]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/asix-sigma/asix-sigma.c
Factor out common hw_init() driver code.
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
... / ...
CommitLineData
1/*
2 * This file is part of the sigrok project.
3 *
4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA/SIGMA2 logic analyzer driver
24 */
25
26#include <glib.h>
27#include <glib/gstdio.h>
28#include <ftdi.h>
29#include <string.h>
30#include "libsigrok.h"
31#include "libsigrok-internal.h"
32#include "asix-sigma.h"
33
34#define USB_VENDOR 0xa600
35#define USB_PRODUCT 0xa000
36#define USB_DESCRIPTION "ASIX SIGMA"
37#define USB_VENDOR_NAME "ASIX"
38#define USB_MODEL_NAME "SIGMA"
39#define USB_MODEL_VERSION ""
40#define TRIGGER_TYPE "rf10"
41#define NUM_PROBES 16
42
43SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
44static struct sr_dev_driver *di = &asix_sigma_driver_info;
45static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
46
47static const uint64_t supported_samplerates[] = {
48 SR_KHZ(200),
49 SR_KHZ(250),
50 SR_KHZ(500),
51 SR_MHZ(1),
52 SR_MHZ(5),
53 SR_MHZ(10),
54 SR_MHZ(25),
55 SR_MHZ(50),
56 SR_MHZ(100),
57 SR_MHZ(200),
58 0,
59};
60
61/*
62 * Probe numbers seem to go from 1-16, according to this image:
63 * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
64 * (the cable has two additional GND pins, and a TI and TO pin)
65 */
66static const char *probe_names[NUM_PROBES + 1] = {
67 "1", "2", "3", "4", "5", "6", "7", "8",
68 "9", "10", "11", "12", "13", "14", "15", "16",
69 NULL,
70};
71
72static const struct sr_samplerates samplerates = {
73 0,
74 0,
75 0,
76 supported_samplerates,
77};
78
79static const int hwcaps[] = {
80 SR_CONF_LOGIC_ANALYZER,
81 SR_CONF_SAMPLERATE,
82 SR_CONF_CAPTURE_RATIO,
83
84 SR_CONF_LIMIT_MSEC,
85 0,
86};
87
88/* Force the FPGA to reboot. */
89static uint8_t suicide[] = {
90 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
91};
92
93/* Prepare to upload firmware (FPGA specific). */
94static uint8_t init[] = {
95 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
96};
97
98/* Initialize the logic analyzer mode. */
99static uint8_t logic_mode_start[] = {
100 0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
101 0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
102};
103
104static const char *firmware_files[] = {
105 "asix-sigma-50.fw", /* 50 MHz, supports 8 bit fractions */
106 "asix-sigma-100.fw", /* 100 MHz */
107 "asix-sigma-200.fw", /* 200 MHz */
108 "asix-sigma-50sync.fw", /* Synchronous clock from pin */
109 "asix-sigma-phasor.fw", /* Frequency counter */
110};
111
112static int sigma_read(void *buf, size_t size, struct dev_context *devc)
113{
114 int ret;
115
116 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
117 if (ret < 0) {
118 sr_err("ftdi_read_data failed: %s",
119 ftdi_get_error_string(&devc->ftdic));
120 }
121
122 return ret;
123}
124
125static int sigma_write(void *buf, size_t size, struct dev_context *devc)
126{
127 int ret;
128
129 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
130 if (ret < 0) {
131 sr_err("ftdi_write_data failed: %s",
132 ftdi_get_error_string(&devc->ftdic));
133 } else if ((size_t) ret != size) {
134 sr_err("ftdi_write_data did not complete write.");
135 }
136
137 return ret;
138}
139
140static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
141 struct dev_context *devc)
142{
143 size_t i;
144 uint8_t buf[len + 2];
145 int idx = 0;
146
147 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
148 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
149
150 for (i = 0; i < len; ++i) {
151 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
152 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
153 }
154
155 return sigma_write(buf, idx, devc);
156}
157
158static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
159{
160 return sigma_write_register(reg, &value, 1, devc);
161}
162
163static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
164 struct dev_context *devc)
165{
166 uint8_t buf[3];
167
168 buf[0] = REG_ADDR_LOW | (reg & 0xf);
169 buf[1] = REG_ADDR_HIGH | (reg >> 4);
170 buf[2] = REG_READ_ADDR;
171
172 sigma_write(buf, sizeof(buf), devc);
173
