]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/link-mso19/link-mso19.c
sr: driver struct gets a more generic *priv instead of GSList *instances
[libsigrok.git] / hardware / link-mso19 / link-mso19.c
... / ...
CommitLineData
1/*
2 * This file is part of the sigrok project.
3 *
4 * Copyright (C) 2011 Daniel Ribeiro <drwyrm@gmail.com>
5 * Copyright (C) 2012 Renato Caldas <rmsc@fe.up.pt>
6 *
7 * This program is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21#include <stdio.h>
22#include <stdlib.h>
23#include <string.h>
24#include <unistd.h>
25#include <fcntl.h>
26#include <sys/time.h>
27#include <inttypes.h>
28#include <glib.h>
29#include <libudev.h>
30#include <arpa/inet.h>
31#include "libsigrok.h"
32#include "libsigrok-internal.h"
33#include "link-mso19.h"
34
35#define USB_VENDOR "3195"
36#define USB_PRODUCT "f190"
37
38#define NUM_PROBES 8
39
40static const int hwcaps[] = {
41 SR_HWCAP_LOGIC_ANALYZER,
42// SR_HWCAP_OSCILLOSCOPE,
43// SR_HWCAP_PAT_GENERATOR,
44
45 SR_HWCAP_SAMPLERATE,
46// SR_HWCAP_CAPTURE_RATIO,
47 SR_HWCAP_LIMIT_SAMPLES,
48 0,
49};
50
51/*
52 * Probes are numbered 0 to 7.
53 *
54 * See also: http://www.linkinstruments.com/images/mso19_1113.gif
55 */
56static const char *probe_names[NUM_PROBES + 1] = {
57 "0",
58 "1",
59 "2",
60 "3",
61 "4",
62 "5",
63 "6",
64 "7",
65 NULL,
66};
67
68static const uint64_t supported_samplerates[] = {
69 SR_HZ(100),
70 SR_HZ(200),
71 SR_HZ(500),
72 SR_KHZ(1),
73 SR_KHZ(2),
74 SR_KHZ(5),
75 SR_KHZ(10),
76 SR_KHZ(20),
77 SR_KHZ(50),
78 SR_KHZ(100),
79 SR_KHZ(200),
80 SR_KHZ(500),
81 SR_MHZ(1),
82 SR_MHZ(2),
83 SR_MHZ(5),
84 SR_MHZ(10),
85 SR_MHZ(20),
86 SR_MHZ(50),
87 SR_MHZ(100),
88 SR_MHZ(200),
89 0,
90};
91
92static const struct sr_samplerates samplerates = {
93 0,
94 0,
95 0,
96 supported_samplerates,
97};
98
99static GSList *dev_insts = NULL;
100
101static int mso_send_control_message(struct sr_dev_inst *sdi,
102 uint16_t payload[], int n)
103{
104 int fd = sdi->serial->fd;
105 int i, w, ret, s = n * 2 + sizeof(mso_head) + sizeof(mso_foot);
106 char *p, *buf;
107
108 ret = SR_ERR;
109
110 if (fd < 0)
111 goto ret;
112
113 if (!(buf = g_try_malloc(s))) {
114 sr_err("mso19: %s: buf malloc failed", __func__);
115 ret = SR_ERR_MALLOC;
116 goto ret;
117 }
118
119 p = buf;
120 memcpy(p, mso_head, sizeof(mso_head));
121 p += sizeof(mso_head);
122
123 for (i = 0; i < n; i++) {
124 *(uint16_t *) p = htons(payload[i]);
125 p += 2;
126 }
127 memcpy(p, mso_foot, sizeof(mso_foot));
128
129 w = 0;
130 while (w < s) {
131 ret = serial_write(fd, buf + w, s - w);
132 if (ret < 0) {
133 ret = SR_ERR;
134 goto free;
135 }
136 w += ret;
137 }
138 ret = SR_OK;
139free:
140 g_free(buf);
141ret:
142 return ret;
143}
144
145static int mso_reset_adc(struct sr_dev_inst *sdi)
146{
147 struct context *ctx = sdi->priv;
148 uint16_t ops[2];
149
150 ops[0] = mso_trans(REG_CTL1, (ctx->ctlbase1 | BIT_CTL1_RESETADC));
151 ops[1] = mso_trans(REG_CTL1, ctx->ctlbase1);
152 ctx->ctlbase1 |= BIT_CTL1_ADC_UNKNOWN4;
153
154 sr_dbg("mso19: Requesting ADC reset");
155 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
156}
157
