]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/link-mso19/link-mso19.c
Add sr_ prefix to session_{add,remove}.
[libsigrok.git] / hardware / link-mso19 / link-mso19.c
... / ...
CommitLineData
1/*
2 * This file is part of the sigrok project.
3 *
4 * Copyright (C) 2011 Daniel Ribeiro <drwyrm@gmail.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <stdio.h>
21#include <stdlib.h>
22#include <string.h>
23#include <unistd.h>
24#include <fcntl.h>
25#include <sys/time.h>
26#include <inttypes.h>
27#include <glib.h>
28#include <libudev.h>
29#include <sigrok.h>
30#include <arpa/inet.h>
31#include <sigrok-internal.h>
32#include "config.h"
33#include "link-mso19.h"
34
35#define USB_VENDOR "3195"
36#define USB_PRODUCT "f190"
37
38static int capabilities[] = {
39 SR_HWCAP_LOGIC_ANALYZER,
40// SR_HWCAP_OSCILLOSCOPE,
41// SR_HWCAP_PAT_GENERATOR,
42
43 SR_HWCAP_SAMPLERATE,
44// SR_HWCAP_CAPTURE_RATIO,
45 SR_HWCAP_LIMIT_SAMPLES,
46 0,
47};
48
49static uint64_t supported_samplerates[] = {
50 100, 200, 500, KHZ(1), KHZ(2), KHZ(5), KHZ(10), KHZ(20),
51 KHZ(50), KHZ(100), KHZ(200), KHZ(500), MHZ(1), MHZ(2), MHZ(5),
52 MHZ(10), MHZ(20), MHZ(50), MHZ(100), MHZ(200), 0
53};
54
55static struct sr_samplerates samplerates = {
56 100, MHZ(200), 0, supported_samplerates,
57};
58
59static GSList *device_instances = NULL;
60
61static int mso_send_control_message(struct sr_device_instance *sdi,
62 uint16_t payload[], int n)
63{
64 int fd = sdi->serial->fd;
65 int i, w, ret, s = n * 2 + sizeof(mso_head) + sizeof(mso_foot);
66 char *p, *buf;
67
68 if (fd < 0)
69 goto ret;
70
71 buf = malloc(s);
72 if (!buf)
73 goto ret;
74
75 p = buf;
76 memcpy(p, mso_head, sizeof(mso_head));
77 p += sizeof(mso_head);
78
79 for (i = 0; i < n; i++) {
80 *(uint16_t *) p = htons(payload[i]);
81 p += 2;
82 }
83 memcpy(p, mso_foot, sizeof(mso_foot));
84
85 w = 0;
86 while (w < s) {
87 ret = serial_write(fd, buf + w, s - w);
88 if (ret < 0) {
89 ret = SR_ERR;
90 goto free;
91 }
92 w += ret;
93 }
94 ret = SR_OK;
95free:
96 free(buf);
97ret:
98 return ret;
99}
100
101static int mso_reset_adc(struct sr_device_instance *sdi)
102{
103 struct mso *mso = sdi->priv;
104 uint16_t ops[2];
105
106 ops[0] = mso_trans(REG_CTL, (mso->ctlbase | BIT_CTL_RESETADC));
107 ops[1] = mso_trans(REG_CTL, mso->ctlbase);
108 mso->ctlbase |= BIT_CTL_ADC_UNKNOWN4;
109
110 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
111}
112
113static int mso_reset_fsm(struct sr_device_instance *sdi)
114{
115 struct mso *mso = sdi->priv;
116 uint16_t ops[1];
117
118 mso->ctlbase |= BIT_CTL_RESETFSM;
119 ops[0] = mso_trans(REG_CTL, mso->ctlbase);
120
121 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
122}
123
124static int mso_toggle_led(struct sr_device_instance *sdi, int state)
125{
126 struct mso *mso = sdi->priv;
127 uint16_t ops[1];
128
129 mso->ctlbase &= BIT_CTL_LED;
130 if (state)
131 mso->ctlbase |= BIT_CTL_LED;
132 ops[0] = mso_trans(REG_CTL, mso->ctlbase);
133
134 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
135}
136
137static int mso_check_trigger(struct sr_device_instance *sdi,
138 uint8_t *info)
139{
140 uint16_t ops[] = { mso_trans(REG_TRIGGER, 0) };
141 char buf[1];
142 int ret;
143
144 ret = mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