174 return sigma_read(data, len, devc);
175}
176
177static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
178{
179 uint8_t value;
180
181 if (1 != sigma_read_register(reg, &value, 1, devc)) {
182 sr_err("sigma_get_register: 1 byte expected");
183 return 0;
184 }
185
186 return value;
187}
188
189static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
190 struct dev_context *devc)
191{
192 uint8_t buf[] = {
193 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
194
195 REG_READ_ADDR | NEXT_REG,
196 REG_READ_ADDR | NEXT_REG,
197 REG_READ_ADDR | NEXT_REG,
198 REG_READ_ADDR | NEXT_REG,
199 REG_READ_ADDR | NEXT_REG,
200 REG_READ_ADDR | NEXT_REG,
201 };
202 uint8_t result[6];
203
204 sigma_write(buf, sizeof(buf), devc);
205
206 sigma_read(result, sizeof(result), devc);
207
208 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
209 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
210
211 /* Not really sure why this must be done, but according to spec. */
212 if ((--*stoppos & 0x1ff) == 0x1ff)
213 stoppos -= 64;
214
215 if ((*--triggerpos & 0x1ff) == 0x1ff)
216 triggerpos -= 64;
217
218 return 1;
219}
220
221static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
222 uint8_t *data, struct dev_context *devc)
223{
224 size_t i;
225 uint8_t buf[4096];
226 int idx = 0;
227
228 /* Send the startchunk. Index start with 1. */
229 buf[0] = startchunk >> 8;
230 buf[1] = startchunk & 0xff;
231 sigma_write_register(WRITE_MEMROW, buf, 2, devc);
232
233 /* Read the DRAM. */
234 buf[idx++] = REG_DRAM_BLOCK;
235 buf[idx++] = REG_DRAM_WAIT_ACK;
236
237 for (i = 0; i < numchunks; ++i) {
238 /* Alternate bit to copy from DRAM to cache. */
239 if (i != (numchunks - 1))
240 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
241
242 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
243
244 if (i != (numchunks - 1))
245 buf[idx++] = REG_DRAM_WAIT_ACK;
246 }
247
248 sigma_write(buf, idx, devc);
249
250 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
251}
252
253/* Upload trigger look-up tables to Sigma. */
254static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
255{
256 int i;
257 uint8_t tmp[2];
258 uint16_t bit;
259
260 /* Transpose the table and send to Sigma. */
261 for (i = 0; i < 16; ++i) {
262 bit = 1 << i;
263
264 tmp[0] = tmp[1] = 0;
265
266 if (lut->m2d[0] & bit)
267 tmp[0] |= 0x01;
268 if (lut->m2d[1] & bit)
269 tmp[0] |= 0x02;
270 if (lut->m2d[2] & bit)
271 tmp[0] |= 0x04;
272 if (lut->m2d[3] & bit)
273 tmp[0] |= 0x08;
274
275 if (lut->m3 & bit)
276 tmp[0] |= 0x10;
277 if (lut->m3s & bit)
278 tmp[0] |= 0x20;
279 if (lut->m4 & bit)
280 tmp[0] |= 0x40;
281
282 if (lut->m0d[0] & bit)
283 tmp[1] |= 0x01;
284 if (lut->m0d[1] & bit)
285 tmp[1] |= 0x02;
286 if (lut->m0d[2] & bit)
287 tmp[1] |= 0x04;
288 if (lut->m0d[3] & bit)
289 tmp[1] |= 0x08;
290
291 if (lut->m1d[0] & bit)
292 tmp[1] |= 0x10;
293 if (lut->m1d[1] & bit)
294 tmp[1] |= 0x20;
295 if (lut->m1d[2] & bit)
296 tmp[1] |= 0x40;
297 if (lut->m1d[3] & bit)
298 tmp[1] |= 0x80;
299
300 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
301 devc);
302 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
303 }
304
305 /* Send the parameters */
306 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
307 sizeof(lut->params), devc);
308
309 return SR_OK;
310}
311
312/* Generate the bitbang stream for programming the FPGA. */
313static int bin2bitbang(const char *filename,
314 unsigned char **buf, size_t *buf_size)
315{
316 FILE *f;
317 unsigned long file_size;
318 unsigned long offset = 0;
319 unsigned char *p;
320 uint8_t *firmware;
321 unsigned long fwsize = 0;
322 const int buffer_size = 65536;
323 size_t i;
324 int c, bit, v;
325 uint32_t imm = 0x3f6df2ab;
326
327 f = g_fopen(filename, "rb");
328 if (!f) {
329 sr_err("g_fopen(\"%s\", \"rb\")", filename);
330 return SR_ERR;
331 }
332
333 if (-1 == fseek(f, 0, SEEK_END)) {
334 sr_err("fseek on %s failed", filename);
335 fclose(f);
336 return SR_ERR;
337 }
338
339 file_size = ftell(f);
340
341 fseek(f, 0, SEEK_SET);
342
343 if (!(firmware = g_try_malloc(buffer_size))) {
344 sr_err("%s: firmware malloc failed", __func__);
345 fclose(f);
346 return SR_ERR_MALLOC;
347 }
348
349 while ((c = getc(f)) != EOF) {