158static int mso_reset_fsm(struct sr_dev_inst *sdi)
159{
160 struct context *ctx = sdi->priv;
161 uint16_t ops[1];
162
163 ctx->ctlbase1 |= BIT_CTL1_RESETFSM;
164 ops[0] = mso_trans(REG_CTL1, ctx->ctlbase1);
165
166 sr_dbg("mso19: Requesting ADC reset");
167 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
168}
169
170static int mso_toggle_led(struct sr_dev_inst *sdi, int state)
171{
172 struct context *ctx = sdi->priv;
173 uint16_t ops[1];
174
175 ctx->ctlbase1 &= ~BIT_CTL1_LED;
176 if (state)
177 ctx->ctlbase1 |= BIT_CTL1_LED;
178 ops[0] = mso_trans(REG_CTL1, ctx->ctlbase1);
179
180 sr_dbg("mso19: Requesting LED toggle");
181 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
182}
183
184static int mso_check_trigger(struct sr_dev_inst *sdi, uint8_t *info)
185{
186 uint16_t ops[] = { mso_trans(REG_TRIGGER, 0) };
187 char buf[1];
188 int ret;
189
190 sr_dbg("mso19: Requesting trigger state");
191 ret = mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
192 if (info == NULL || ret != SR_OK)
193 return ret;
194
195 buf[0] = 0;
196 if (serial_read(sdi->serial->fd, buf, 1) != 1) /* FIXME: Need timeout */
197 ret = SR_ERR;
198 *info = buf[0];
199
200 sr_dbg("mso19: Trigger state is: 0x%x", *info);
201 return ret;
202}
203
204static int mso_read_buffer(struct sr_dev_inst *sdi)
205{
206 uint16_t ops[] = { mso_trans(REG_BUFFER, 0) };
207
208 sr_dbg("mso19: Requesting buffer dump");
209 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
210}
211
212static int mso_arm(struct sr_dev_inst *sdi)
213{
214 struct context *ctx = sdi->priv;
215 uint16_t ops[] = {
216 mso_trans(REG_CTL1, ctx->ctlbase1 | BIT_CTL1_RESETFSM),
217 mso_trans(REG_CTL1, ctx->ctlbase1 | BIT_CTL1_ARM),
218 mso_trans(REG_CTL1, ctx->ctlbase1),
219 };
220
221 sr_dbg("mso19: Requesting trigger arm");
222 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
223}
224
225static int mso_force_capture(struct sr_dev_inst *sdi)
226{
227 struct context *ctx = sdi->priv;
228 uint16_t ops[] = {
229 mso_trans(REG_CTL1, ctx->ctlbase1 | 8),
230 mso_trans(REG_CTL1, ctx->ctlbase1),
231 };
232
233 sr_dbg("mso19: Requesting forced capture");
234 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
235}
236
237static int mso_dac_out(struct sr_dev_inst *sdi, uint16_t val)
238{
239 struct context *ctx = sdi->priv;
240 uint16_t ops[] = {
241 mso_trans(REG_DAC1, (val >> 8) & 0xff),
242 mso_trans(REG_DAC2, val & 0xff),
243 mso_trans(REG_CTL1, ctx->ctlbase1 | BIT_CTL1_RESETADC),
244 };
245
246 sr_dbg("mso19: Setting dac word to 0x%x", val);
247 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
248}
249
250static int mso_clkrate_out(struct sr_dev_inst *sdi, uint16_t val)
251{
252 uint16_t ops[] = {
253 mso_trans(REG_CLKRATE1, (val >> 8) & 0xff),
254 mso_trans(REG_CLKRATE2, val & 0xff),
255 };
256
257 sr_dbg("mso19: Setting clkrate word to 0x%x", val);
258 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
259}
260
261static int mso_configure_rate(struct sr_dev_inst *sdi, uint32_t rate)
262{
263 struct context *ctx = sdi->priv;
264 unsigned int i;
265 int ret = SR_ERR;
266
267 for (i = 0; i < ARRAY_SIZE(rate_map); i++) {