145 if (info == NULL || ret != SR_OK)
146 return ret;
147
148 buf[0] = 0;
149 if (serial_read(sdi->serial->fd, buf, 1) != 1) /* FIXME: Need timeout */
150 ret = SR_ERR;
151 *info = buf[0];
152
153 return ret;
154}
155
156static int mso_read_buffer(struct sr_device_instance *sdi)
157{
158 uint16_t ops[] = { mso_trans(REG_BUFFER, 0) };
159
160 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
161}
162
163static int mso_arm(struct sr_device_instance *sdi)
164{
165 struct mso *mso = sdi->priv;
166 uint16_t ops[] = {
167 mso_trans(REG_CTL, mso->ctlbase | BIT_CTL_RESETFSM),
168 mso_trans(REG_CTL, mso->ctlbase | BIT_CTL_ARM),
169 mso_trans(REG_CTL, mso->ctlbase),
170 };
171
172 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
173}
174
175static int mso_force_capture(struct sr_device_instance *sdi)
176{
177 struct mso *mso = sdi->priv;
178 uint16_t ops[] = {
179 mso_trans(REG_CTL, mso->ctlbase | 8),
180 mso_trans(REG_CTL, mso->ctlbase),
181 };
182
183 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
184}
185
186static int mso_dac_out(struct sr_device_instance *sdi, uint16_t val)
187{
188 struct mso *mso = sdi->priv;
189 uint16_t ops[] = {
190 mso_trans(REG_DAC1, (val >> 8) & 0xff),
191 mso_trans(REG_DAC2, val & 0xff),
192 mso_trans(REG_CTL, mso->ctlbase | BIT_CTL_RESETADC),
193 };
194
195 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
196}
197
198static int mso_clkrate_out(struct sr_device_instance *sdi, uint16_t val)
199{
200 uint16_t ops[] = {
201 mso_trans(REG_CLKRATE1, (val >> 8) & 0xff),
202 mso_trans(REG_CLKRATE2, val & 0xff),
203 };
204
205 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
206}
207
208static int mso_configure_rate(struct sr_device_instance *sdi,
209 uint32_t rate)
210{
211 struct mso *mso = sdi->priv;
212 unsigned int i;
213 int ret = SR_ERR;
214
215 for (i = 0; i < ARRAY_SIZE(rate_map); i++) {
216 if (rate_map[i].rate == rate) {
217 mso->slowmode = rate_map[i].slowmode;
218 ret = mso_clkrate_out(sdi, rate_map[i].val);
219 if (ret == SR_OK)
220 mso->cur_rate = rate;
221 return ret;
222 }
223 }
224 return ret;
225}
226
227static inline uint16_t mso_calc_raw_from_mv(struct mso *mso)
228{
229 return (uint16_t) (0x200 -
230 ((mso->dso_trigger_voltage / mso->dso_probe_attn) /
231 mso->vbit));
232}
233
234static int mso_configure_trigger(struct sr_device_instance *sdi)
235{
236 struct mso *mso = sdi->priv;
237 uint16_t ops[16];
238 uint16_t dso_trigger = mso_calc_raw_from_mv(mso);
239
240 dso_trigger &= 0x3ff;
241 if ((!mso->trigger_slope && mso->trigger_chan == 1) ||
242 (mso->trigger_slope &&
243 (mso->trigger_chan == 0 ||
244 mso->trigger_chan == 2 ||
245 mso->trigger_chan == 3)))
246 dso_trigger |= 0x400;
247
248 switch (mso->trigger_chan) {
249 case 1:
250 dso_trigger |= 0xe000;
251 case 2:
252 dso_trigger |= 0x4000;
253 break;
254 case 3:
255 dso_trigger |= 0x2000;
256 break;
257 case 4:
258 dso_trigger |= 0xa000;
259 break;
260 case 5:
261 dso_trigger |= 0x8000;
262 break;
263 default:
264 case 0:
265 break;
266 }
267
268 switch (mso->trigger_outsrc) {
269 case 1:
270 dso_trigger |= 0x800;
271 break;
272 case 2:
273 dso_trigger |= 0x1000;
274 break;
275 case 3:
276 dso_trigger |= 0x1800;
277 break;
278
279 }
280