350 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
351 firmware[fwsize++] = c ^ imm;
352 }
353 fclose(f);
354
355 if(fwsize != file_size) {
356 sr_err("%s: Error reading firmware", filename);
357 fclose(f);
358 g_free(firmware);
359 return SR_ERR;
360 }
361
362 *buf_size = fwsize * 2 * 8;
363
364 *buf = p = (unsigned char *)g_try_malloc(*buf_size);
365 if (!p) {
366 sr_err("%s: buf/p malloc failed", __func__);
367 g_free(firmware);
368 return SR_ERR_MALLOC;
369 }
370
371 for (i = 0; i < fwsize; ++i) {
372 for (bit = 7; bit >= 0; --bit) {
373 v = firmware[i] & 1 << bit ? 0x40 : 0x00;
374 p[offset++] = v | 0x01;
375 p[offset++] = v;
376 }
377 }
378
379 g_free(firmware);
380
381 if (offset != *buf_size) {
382 g_free(*buf);
383 sr_err("Error reading firmware %s "
384 "offset=%ld, file_size=%ld, buf_size=%zd.",
385 filename, offset, file_size, *buf_size);
386
387 return SR_ERR;
388 }
389
390 return SR_OK;
391}
392
393static int clear_instances(void)
394{
395 GSList *l;
396 struct sr_dev_inst *sdi;
397 struct drv_context *drvc;
398 struct dev_context *devc;
399
400 drvc = di->priv;
401
402 /* Properly close all devices. */
403 for (l = drvc->instances; l; l = l->next) {
404 if (!(sdi = l->data)) {
405 /* Log error, but continue cleaning up the rest. */
406 sr_err("%s: sdi was NULL, continuing", __func__);
407 continue;
408 }
409 if (sdi->priv) {
410 devc = sdi->priv;
411 ftdi_free(&devc->ftdic);
412 }
413 sr_dev_inst_free(sdi);
414 }
415 g_slist_free(drvc->instances);
416 drvc->instances = NULL;
417
418 return SR_OK;
419}
420
421static int hw_init(struct sr_context *sr_ctx)
422{
423 return std_hw_init(sr_ctx, di, DRIVER_LOG_DOMAIN);
424}
425
426static GSList *hw_scan(GSList *options)
427{
428 struct sr_dev_inst *sdi;
429 struct sr_probe *probe;
430 struct drv_context *drvc;
431 struct dev_context *devc;
432 GSList *devices;
433 struct ftdi_device_list *devlist;
434 char serial_txt[10];
435 uint32_t serial;
436 int ret, i;
437
438 (void)options;
439
440 drvc = di->priv;
441
442 devices = NULL;
443
444 clear_instances();
445
446 if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
447 sr_err("%s: devc malloc failed", __func__);
448 return NULL;
449 }
450
451 ftdi_init(&devc->ftdic);
452
453 /* Look for SIGMAs. */
454
455 if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
456 USB_VENDOR, USB_PRODUCT)) <= 0) {
457 if (ret < 0)
458 sr_err("ftdi_usb_find_all(): %d", ret);
459 goto free;
460 }
461
462 /* Make sure it's a version 1 or 2 SIGMA. */
463 ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
464 serial_txt, sizeof(serial_txt));
465 sscanf(serial_txt, "%x", &serial);
466
467 if (serial < 0xa6010000 || serial > 0xa602ffff) {
468 sr_err("Only SIGMA and SIGMA2 are supported "
469 "in this version of libsigrok.");
470 goto free;
471 }
472
473 sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
474
475 devc->cur_samplerate = 0;
476 devc->period_ps = 0;
477 devc->limit_msec = 0;
478 devc->cur_firmware = -1;
479 devc->num_probes = 0;
480 devc->samples_per_event = 0;
481 devc->capture_ratio = 50;
482 devc->use_triggers = 0;
483
484 /* Register SIGMA device. */
485 if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
486 USB_MODEL_NAME, USB_MODEL_VERSION))) {
487 sr_err("%s: sdi was NULL", __func__);
488 goto free;
489 }
490 sdi->driver = di;
491
492 for (i = 0; probe_names[i]; i++) {
493 if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE,
494 probe_names[i])))
495 return NULL;
496 sdi->probes = g_slist_append(sdi->probes, probe);
497 }
498
499 devices = g_slist_append(devices, sdi);
500 drvc->instances = g_slist_append(drvc->instances, sdi);
501 sdi->priv = devc;
502
503 /* We will open the device again when we need it. */
504 ftdi_list_free(&devlist);
505
506 return devices;
507
508free:
509 ftdi_deinit(&devc->ftdic);
510 g_free(devc);
511 return NULL;
512}
513
514static GSList *hw_dev_list(void)
515{
516 struct drv_context *drvc;
517
518 drvc = di->priv;
519
520 return drvc->instances;
521}
522
523static int upload_firmware(int firmware_idx, struct dev_context *devc)
524{
525 int ret;
526 unsigned char *buf;
527 unsigned char pins;
528 size_t buf_size;
529 unsigned char result[32];