268 if (rate_map[i].rate == rate) {
269 ctx->ctlbase2 = rate_map[i].slowmode;
270 ret = mso_clkrate_out(sdi, rate_map[i].val);
271 if (ret == SR_OK)
272 ctx->cur_rate = rate;
273 return ret;
274 }
275 }
276 return ret;
277}
278
279static inline uint16_t mso_calc_raw_from_mv(struct context *ctx)
280{
281 return (uint16_t) (0x200 -
282 ((ctx->dso_trigger_voltage / ctx->dso_probe_attn) /
283 ctx->vbit));
284}
285
286static int mso_configure_trigger(struct sr_dev_inst *sdi)
287{
288 struct context *ctx = sdi->priv;
289 uint16_t ops[16];
290 uint16_t dso_trigger = mso_calc_raw_from_mv(ctx);
291
292 dso_trigger &= 0x3ff;
293 if ((!ctx->trigger_slope && ctx->trigger_chan == 1) ||
294 (ctx->trigger_slope &&
295 (ctx->trigger_chan == 0 ||
296 ctx->trigger_chan == 2 ||
297 ctx->trigger_chan == 3)))
298 dso_trigger |= 0x400;
299
300 switch (ctx->trigger_chan) {
301 case 1:
302 dso_trigger |= 0xe000;
303 case 2:
304 dso_trigger |= 0x4000;
305 break;
306 case 3:
307 dso_trigger |= 0x2000;
308 break;
309 case 4:
310 dso_trigger |= 0xa000;
311 break;
312 case 5:
313 dso_trigger |= 0x8000;
314 break;
315 default:
316 case 0:
317 break;
318 }
319
320 switch (ctx->trigger_outsrc) {
321 case 1:
322 dso_trigger |= 0x800;
323 break;
324 case 2:
325 dso_trigger |= 0x1000;
326 break;
327 case 3:
328 dso_trigger |= 0x1800;
329 break;
330
331 }
332
333 ops[0] = mso_trans(5, ctx->la_trigger);
334 ops[1] = mso_trans(6, ctx->la_trigger_mask);
335 ops[2] = mso_trans(3, dso_trigger & 0xff);
336 ops[3] = mso_trans(4, (dso_trigger >> 8) & 0xff);
337 ops[4] = mso_trans(11,
338 ctx->dso_trigger_width / SR_HZ_TO_NS(ctx->cur_rate));
339
340 /* Select the SPI/I2C trigger config bank */
341 ops[5] = mso_trans(REG_CTL2, (ctx->ctlbase2 | BITS_CTL2_BANK(2)));
342 /* Configure the SPI/I2C protocol trigger */
343 ops[6] = mso_trans(REG_PT_WORD(0), ctx->protocol_trigger.word[0]);
344 ops[7] = mso_trans(REG_PT_WORD(1), ctx->protocol_trigger.word[1]);
345 ops[8] = mso_trans(REG_PT_WORD(2), ctx->protocol_trigger.word[2]);
346 ops[9] = mso_trans(REG_PT_WORD(3), ctx->protocol_trigger.word[3]);
347 ops[10] = mso_trans(REG_PT_MASK(0), ctx->protocol_trigger.mask[0]);
348 ops[11] = mso_trans(REG_PT_MASK(1), ctx->protocol_trigger.mask[1]);
349 ops[12] = mso_trans(REG_PT_MASK(2), ctx->protocol_trigger.mask[2]);
350 ops[13] = mso_trans(REG_PT_MASK(3), ctx->protocol_trigger.mask[3]);
351 ops[14] = mso_trans(REG_PT_SPIMODE, ctx->protocol_trigger.spimode);
352 /* Select the default config bank */
353 ops[15] = mso_trans(REG_CTL2, ctx->ctlbase2);
354
355 return mso_send_control_message(sdi, ARRAY_AND_SIZE(ops));
356}
357
358static int mso_configure_threshold_level(struct sr_dev_inst *sdi)
359{
360 struct context *ctx = sdi->priv;
361
362 return mso_dac_out(sdi, la_threshold_map[ctx->la_threshold]);
363}
364
365static int mso_parse_serial(const char *iSerial, const char *iProduct,
366 struct context *ctx)
367{
368 unsigned int u1, u2, u3, u4, u5, u6;
369
370 iProduct = iProduct;
371 /* FIXME: This code is in the original app, but I think its
372 * used only for the GUI */
373/* if (strstr(iProduct, "REV_02") || strstr(iProduct, "REV_03"))