281 ops[0] = mso_trans(5, mso->la_trigger);
282 ops[1] = mso_trans(6, mso->la_trigger_mask);
283 ops[2] = mso_trans(3, dso_trigger & 0xff);
284 ops[3] = mso_trans(4, (dso_trigger >> 8) & 0xff);
285 ops[4] = mso_trans(11,
286 mso->dso_trigger_width / HZ_TO_NS(mso->cur_rate));
287 ops[5] = mso_trans(15, (2 | mso->slowmode));
288
289 /* FIXME SPI/I2C Triggers */
290 ops[6] = mso_trans(0, 0);
291 ops[7] = mso_trans(1, 0);
292 ops[8] = mso_trans(2, 0);
293 ops[9] = mso_trans(3, 0);
294 ops[10] = mso_trans(4, 0xff);
295 ops[11] = mso_trans(5, 0xff);
296 ops[12] = mso_trans(6, 0xff);
297 ops[13] = mso_trans(7, 0xff);
298 ops[14] = mso_trans(8, mso->trigger_spimode);
299 ops[15] = mso_trans(15, mso->slowmode);
300
301 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
302}
303
304static int mso_configure_threshold_level(struct sr_device_instance *sdi)
305{
306 struct mso *mso = sdi->priv;
307
308 return mso_dac_out(sdi, la_threshold_map[mso->la_threshold]);
309}
310
311static int mso_parse_serial(const char *iSerial, const char *iProduct,
312 struct mso *mso)
313{
314 unsigned int u1, u2, u3, u4, u5, u6;
315
316 iProduct = iProduct;
317 /* FIXME: This code is in the original app, but I think its
318 * used only for the GUI */
319/* if (strstr(iProduct, "REV_02") || strstr(iProduct, "REV_03"))
320 mso->num_sample_rates = 0x16;
321 else
322 mso->num_sample_rates = 0x10; */
323
324 /* parse iSerial */
325 if (iSerial[0] != '4' || sscanf(iSerial, "%5u%3u%3u%1u%1u%6u",
326 &u1, &u2, &u3, &u4, &u5, &u6) != 6)
327 return SR_ERR;
328 mso->hwmodel = u4;
329 mso->hwrev = u5;
330 mso->serial = u6;
331 mso->vbit = u1 / 10000;
332 if (mso->vbit == 0)
333 mso->vbit = 4.19195;
334 mso->dac_offset = u2;
335 if (mso->dac_offset == 0)
336 mso->dac_offset = 0x1ff;
337 mso->offset_range = u3;
338 if (mso->offset_range == 0)
339 mso->offset_range = 0x17d;
340
341 /*
342 * FIXME: There is more code on the original software to handle
343 * bigger iSerial strings, but as I can't test on my device
344 * I will not implement it yet
345 */
346
347 return SR_OK;
348}
349
350static int hw_init(char *deviceinfo)
351{
352 struct sr_device_instance *sdi;
353 int devcnt = 0;
354 struct udev *udev;
355 struct udev_enumerate *enumerate;
356 struct udev_list_entry *devices, *dev_list_entry;
357 struct mso *mso;
358
359 deviceinfo = deviceinfo;
360
361 /* It's easier to map usb<->serial using udev */
362 /*
363 * FIXME: On windows we can get the same information from the
364 * registry, add an #ifdef here later
365 */
366 udev = udev_new();
367 if (!udev) {
368 g_warning("Failed to initialize udev.");
369 goto ret;
370 }
371 enumerate = udev_enumerate_new(udev);
372 udev_enumerate_add_match_subsystem(enumerate, "usb-serial");
373 udev_enumerate_scan_devices(enumerate);
374 devices = udev_enumerate_get_list_entry(enumerate);
375 udev_list_entry_foreach(dev_list_entry, devices) {
376 const char *syspath, *sysname, *idVendor, *idProduct,
377 *iSerial, *iProduct;
378 char path[32], manufacturer[32], product[32], hwrev[32];
379 struct udev_device *dev, *parent;
380 size_t s;
381
382 syspath = udev_list_entry_get_name(dev_list_entry);
383 dev = udev_device_new_from_syspath(udev, syspath);
384 sysname = udev_device_get_sysname(dev);