530 char firmware_path[128];
531
532 /* Make sure it's an ASIX SIGMA. */
533 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
534 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
535 sr_err("ftdi_usb_open failed: %s",
536 ftdi_get_error_string(&devc->ftdic));
537 return 0;
538 }
539
540 if ((ret = ftdi_set_bitmode(&devc->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
541 sr_err("ftdi_set_bitmode failed: %s",
542 ftdi_get_error_string(&devc->ftdic));
543 return 0;
544 }
545
546 /* Four times the speed of sigmalogan - Works well. */
547 if ((ret = ftdi_set_baudrate(&devc->ftdic, 750000)) < 0) {
548 sr_err("ftdi_set_baudrate failed: %s",
549 ftdi_get_error_string(&devc->ftdic));
550 return 0;
551 }
552
553 /* Force the FPGA to reboot. */
554 sigma_write(suicide, sizeof(suicide), devc);
555 sigma_write(suicide, sizeof(suicide), devc);
556 sigma_write(suicide, sizeof(suicide), devc);
557 sigma_write(suicide, sizeof(suicide), devc);
558
559 /* Prepare to upload firmware (FPGA specific). */
560 sigma_write(init, sizeof(init), devc);
561
562 ftdi_usb_purge_buffers(&devc->ftdic);
563
564 /* Wait until the FPGA asserts INIT_B. */
565 while (1) {
566 ret = sigma_read(result, 1, devc);
567 if (result[0] & 0x20)
568 break;
569 }
570
571 /* Prepare firmware. */
572 snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
573 firmware_files[firmware_idx]);
574
575 if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
576 sr_err("An error occured while reading the firmware: %s",
577 firmware_path);
578 return ret;
579 }
580
581 /* Upload firmare. */
582 sr_info("Uploading firmware file '%s'.", firmware_files[firmware_idx]);
583 sigma_write(buf, buf_size, devc);
584
585 g_free(buf);
586
587 if ((ret = ftdi_set_bitmode(&devc->ftdic, 0x00, BITMODE_RESET)) < 0) {
588 sr_err("ftdi_set_bitmode failed: %s",
589 ftdi_get_error_string(&devc->ftdic));
590 return SR_ERR;
591 }
592
593 ftdi_usb_purge_buffers(&devc->ftdic);
594
595 /* Discard garbage. */
596 while (1 == sigma_read(&pins, 1, devc))
597 ;
598
599 /* Initialize the logic analyzer mode. */
600 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
601
602 /* Expect a 3 byte reply. */
603 ret = sigma_read(result, 3, devc);
604 if (ret != 3 ||
605 result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
606 sr_err("Configuration failed. Invalid reply received.");
607 return SR_ERR;
608 }
609
610 devc->cur_firmware = firmware_idx;
611
612 sr_info("Firmware uploaded.");
613
614 return SR_OK;
615}
616
617static int hw_dev_open(struct sr_dev_inst *sdi)
618{
619 struct dev_context *devc;
620 int ret;
621
622 devc = sdi->priv;
623
624 /* Make sure it's an ASIX SIGMA. */
625 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
626 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
627
628 sr_err("ftdi_usb_open failed: %s",
629 ftdi_get_error_string(&devc->ftdic));
630
631 return 0;
632 }
633
634 sdi->status = SR_ST_ACTIVE;
635
636 return SR_OK;
637}
638
639static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
640{
641 int i, ret;
642 struct dev_context *devc = sdi->priv;
643
644 ret = SR_OK;
645
646 for (i = 0; supported_samplerates[i]; i++) {
647 if (supported_samplerates[i] == samplerate)
648 break;
649 }
650 if (supported_samplerates[i] == 0)
651 return SR_ERR_SAMPLERATE;
652
653 if (samplerate <= SR_MHZ(50)) {
654 ret = upload_firmware(0, devc);
655 devc->num_probes = 16;
656 }
657 if (samplerate == SR_MHZ(100)) {
658 ret = upload_firmware(1, devc);
659 devc->num_probes = 8;
660 }
661 else if (samplerate == SR_MHZ(200)) {
662 ret = upload_firmware(2, devc);
663 devc->num_probes = 4;
664 }
665
666 devc->cur_samplerate = samplerate;
667 devc->period_ps = 1000000000000ULL / samplerate;
668 devc->samples_per_event = 16 / devc->num_probes;
669 devc->state.state = SIGMA_IDLE;
670
671 return ret;
672}
673
674/*
675 * In 100 and 200 MHz mode, only a single pin rising/falling can be
676 * set as trigger. In other modes, two rising/falling triggers can be set,
677 * in addition to value/mask trigger for any number of probes.
678 *
679 * The Sigma supports complex triggers using boolean expressions, but this
680 * has not been implemented yet.