374 ctx->num_sample_rates = 0x16;
375 else
376 ctx->num_sample_rates = 0x10; */
377
378 /* parse iSerial */
379 if (iSerial[0] != '4' || sscanf(iSerial, "%5u%3u%3u%1u%1u%6u",
380 &u1, &u2, &u3, &u4, &u5, &u6) != 6)
381 return SR_ERR;
382 ctx->hwmodel = u4;
383 ctx->hwrev = u5;
384 ctx->serial = u6;
385 ctx->vbit = u1 / 10000;
386 if (ctx->vbit == 0)
387 ctx->vbit = 4.19195;
388 ctx->dac_offset = u2;
389 if (ctx->dac_offset == 0)
390 ctx->dac_offset = 0x1ff;
391 ctx->offset_range = u3;
392 if (ctx->offset_range == 0)
393 ctx->offset_range = 0x17d;
394
395 /*
396 * FIXME: There is more code on the original software to handle
397 * bigger iSerial strings, but as I can't test on my device
398 * I will not implement it yet
399 */
400
401 return SR_OK;
402}
403
404static int hw_init(void)
405{
406
407 /* Nothing to do. */
408
409 return SR_OK;
410}
411
412static int hw_scan(void)
413{
414 struct sr_dev_inst *sdi;
415 int devcnt = 0;
416 struct udev *udev;
417 struct udev_enumerate *enumerate;
418 struct udev_list_entry *devs, *dev_list_entry;
419 struct context *ctx;
420
421 /* It's easier to map usb<->serial using udev */
422 /*
423 * FIXME: On windows we can get the same information from the
424 * registry, add an #ifdef here later
425 */
426 udev = udev_new();
427 if (!udev) {
428 sr_err("mso19: Failed to initialize udev.");
429 goto ret;
430 }
431 enumerate = udev_enumerate_new(udev);
432 udev_enumerate_add_match_subsystem(enumerate, "usb-serial");
433 udev_enumerate_scan_devices(enumerate);
434 devs = udev_enumerate_get_list_entry(enumerate);
435 udev_list_entry_foreach(dev_list_entry, devs) {
436 const char *syspath, *sysname, *idVendor, *idProduct,
437 *iSerial, *iProduct;
438 char path[32], manufacturer[32], product[32], hwrev[32];
439 struct udev_device *dev, *parent;
440 size_t s;
441
442 syspath = udev_list_entry_get_name(dev_list_entry);
443 dev = udev_device_new_from_syspath(udev, syspath);
444 sysname = udev_device_get_sysname(dev);
445 parent = udev_device_get_parent_with_subsystem_devtype(
446 dev, "usb", "usb_device");
447 if (!parent) {
448 sr_err("mso19: Unable to find parent usb device for %s",
449 sysname);
450 continue;
451 }
452
453 idVendor = udev_device_get_sysattr_value(parent, "idVendor");
454 idProduct = udev_device_get_sysattr_value(parent, "idProduct");
455 if (strcmp(USB_VENDOR, idVendor)
456 || strcmp(USB_PRODUCT, idProduct))
457 continue;
458
459 iSerial = udev_device_get_sysattr_value(parent, "serial");
460 iProduct = udev_device_get_sysattr_value(parent, "product");
461
462 snprintf(path, sizeof(path), "/dev/%s", sysname);
463
464 s = strcspn(iProduct, " ");
465 if (s > sizeof(product) ||
466 strlen(iProduct) - s > sizeof(manufacturer)) {
467 sr_err("mso19: Could not parse iProduct: %s", iProduct);
468 continue;
469 }
470 strncpy(product, iProduct, s);
471 product[s] = 0;
472 strcpy(manufacturer, iProduct + s);
473
474 if (!(ctx = g_try_malloc0(sizeof(struct context)))) {
475 sr_err("mso19: %s: ctx malloc failed", __func__);
476 continue; /* TODO: Errors handled correctly? */
477 }
478
479 if (mso_parse_serial(iSerial, iProduct, ctx) != SR_OK) {