385 parent = udev_device_get_parent_with_subsystem_devtype(
386 dev, "usb", "usb_device");
387 if (!parent) {
388 g_warning("Unable to find parent usb device for %s",
389 sysname);
390 continue;
391 }
392
393 idVendor = udev_device_get_sysattr_value(parent, "idVendor");
394 idProduct = udev_device_get_sysattr_value(parent, "idProduct");
395 if (strcmp(USB_VENDOR, idVendor)
396 || strcmp(USB_PRODUCT, idProduct))
397 continue;
398
399 iSerial = udev_device_get_sysattr_value(parent, "serial");
400 iProduct = udev_device_get_sysattr_value(parent, "product");
401
402 snprintf(path, sizeof(path), "/dev/%s", sysname);
403
404 s = strcspn(iProduct, " ");
405 if (s > sizeof(product) ||
406 strlen(iProduct) - s > sizeof(manufacturer)) {
407 g_warning("Could not parse iProduct: %s", iProduct);
408 continue;
409 }
410 strncpy(product, iProduct, s);
411 product[s] = 0;
412 strcpy(manufacturer, iProduct + s);
413 sprintf(hwrev, "r%d", mso->hwrev);
414
415 mso = malloc(sizeof(struct mso));
416 if (!mso)
417 continue;
418 memset(mso, 0, sizeof(struct mso));
419
420 if (mso_parse_serial(iSerial, iProduct, mso) != SR_OK) {
421 g_warning("Invalid iSerial: %s", iSerial);
422 goto err_free_mso;
423 }
424 /* hardware initial state */
425 mso->ctlbase = 0;
426
427 sdi = sr_device_instance_new(devcnt, SR_ST_INITIALIZING,
428 manufacturer, product, hwrev);
429 if (!sdi) {
430 g_warning("Unable to create device instance for %s",
431 sysname);
432 goto err_free_mso;
433 }
434
435 /* save a pointer to our private instance data */
436 sdi->priv = mso;
437
438 sdi->serial = sr_serial_device_instance_new(path, -1);
439 if (!sdi->serial)
440 goto err_device_instance_free;
441
442 device_instances = g_slist_append(device_instances, sdi);
443 devcnt++;
444 continue;
445
446err_device_instance_free:
447 sr_device_instance_free(sdi);
448err_free_mso:
449 free(mso);
450 }
451
452 udev_enumerate_unref(enumerate);
453 udev_unref(udev);
454
455ret:
456 return devcnt;
457}
458
459static void hw_cleanup(void)
460{
461 GSList *l;
462 struct sr_device_instance *sdi;
463
464 /* Properly close all devices. */
465 for (l = device_instances; l; l = l->next) {
466 sdi = l->data;
467 if (sdi->serial->fd != -1)
468 serial_close(sdi->serial->fd);
469 if (sdi->priv != NULL)
470 free(sdi->priv);
471 sr_device_instance_free(sdi);
472 }
473 g_slist_free(device_instances);
474 device_instances = NULL;
475}
476
477static int hw_opendev(int device_index)
478{
479 struct sr_device_instance *sdi;
480 struct mso *mso;
481 int ret = SR_ERR;
482
483 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
484 return ret;
485
486 mso = sdi->priv;
487 sdi->serial->fd = serial_open(sdi->serial->port, O_RDWR);
488 if (sdi->serial->fd == -1)
489 return ret;
490
491 ret = serial_set_params(sdi->serial->fd, 460800, 8, 0, 1, 2);
492 if (ret != SR_OK)
493 return ret;
494
495 sdi->status = SR_ST_ACTIVE;
496
497 /* FIXME: discard serial buffer */
498
499 mso_check_trigger(sdi, &mso->trigger_state);
500// g_warning("trigger state: %c", mso->trigger_state);
501
502 ret = mso_reset_adc(sdi);
503 if (ret != SR_OK)
504 return ret;
505
506 mso_check_trigger(sdi, &mso->trigger_state);
507// g_warning("trigger state: %c", mso->trigger_state);
508