681 */
682static int configure_probes(const struct sr_dev_inst *sdi)
683{
684 struct dev_context *devc = sdi->priv;
685 const struct sr_probe *probe;
686 const GSList *l;
687 int trigger_set = 0;
688 int probebit;
689
690 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
691
692 for (l = sdi->probes; l; l = l->next) {
693 probe = (struct sr_probe *)l->data;
694 probebit = 1 << (probe->index);
695
696 if (!probe->enabled || !probe->trigger)
697 continue;
698
699 if (devc->cur_samplerate >= SR_MHZ(100)) {
700 /* Fast trigger support. */
701 if (trigger_set) {
702 sr_err("Only a single pin trigger in 100 and "
703 "200MHz mode is supported.");
704 return SR_ERR;
705 }
706 if (probe->trigger[0] == 'f')
707 devc->trigger.fallingmask |= probebit;
708 else if (probe->trigger[0] == 'r')
709 devc->trigger.risingmask |= probebit;
710 else {
711 sr_err("Only rising/falling trigger in 100 "
712 "and 200MHz mode is supported.");
713 return SR_ERR;
714 }
715
716 ++trigger_set;
717 } else {
718 /* Simple trigger support (event). */
719 if (probe->trigger[0] == '1') {
720 devc->trigger.simplevalue |= probebit;
721 devc->trigger.simplemask |= probebit;
722 }
723 else if (probe->trigger[0] == '0') {
724 devc->trigger.simplevalue &= ~probebit;
725 devc->trigger.simplemask |= probebit;
726 }
727 else if (probe->trigger[0] == 'f') {
728 devc->trigger.fallingmask |= probebit;
729 ++trigger_set;
730 }
731 else if (probe->trigger[0] == 'r') {
732 devc->trigger.risingmask |= probebit;
733 ++trigger_set;
734 }
735
736 /*
737 * Actually, Sigma supports 2 rising/falling triggers,
738 * but they are ORed and the current trigger syntax
739 * does not permit ORed triggers.
740 */
741 if (trigger_set > 1) {
742 sr_err("Only 1 rising/falling trigger "
743 "is supported.");
744 return SR_ERR;
745 }
746 }
747
748 if (trigger_set)
749 devc->use_triggers = 1;
750 }
751
752 return SR_OK;
753}
754
755static int hw_dev_close(struct sr_dev_inst *sdi)
756{
757 struct dev_context *devc;
758
759 if (!(devc = sdi->priv)) {
760 sr_err("%s: sdi->priv was NULL", __func__);
761 return SR_ERR_BUG;
762 }
763
764 /* TODO */
765 if (sdi->status == SR_ST_ACTIVE)
766 ftdi_usb_close(&devc->ftdic);
767
768 sdi->status = SR_ST_INACTIVE;
769
770 return SR_OK;
771}
772
773static int hw_cleanup(void)
774{
775 if (!di->priv)
776 return SR_OK;
777
778 clear_instances();
779
780 return SR_OK;
781}
782
783static int config_get(int id, const void **data, const struct sr_dev_inst *sdi)
784{
785 struct dev_context *devc;
786
787 switch (id) {
788 case SR_CONF_SAMPLERATE:
789 if (sdi) {
790 devc = sdi->priv;
791 *data = &devc->cur_samplerate;
792 } else
793 return SR_ERR;
794 break;
795 default:
796 return SR_ERR_ARG;
797 }
798
799 return SR_OK;
800}
801
802static int config_set(int id, const void *value, const struct sr_dev_inst *sdi)
803{
804 struct dev_context *devc;
805 int ret;
806
807 devc = sdi->priv;
808
809 if (id == SR_CONF_SAMPLERATE) {
810 ret = set_samplerate(sdi, *(const uint64_t *)value);
811 } else if (id == SR_CONF_LIMIT_MSEC) {
812 devc->limit_msec = *(const uint64_t *)value;
813 if (devc->limit_msec > 0)
814 ret = SR_OK;
815 else
816 ret = SR_ERR;
817 } else if (id == SR_CONF_CAPTURE_RATIO) {
818 devc->capture_ratio = *(const uint64_t *)value;
819 if (devc->capture_ratio < 0 || devc->capture_ratio > 100)
820 ret = SR_ERR;
821 else
822 ret = SR_OK;
823 } else {
824 ret = SR_ERR;
825 }
826
827 return ret;
828}
829
830static int config_list(int key, const void **data, const struct sr_dev_inst *sdi)
831{
832
833 (void)sdi;
834
835 switch (key) {
836 case SR_CONF_DEVICE_OPTIONS:
837 *data = hwcaps;
838 break;
839 case SR_CONF_SAMPLERATE:
840 *data = &samplerates;
841 break;
842 case SR_CONF_TRIGGER_TYPE:
843 *data = (char *)TRIGGER_TYPE;
844 break;
845 default:
846 return SR_ERR_ARG;
847 }
848
849 return SR_OK;
850}
851
852/* Software trigger to determine exact trigger position. */
853static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
854 struct sigma_trigger *t)
855{
856 int i;
857
858 for (i = 0; i < 8; ++i) {
859 if (i > 0)
860 last_sample = samples[i-1];
861
862 /* Simple triggers. */
863 if ((samples[i] & t->simplemask) != t->simplevalue)
864 continue;
865
866 /* Rising edge. */
867 if ((last_sample & t->risingmask) != 0 || (samples[i] &
868 t->risingmask) != t->risingmask)
869 continue;
870
871 /* Falling edge. */
872 if ((last_sample & t->fallingmask) != t->fallingmask ||
873 (samples[i] & t->fallingmask) != 0)
874 continue;
875
876 break;
877 }
878
879 /* If we did not match, return original trigger pos. */
880 return i & 0x7;
881}
882
883/*
884 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
885 * Each event is 20ns apart, and can contain multiple samples.