480 sr_err("mso19: Invalid iSerial: %s", iSerial);
481 goto err_free_ctx;
482 }
483 sprintf(hwrev, "r%d", ctx->hwrev);
484
485 /* hardware initial state */
486 ctx->ctlbase1 = 0;
487 {
488 /* Initialize the protocol trigger configuration */
489 int i;
490 for (i = 0; i < 4; i++) {
491 ctx->protocol_trigger.word[i] = 0;
492 ctx->protocol_trigger.mask[i] = 0xff;
493 }
494 ctx->protocol_trigger.spimode = 0;
495 }
496
497 sdi = sr_dev_inst_new(devcnt, SR_ST_INITIALIZING,
498 manufacturer, product, hwrev);
499 if (!sdi) {
500 sr_err("mso19: Unable to create device instance for %s",
501 sysname);
502 goto err_free_ctx;
503 }
504
505 /* save a pointer to our private instance data */
506 sdi->priv = ctx;
507
508 sdi->serial = sr_serial_dev_inst_new(path, -1);
509 if (!sdi->serial)
510 goto err_dev_inst_free;
511
512 dev_insts = g_slist_append(dev_insts, sdi);
513 devcnt++;
514 continue;
515
516err_dev_inst_free:
517 sr_dev_inst_free(sdi);
518err_free_ctx:
519 g_free(ctx);
520 }
521
522 udev_enumerate_unref(enumerate);
523 udev_unref(udev);
524
525ret:
526 return devcnt;
527}
528
529static int hw_cleanup(void)
530{
531 GSList *l;
532 struct sr_dev_inst *sdi;
533 int ret;
534
535 ret = SR_OK;
536 /* Properly close all devices. */
537 for (l = dev_insts; l; l = l->next) {
538 if (!(sdi = l->data)) {
539 /* Log error, but continue cleaning up the rest. */
540 sr_err("mso19: %s: sdi was NULL, continuing", __func__);
541 ret = SR_ERR_BUG;
542 continue;
543 }
544 if (sdi->serial->fd != -1)
545 serial_close(sdi->serial->fd);
546 sr_dev_inst_free(sdi);
547 }
548 g_slist_free(dev_insts);
549 dev_insts = NULL;
550
551 return ret;
552}
553
554static int hw_dev_open(int dev_index)
555{
556 struct sr_dev_inst *sdi;
557 struct context *ctx;
558 int ret = SR_ERR;
559
560 if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
561 return ret;
562
563 ctx = sdi->priv;
564 sdi->serial->fd = serial_open(sdi->serial->port, O_RDWR);
565 if (sdi->serial->fd == -1)
566 return ret;
567
568 ret = serial_set_params(sdi->serial->fd, 460800, 8, 0, 1, 2);
569 if (ret != SR_OK)
570 return ret;
571
572 sdi->status = SR_ST_ACTIVE;
573
574 /* FIXME: discard serial buffer */
575
576 mso_check_trigger(sdi, &ctx->trigger_state);
577 sr_dbg("mso19: trigger state: 0x%x", ctx->trigger_state);
578
579 ret = mso_reset_adc(sdi);
580 if (ret != SR_OK)
581 return ret;
582
583 mso_check_trigger(sdi, &ctx->trigger_state);
584 sr_dbg("mso19: trigger state: 0x%x", ctx->trigger_state);
585
586// ret = mso_reset_fsm(sdi);
587// if (ret != SR_OK)
588// return ret;
589
590 sr_dbg("mso19: Finished %s", __func__);
591
592// return SR_ERR;
593 return SR_OK;
594}
595
596static int hw_dev_close(int dev_index)
597{
598 struct sr_dev_inst *sdi;
599
600 if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) {
601 sr_err("mso19: %s: sdi was NULL", __func__);
602 return SR_ERR_BUG;
603 }
604
605 /* TODO */
606 if (sdi->serial->fd != -1) {
607 serial_close(sdi->serial->fd);
608 sdi->serial->fd = -1;
609 sdi->status = SR_ST_INACTIVE;
610 }
611
612 sr_dbg("mso19: finished %s", __func__);
613 return SR_OK;
614}
615