509// ret = mso_reset_fsm(sdi);
510// if (ret != SR_OK)
511// return ret;
512
513// return SR_ERR;
514 return SR_OK;
515}
516
517static void hw_closedev(int device_index)
518{
519 struct sr_device_instance *sdi;
520
521 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
522 return;
523
524 if (sdi->serial->fd != -1) {
525 serial_close(sdi->serial->fd);
526 sdi->serial->fd = -1;
527 sdi->status = SR_ST_INACTIVE;
528 }
529}
530
531static void *hw_get_device_info(int device_index, int device_info_id)
532{
533 struct sr_device_instance *sdi;
534 struct mso *mso;
535 void *info = NULL;
536
537 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
538 return NULL;
539 mso = sdi->priv;
540
541 switch (device_info_id) {
542 case SR_DI_INSTANCE:
543 info = sdi;
544 break;
545 case SR_DI_NUM_PROBES: /* FIXME: How to report analog probe? */
546 info = GINT_TO_POINTER(8);
547 break;
548 case SR_DI_SAMPLERATES:
549 info = &samplerates;
550 break;
551 case SR_DI_TRIGGER_TYPES:
552 info = "01"; /* FIXME */
553 break;
554 case SR_DI_CUR_SAMPLERATE:
555 info = &mso->cur_rate;
556 break;
557 }
558 return info;
559}
560
561static int hw_get_status(int device_index)
562{
563 struct sr_device_instance *sdi;
564
565 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
566 return SR_ST_NOT_FOUND;
567
568 return sdi->status;
569}
570
571static int *hw_get_capabilities(void)
572{
573 return capabilities;
574}
575
576static int hw_set_configuration(int device_index, int capability, void *value)
577{
578 struct sr_device_instance *sdi;
579
580 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
581 return SR_ERR;
582
583 switch (capability) {
584 case SR_HWCAP_SAMPLERATE:
585 return mso_configure_rate(sdi, *(uint64_t *) value);
586 case SR_HWCAP_PROBECONFIG:
587 case SR_HWCAP_LIMIT_SAMPLES:
588 default:
589 return SR_OK; /* FIXME */
590 }
591}
592
593#define MSO_TRIGGER_UNKNOWN '!'
594#define MSO_TRIGGER_UNKNOWN1 '1'
595#define MSO_TRIGGER_UNKNOWN2 '2'
596#define MSO_TRIGGER_UNKNOWN3 '3'
597#define MSO_TRIGGER_WAIT '4'
598#define MSO_TRIGGER_FIRED '5'
599#define MSO_TRIGGER_DATAREADY '6'
600
601/* FIXME: Pass errors? */
602static int receive_data(int fd, int revents, void *user_data)
603{
604 struct sr_device_instance *sdi = user_data;
605 struct mso *mso = sdi->priv;
606 struct sr_datafeed_packet packet;
607 uint8_t in[1024], logic_out[1024];
608 double analog_out[1024];
609 size_t i, s;
610
611 revents = revents;
612
613 s = serial_read(fd, in, sizeof(in));
614 if (s <= 0)
615 return FALSE;
616
617 /* No samples */
618 if (mso->trigger_state != MSO_TRIGGER_DATAREADY) {
619 mso->trigger_state = in[0];
620 if (mso->trigger_state == MSO_TRIGGER_DATAREADY) {
621 mso_read_buffer(sdi);
622 mso->buffer_n = 0;
623 } else {
624 mso_check_trigger(sdi, NULL);
625 }
626 return FALSE;
627 }
628
629 /* the hardware always dumps 1024 samples, 24bits each */
630 if (mso->buffer_n < 3072) {
631 memcpy(mso->buffer + mso->buffer_n, in, s);
632 mso->buffer_n += s;
633 }
634 if (mso->buffer_n < 3072)
635 return FALSE;
636
637 /* do the conversion */
638 for (i = 0; i < 1024; i++) {
639 /* FIXME: Need to do conversion to mV */
640 analog_out[i] = (mso->buffer[i * 3] & 0x3f) |
641 ((mso->buffer[i * 3 + 1] & 0xf) << 6);