886 *
887 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
888 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
889 * For 50 MHz and below, events contain one sample for each channel,
890 * spread 20 ns apart.
891 */
892static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
893 uint16_t *lastsample, int triggerpos,
894 uint16_t limit_chunk, void *cb_data)
895{
896 struct sr_dev_inst *sdi = cb_data;
897 struct dev_context *devc = sdi->priv;
898 uint16_t tsdiff, ts;
899 uint16_t samples[65536 * devc->samples_per_event];
900 struct sr_datafeed_packet packet;
901 struct sr_datafeed_logic logic;
902 int i, j, k, l, numpad, tosend;
903 size_t n = 0, sent = 0;
904 int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event;
905 uint16_t *event;
906 uint16_t cur_sample;
907 int triggerts = -1;
908
909 /* Check if trigger is in this chunk. */
910 if (triggerpos != -1) {
911 if (devc->cur_samplerate <= SR_MHZ(50))
912 triggerpos -= EVENTS_PER_CLUSTER - 1;
913
914 if (triggerpos < 0)
915 triggerpos = 0;
916
917 /* Find in which cluster the trigger occured. */
918 triggerts = triggerpos / 7;
919 }
920
921 /* For each ts. */
922 for (i = 0; i < 64; ++i) {
923 ts = *(uint16_t *) &buf[i * 16];
924 tsdiff = ts - *lastts;
925 *lastts = ts;
926
927 /* Decode partial chunk. */
928 if (limit_chunk && ts > limit_chunk)
929 return SR_OK;
930
931 /* Pad last sample up to current point. */
932 numpad = tsdiff * devc->samples_per_event - clustersize;
933 if (numpad > 0) {
934 for (j = 0; j < numpad; ++j)
935 samples[j] = *lastsample;
936
937 n = numpad;
938 }
939
940 /* Send samples between previous and this timestamp to sigrok. */
941 sent = 0;
942 while (sent < n) {
943 tosend = MIN(2048, n - sent);
944
945 packet.type = SR_DF_LOGIC;
946 packet.payload = &logic;
947 logic.length = tosend * sizeof(uint16_t);
948 logic.unitsize = 2;
949 logic.data = samples + sent;
950 sr_session_send(devc->session_dev_id, &packet);
951
952 sent += tosend;
953 }
954 n = 0;
955
956 event = (uint16_t *) &buf[i * 16 + 2];
957 cur_sample = 0;
958
959 /* For each event in cluster. */
960 for (j = 0; j < 7; ++j) {
961
962 /* For each sample in event. */
963 for (k = 0; k < devc->samples_per_event; ++k) {
964 cur_sample = 0;
965
966 /* For each probe. */
967 for (l = 0; l < devc->num_probes; ++l)
968 cur_sample |= (!!(event[j] & (1 << (l *
969 devc->samples_per_event + k)))) << l;
970
971 samples[n++] = cur_sample;
972 }
973 }
974
975 /* Send data up to trigger point (if triggered). */
976 sent = 0;
977 if (i == triggerts) {
978 /*
979 * Trigger is not always accurate to sample because of
980 * pipeline delay. However, it always triggers before
981 * the actual event. We therefore look at the next
982 * samples to pinpoint the exact position of the trigger.