616static const void *hw_dev_info_get(int dev_index, int dev_info_id)
617{
618 struct sr_dev_inst *sdi;
619 struct context *ctx;
620 const void *info = NULL;
621
622 if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
623 return NULL;
624 ctx = sdi->priv;
625
626 switch (dev_info_id) {
627 case SR_DI_INST:
628 info = sdi;
629 break;
630 case SR_DI_NUM_PROBES: /* FIXME: How to report analog probe? */
631 info = GINT_TO_POINTER(NUM_PROBES);
632 break;
633 case SR_DI_PROBE_NAMES:
634 info = probe_names;
635 break;
636 case SR_DI_SAMPLERATES:
637 info = &samplerates;
638 break;
639 case SR_DI_TRIGGER_TYPES:
640 info = "01"; /* FIXME */
641 break;
642 case SR_DI_CUR_SAMPLERATE:
643 info = &ctx->cur_rate;
644 break;
645 }
646 return info;
647}
648
649static int hw_dev_status_get(int dev_index)
650{
651 struct sr_dev_inst *sdi;
652
653 if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
654 return SR_ST_NOT_FOUND;
655
656 return sdi->status;
657}
658
659static const int *hw_hwcap_get_all(void)
660{
661 return hwcaps;
662}
663
664static int hw_dev_config_set(int dev_index, int hwcap, const void *value)
665{
666 struct sr_dev_inst *sdi;
667
668 if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
669 return SR_ERR;
670
671 switch (hwcap) {
672 case SR_HWCAP_SAMPLERATE:
673 return mso_configure_rate(sdi, *(const uint64_t *) value);
674 case SR_HWCAP_PROBECONFIG:
675 case SR_HWCAP_LIMIT_SAMPLES:
676 default:
677 return SR_OK; /* FIXME */
678 }
679}
680
681#define MSO_TRIGGER_UNKNOWN '!'
682#define MSO_TRIGGER_UNKNOWN1 '1'
683#define MSO_TRIGGER_UNKNOWN2 '2'
684#define MSO_TRIGGER_UNKNOWN3 '3'
685#define MSO_TRIGGER_WAIT '4'
686#define MSO_TRIGGER_FIRED '5'
687#define MSO_TRIGGER_DATAREADY '6'
688
689/* FIXME: Pass errors? */
690static int receive_data(int fd, int revents, void *cb_data)
691{
692 struct sr_dev_inst *sdi = cb_data;
693 struct context *ctx = sdi->priv;
694 struct sr_datafeed_packet packet;
695 struct sr_datafeed_logic logic;
696 uint8_t in[1024], logic_out[1024];
697 double analog_out[1024];
698 size_t i, s;
699
700 /* Avoid compiler warnings. */
701 (void)revents;
702
703 s = serial_read(fd, in, sizeof(in));
704 if (s <= 0)
705 return FALSE;
706
707 /* No samples */
708 if (ctx->trigger_state != MSO_TRIGGER_DATAREADY) {
709 ctx->trigger_state = in[0];
710 if (ctx->trigger_state == MSO_TRIGGER_DATAREADY) {
711 mso_read_buffer(sdi);
712 ctx->buffer_n = 0;
713 } else {
714 mso_check_trigger(sdi, NULL);
715 }
716 return FALSE;
717 }
718
719 /* the hardware always dumps 1024 samples, 24bits each */
720 if (ctx->buffer_n < 3072) {
721 memcpy(ctx->buffer + ctx->buffer_n, in, s);
722 ctx->buffer_n += s;
723 }
724 if (ctx->buffer_n < 3072)
725 return FALSE;
726
727 /* do the conversion */
728 for (i = 0; i < 1024; i++) {
729 /* FIXME: Need to do conversion to mV */
730 analog_out[i] = (ctx->buffer[i * 3] & 0x3f) |
731 ((ctx->buffer[i * 3 + 1] & 0xf) << 6);
732 logic_out[i] = ((ctx->buffer[i * 3 + 1] & 0x30) >> 4) |
733 ((ctx->buffer[i * 3 + 2] & 0x3f) << 2);
734 }
735
736 packet.type = SR_DF_LOGIC;
737 packet.payload = &logic;
738 logic.length = 1024;
739 logic.unitsize = 1;
