRIGGER_UNKNOWN2 '2'
657#define MSO_TRIGGER_UNKNOWN3 '3'
658#define MSO_TRIGGER_WAIT '4'
659#define MSO_TRIGGER_FIRED '5'
660#define MSO_TRIGGER_DATAREADY '6'
661
662/* FIXME: Pass errors? */
663static int receive_data(int fd, int revents, void *user_data)
664{
665 struct sr_device_instance *sdi = user_data;
666 struct mso *mso = sdi->priv;
667 struct sr_datafeed_packet packet;
668 struct sr_datafeed_logic logic;
669 uint8_t in[1024], logic_out[1024];
670 double analog_out[1024];
671 size_t i, s;
672
673 revents = revents;
674
675 s = serial_read(fd, in, sizeof(in));
676 if (s <= 0)
677 return FALSE;
678
679 /* No samples */
680 if (mso->trigger_state != MSO_TRIGGER_DATAREADY) {
681 mso->trigger_state = in[0];
682 if (mso->trigger_state == MSO_TRIGGER_DATAREADY) {
683 mso_read_buffer(sdi);
684 mso->buffer_n = 0;
685 } else {
686 mso_check_trigger(sdi, NULL);
687 }
688 return FALSE;
689 }
690
691 /* the hardware always dumps 1024 samples, 24bits each */
692 if (mso->buffer_n < 3072) {
693 memcpy(mso->buffer + mso->buffer_n, in, s);
694 mso->buffer_n += s;
695 }
696 if (mso->buffer_n < 3072)
697 return FALSE;
698
699 /* do the conversion */
700 for (i = 0; i < 1024; i++) {
701 /* FIXME: Need to do conversion to mV */
702 analog_out[i] = (mso->buffer[i * 3] & 0x3f) |
703 ((mso->buffer[i * 3 + 1] & 0xf) << 6);
704 logic_out[i] = ((mso->buffer[i * 3 + 1] & 0x30) >> 4) |
705 ((mso->buffer[i * 3 + 2] & 0x3f) << 2);
706 }
707
708 packet.type = SR_DF_LOGIC;
709 packet.payload = &logic;
710 logic.length = 1024;
711 logic.unitsize = 1;
712 logic.data = logic_out;
713 sr_session_bus(mso->session_id, &packet);
714
715 // Dont bother fixing this yet, keep it "old style"
716 /*
717 packet.type = SR_DF_ANALOG;
718 packet.length = 1024;
719 packet.unitsize = sizeof(double);
720 packet.payload = analog_out;
721 sr_session_bus(mso->session_id, &packet);
722 */
723
724 packet.type = SR_DF_END;
725 sr_session_bus(mso->session_id, &packet);
726
727 return TRUE;
728}
729
730static int hw_start_acquisition(int device_index, gpointer session_device_id)
731{
732 struct sr_device_instance *sdi;
733 struct mso *mso;
734 struct sr_datafeed_packet packet;
735 struct sr_datafeed_header header;
736 int ret = SR_ERR;
737
738 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
739 return ret;
740 mso = sdi->priv;
741
742 /* FIXME: No need to do full reconfigure every time */
743// ret = mso_reset_fsm(sdi);
744// if (ret != SR_OK)
745// return ret;
746
747 /* FIXME: ACDC Mode */
748 mso->ctlbase1 &= 0x7f;
749// mso->ctlbase1 |= mso->acdcmode;
750
751 ret = mso_configure_rate(sdi, mso->cur_rate);
752 if (ret != SR_OK)
753 return ret;
754
755 /* set dac offset */
756 ret = mso_dac_out(sdi, mso->dac_offset);
757 if (ret != SR_OK)
758 return ret;
759
760 ret = mso_configure_threshold_level(sdi);
761 if (ret != SR_OK)
762 return ret;
763
764 ret = mso_configure_trigger(sdi);
765 if (ret != SR_OK)
766 return ret;
767
768 /* FIXME: trigger_position */
769
770
771 /* END of config hardware part */
772
773 /* with trigger */
774 ret = mso_arm(sdi);
775 if (ret != SR_OK)
776 return ret;
777
778 /* without trigger */
779// ret = mso_force_capture(sdi);
780// if (ret != SR_OK)
781// return ret;
782
783 mso_check_trigger(sdi, &mso->trigger_state);
784 ret = mso_check_trigger(sdi, NULL);
785 if (ret != SR_OK)
786 return ret;
787
788 mso->session_id = session_device_id;
789 sr_source_add(sdi->serial->fd, G_IO_IN, -1, receive_data, sdi);
790
791 packet.type = SR_DF_HEADER;
792 packet.payload = (unsigned char *) &header;
793 header.feed_version = 1;
794 gettimeofday(&header.starttime, NULL);
795 header.samplerate = mso->cur_rate;
796 header.num_analog_probes = 1;
797 header.num_logic_probes = 8;
798 sr_session_bus(session_device_id, &packet);
799
800 return ret;
801}
802
803/* FIXME */
804static void hw_stop_acquisition(int device_index, gpointer session_device_id)
805{
806 struct sr_datafeed_packet packet;
807
808 device_index = device_index;
809
810 packet.type = SR_DF_END;
811 sr_session_bus(session_device_id, &packet);
812}
813
814struct sr_device_plugin link_mso19_plugin_info = {
815 .name = "link-mso19",
816 .longname = "Link Instruments MSO-19",
817 .api_version = 1,
818 .init = hw_init,
819 .cleanup = hw_cleanup,
820 .opendev = hw_opendev,
821 .closedev = hw_closedev,
822 .get_device_info = hw_get_device_info,
823 .get_status = hw_get_status,
824 .get_capabilities = hw_get_capabilities,
825 .set_configuration = hw_set_configuration,
826 .start_acquisition = hw_start_acquisition,
827 .stop_acquisition = hw_stop_acquisition,
828};