983 */
984 tosend = get_trigger_offset(samples, *lastsample,
985 &devc->trigger);
986
987 if (tosend > 0) {
988 packet.type = SR_DF_LOGIC;
989 packet.payload = &logic;
990 logic.length = tosend * sizeof(uint16_t);
991 logic.unitsize = 2;
992 logic.data = samples;
993 sr_session_send(devc->session_dev_id, &packet);
994
995 sent += tosend;
996 }
997
998 /* Only send trigger if explicitly enabled. */
999 if (devc->use_triggers) {
1000 packet.type = SR_DF_TRIGGER;
1001 sr_session_send(devc->session_dev_id, &packet);
1002 }
1003 }
1004
1005 /* Send rest of the chunk to sigrok. */
1006 tosend = n - sent;
1007
1008 if (tosend > 0) {
1009 packet.type = SR_DF_LOGIC;
1010 packet.payload = &logic;
1011 logic.length = tosend * sizeof(uint16_t);
1012 logic.unitsize = 2;
1013 logic.data = samples + sent;
1014 sr_session_send(devc->session_dev_id, &packet);
1015 }
1016
1017 *lastsample = samples[n - 1];
1018 }
1019
1020 return SR_OK;
1021}
1022
1023static int receive_data(int fd, int revents, void *cb_data)
1024{
1025 struct sr_dev_inst *sdi = cb_data;
1026 struct dev_context *devc = sdi->priv;
1027 struct sr_datafeed_packet packet;
1028 const int chunks_per_read = 32;
1029 unsigned char buf[chunks_per_read * CHUNK_SIZE];
1030 int bufsz, numchunks, i, newchunks;
1031 uint64_t running_msec;
1032 struct timeval tv;
1033
1034 (void)fd;
1035 (void)revents;
1036
1037 /* Get the current position. */
1038 sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1039
1040 numchunks = (devc->state.stoppos + 511) / 512;
1041
1042 if (devc->state.state == SIGMA_IDLE)
1043 return TRUE;
1044
1045 if (devc->state.state == SIGMA_CAPTURE) {
1046 /* Check if the timer has expired, or memory is full. */
1047 gettimeofday(&tv, 0);
1048 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1049 (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1050
1051 if (running_msec < devc->limit_msec && numchunks < 32767)
1052 return TRUE; /* While capturing... */
1053 else
1054 hw_dev_acquisition_stop(sdi, sdi);
1055
1056 }
1057
1058 if (devc->state.state == SIGMA_DOWNLOAD) {
1059 if (devc->state.chunks_downloaded >= numchunks) {
1060 /* End of samples. */
1061 packet.type = SR_DF_END;
1062 sr_session_send(devc->session_dev_id, &packet);
1063
1064 devc->state.state = SIGMA_IDLE;
1065
1066 return TRUE;
1067 }
1068
1069 newchunks = MIN(chunks_per_read,
1070 numchunks - devc->state.chunks_downloaded);
1071
1072 sr_info("Downloading sample data: %.0f %%.",
1073 100.0 * devc->state.chunks_downloaded / numchunks);
1074
1075 bufsz = sigma_read_dram(devc->state.chunks_downloaded,
1076 newchunks, buf, devc);
1077 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1078 (void)bufsz;
1079
1080 /* Find first ts. */
1081 if (devc->state.chunks_downloaded == 0) {
1082 devc->state.lastts = *(uint16_t *) buf - 1;
1083 devc->state.lastsample = 0;
1084 }
1085
1086 /* Decode chunks and send them to sigrok. */
1087 for (i = 0; i < newchunks; ++i) {
1088 int limit_chunk = 0;
1089
1090 /* The last chunk may potentially be only in part. */
1091 if (devc->state.chunks_downloaded == numchunks - 1) {
1092 /* Find the last valid timestamp */
1093 limit_chunk = devc->state.stoppos % 512 + devc->state.lastts;
1094 }
1095
1096 if (devc->state.chunks_downloaded + i == devc->state.triggerchunk)
1097 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1098 &devc->state.lastts,
1099 &devc->state.lastsample,
1100 devc->state.triggerpos & 0x1ff,
1101 limit_chunk, sdi);
1102 else
1103 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1104 &devc->state.lastts,
1105 &devc->state.lastsample,
1106 -1, limit_chunk, sdi);
1107
1108 ++devc->state.chunks_downloaded;
1109 }
1110 }
1111
1112 return TRUE;
1113}
1114
1115/* Build a LUT entry used by the trigger functions. */
1116static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1117{
1118 int i, j, k, bit;
1119
1120 /* For each quad probe. */
1121 for (i = 0; i < 4; ++i) {
1122 entry[i] = 0xffff;
1123
1124 /* For each bit in LUT. */
1125 for (j = 0; j < 16; ++j)
1126
1127 /* For each probe in quad. */
1128 for (k = 0; k < 4; ++k) {
1129 bit = 1 << (i * 4 + k);
1130
1131 /* Set bit in entry */
1132 if ((mask & bit) &&
1133 ((!(value & bit)) !=
1134 (!(j & (1 << k)))))