740 logic.data = logic_out;
741 sr_session_send(ctx->session_dev_id, &packet);
742
743 // Dont bother fixing this yet, keep it "old style"
744 /*
745 packet.type = SR_DF_ANALOG;
746 packet.length = 1024;
747 packet.unitsize = sizeof(double);
748 packet.payload = analog_out;
749 sr_session_send(ctx->session_dev_id, &packet);
750 */
751
752 packet.type = SR_DF_END;
753 sr_session_send(ctx->session_dev_id, &packet);
754
755 return TRUE;
756}
757
758static int hw_dev_acquisition_start(int dev_index, void *cb_data)
759{
760 struct sr_dev_inst *sdi;
761 struct context *ctx;
762 struct sr_datafeed_packet packet;
763 struct sr_datafeed_header header;
764 int ret = SR_ERR;
765
766 if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
767 return ret;
768 ctx = sdi->priv;
769
770 /* FIXME: No need to do full reconfigure every time */
771// ret = mso_reset_fsm(sdi);
772// if (ret != SR_OK)
773// return ret;
774
775 /* FIXME: ACDC Mode */
776 ctx->ctlbase1 &= 0x7f;
777// ctx->ctlbase1 |= ctx->acdcmode;
778
779 ret = mso_configure_rate(sdi, ctx->cur_rate);
780 if (ret != SR_OK)
781 return ret;
782
783 /* set dac offset */
784 ret = mso_dac_out(sdi, ctx->dac_offset);
785 if (ret != SR_OK)
786 return ret;
787
788 ret = mso_configure_threshold_level(sdi);
789 if (ret != SR_OK)
790 return ret;
791
792 ret = mso_configure_trigger(sdi);
793 if (ret != SR_OK)
794 return ret;
795
796 /* FIXME: trigger_position */
797
798
799 /* END of config hardware part */
800
801 /* with trigger */
802 ret = mso_arm(sdi);
803 if (ret != SR_OK)
804 return ret;
805
806 /* without trigger */
807// ret = mso_force_capture(sdi);
808// if (ret != SR_OK)
809// return ret;
810
811 mso_check_trigger(sdi, &ctx->trigger_state);
812 ret = mso_check_trigger(sdi, NULL);
813 if (ret != SR_OK)
814 return ret;
815
816 ctx->session_dev_id = cb_data;
817 sr_source_add(sdi->serial->fd, G_IO_IN, -1, receive_data, sdi);
818
819 packet.type = SR_DF_HEADER;
820 packet.payload = (unsigned char *) &header;
821 header.feed_version = 1;
822 gettimeofday(&header.starttime, NULL);
823 header.samplerate = ctx->cur_rate;
824 // header.num_analog_probes = 1;
825 header.num_logic_probes = 8;
826 sr_session_send(ctx->session_dev_id, &packet);
827
828 return ret;
829}
830
831/* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
832static int hw_dev_acquisition_stop(int dev_index, void *cb_data)
833{
834 struct sr_datafeed_packet packet;
835
836 /* Avoid compiler warnings. */
837 (void)dev_index;
838
839 packet.type = SR_DF_END;
840 sr_session_send(cb_data, &packet);
841
842 return SR_OK;
843}
844
845SR_PRIV struct sr_dev_driver link_mso19_driver_info = {
846 .name = "link-mso19",
847 .longname = "Link Instruments MSO-19",
848 .api_version = 1,
849 .init = hw_init,
850 .cleanup = hw_cleanup,
851 .scan = hw_scan,
852 .dev_open = hw_dev_open,
853 .dev_close = hw_dev_close,
854 .dev_info_get = hw_dev_info_get,
855 .dev_status_get = hw_dev_status_get,
856 .hwcap_get_all = hw_hwcap_get_all,
857 .dev_config_set = hw_dev_config_set,
858 .dev_acquisition_start = hw_dev_acquisition_start,
859 .dev_acquisition_stop = hw_dev_acquisition_stop,
860};