642 logic_out[i] = ((mso->buffer[i * 3 + 1] & 0x30) >> 4) |
643 ((mso->buffer[i * 3 + 2] & 0x3f) << 2);
644 }
645
646 packet.type = SR_DF_LOGIC;
647 packet.length = 1024;
648 packet.unitsize = 1;
649 packet.payload = logic_out;
650 sr_session_bus(mso->session_id, &packet);
651
652
653 packet.type = SR_DF_ANALOG;
654 packet.length = 1024;
655 packet.unitsize = sizeof(double);
656 packet.payload = analog_out;
657 sr_session_bus(mso->session_id, &packet);
658
659 packet.type = SR_DF_END;
660 sr_session_bus(mso->session_id, &packet);
661
662 return TRUE;
663}
664
665static int hw_start_acquisition(int device_index, gpointer session_device_id)
666{
667 struct sr_device_instance *sdi;
668 struct mso *mso;
669 struct sr_datafeed_packet packet;
670 struct sr_datafeed_header header;
671 int ret = SR_ERR;
672
673 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
674 return ret;
675 mso = sdi->priv;
676
677 /* FIXME: No need to do full reconfigure every time */
678// ret = mso_reset_fsm(sdi);
679// if (ret != SR_OK)
680// return ret;
681
682 /* FIXME: ACDC Mode */
683 mso->ctlbase &= 0x7f;
684// mso->ctlbase |= mso->acdcmode;
685
686 ret = mso_configure_rate(sdi, mso->cur_rate);
687 if (ret != SR_OK)
688 return ret;
689
690 /* set dac offset */
691 ret = mso_dac_out(sdi, mso->dac_offset);
692 if (ret != SR_OK)
693 return ret;
694
695 ret = mso_configure_threshold_level(sdi);
696 if (ret != SR_OK)
697 return ret;
698
699 ret = mso_configure_trigger(sdi);
700 if (ret != SR_OK)
701 return ret;
702
703 /* FIXME: trigger_position */
704
705
706 /* END of config hardware part */
707
708 /* with trigger */
709 ret = mso_arm(sdi);
710 if (ret != SR_OK)
711 return ret;
712
713 /* without trigger */
714// ret = mso_force_capture(sdi);
715// if (ret != SR_OK)
716// return ret;
717
718 mso_check_trigger(sdi, &mso->trigger_state);
719 ret = mso_check_trigger(sdi, NULL);
720 if (ret != SR_OK)
721 return ret;
722
723 mso->session_id = session_device_id;
724 sr_source_add(sdi->serial->fd, G_IO_IN, -1, receive_data, sdi);
725
726 packet.type = SR_DF_HEADER;
727 packet.length = sizeof(struct sr_datafeed_header);
728 packet.payload = (unsigned char *) &header;
729 header.feed_version = 1;
730 gettimeofday(&header.starttime, NULL);
731 header.samplerate = mso->cur_rate;
732 header.num_analog_probes = 1;
733 header.num_logic_probes = 8;
734 header.protocol_id = SR_PROTO_RAW;
735 sr_session_bus(session_device_id, &packet);
736
737 return ret;
738}
739
740/* FIXME */
741static void hw_stop_acquisition(int device_index, gpointer session_device_id)
742{
743 struct sr_datafeed_packet packet;
744
745 device_index = device_index;
746
747 packet.type = SR_DF_END;
748 sr_session_bus(session_device_id, &packet);
749}
750
751struct sr_device_plugin link_mso19_plugin_info = {
752 .name = "link-mso19",
753 .longname = "Link Instruments MSO-19",
754 .api_version = 1,
755 .init = hw_init,
756 .cleanup = hw_cleanup,
757 .open = hw_opendev,
758 .close = hw_closedev,
759 .get_device_info = hw_get_device_info,
760 .get_status = hw_get_status,
761 .get_capabilities = hw_get_capabilities,
762 .set_configuration = hw_set_configuration,
763 .start_acquisition = hw_start_acquisition,
764 .stop_acquisition = hw_stop_acquisition,
765};