1135 entry[i] &= ~(1 << j);
1136 }
1137 }
1138}
1139
1140/* Add a logical function to LUT mask. */
1141static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1142 int index, int neg, uint16_t *mask)
1143{
1144 int i, j;
1145 int x[2][2], tmp, a, b, aset, bset, rset;
1146
1147 memset(x, 0, 4 * sizeof(int));
1148
1149 /* Trigger detect condition. */
1150 switch (oper) {
1151 case OP_LEVEL:
1152 x[0][1] = 1;
1153 x[1][1] = 1;
1154 break;
1155 case OP_NOT:
1156 x[0][0] = 1;
1157 x[1][0] = 1;
1158 break;
1159 case OP_RISE:
1160 x[0][1] = 1;
1161 break;
1162 case OP_FALL:
1163 x[1][0] = 1;
1164 break;
1165 case OP_RISEFALL:
1166 x[0][1] = 1;
1167 x[1][0] = 1;
1168 break;
1169 case OP_NOTRISE:
1170 x[1][1] = 1;
1171 x[0][0] = 1;
1172 x[1][0] = 1;
1173 break;
1174 case OP_NOTFALL:
1175 x[1][1] = 1;
1176 x[0][0] = 1;
1177 x[0][1] = 1;
1178 break;
1179 case OP_NOTRISEFALL:
1180 x[1][1] = 1;
1181 x[0][0] = 1;
1182 break;
1183 }
1184
1185 /* Transpose if neg is set. */
1186 if (neg) {
1187 for (i = 0; i < 2; ++i) {
1188 for (j = 0; j < 2; ++j) {
1189 tmp = x[i][j];
1190 x[i][j] = x[1-i][1-j];
1191 x[1-i][1-j] = tmp;
1192 }
1193 }
1194 }
1195
1196 /* Update mask with function. */
1197 for (i = 0; i < 16; ++i) {
1198 a = (i >> (2 * index + 0)) & 1;
1199 b = (i >> (2 * index + 1)) & 1;
1200
1201 aset = (*mask >> i) & 1;
1202 bset = x[b][a];
1203
1204 if (func == FUNC_AND || func == FUNC_NAND)
1205 rset = aset & bset;
1206 else if (func == FUNC_OR || func == FUNC_NOR)
1207 rset = aset | bset;
1208 else if (func == FUNC_XOR || func == FUNC_NXOR)
1209 rset = aset ^ bset;
1210
1211 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1212 rset = !rset;
1213
1214 *mask &= ~(1 << i);
1215
1216 if (rset)
1217 *mask |= 1 << i;
1218 }
1219}
1220
1221/*
1222 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1223 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1224 * set at any time, but a full mask and value can be set (0/1).
1225 */
1226static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1227{
1228 int i,j;
1229 uint16_t masks[2] = { 0, 0 };
1230
1231 memset(lut, 0, sizeof(struct triggerlut));
1232
1233 /* Contant for simple triggers. */
1234 lut->m4 = 0xa000;
1235
1236 /* Value/mask trigger support. */
1237 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1238 lut->m2d);
1239
1240 /* Rise/fall trigger support. */
1241 for (i = 0, j = 0; i < 16; ++i) {
1242 if (devc->trigger.risingmask & (1 << i) ||
1243 devc->trigger.fallingmask & (1 << i))
1244 masks[j++] = 1 << i;
1245 }
1246
1247 build_lut_entry(masks[0], masks[0], lut->m0d);
1248 build_lut_entry(masks[1], masks[1], lut->m1d);
1249
1250 /* Add glue logic */
1251 if (masks[0] || masks[1]) {
1252 /* Transition trigger. */
1253 if (masks[0] & devc->trigger.risingmask)
1254 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1255 if (masks[0] & devc->trigger.fallingmask)
1256 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1257 if (masks[1] & devc->trigger.risingmask)
1258 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1259 if (masks[1] & devc->trigger.fallingmask)
1260 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1261 } else {
1262 /* Only value/mask trigger. */
1263 lut->m3 = 0xffff;
1264 }
1265
1266 /* Triggertype: event. */
1267 lut->params.selres = 3;
1268
1269 return SR_OK;
1270}
1271
1272static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
1273 void *cb_data)
1274{
1275 struct dev_context *devc;
1276 struct sr_datafeed_packet *packet;
1277 struct sr_datafeed_header *header;
1278 struct clockselect_50 clockselect;
1279 int frac, triggerpin, ret;
1280 uint8_t triggerselect = 0;
1281 struct triggerinout triggerinout_conf;
1282 struct triggerlut lut;
1283
1284 devc = sdi->priv;
1285
1286 if (configure_probes(sdi) != SR_OK) {
1287 sr_err("Failed to configure probes.");
1288 return SR_ERR;
1289 }
1290
1291 /* If the samplerate has not been set, default to 200 kHz. */
1292 if (devc->cur_firmware == -1) {
1293 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1294 return ret;
1295 }
1296
1297 /* Enter trigger programming mode. */
1298 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
1299
1300 /* 100 and 200 MHz mode. */
1301 if (devc->cur_samplerate >= SR_MHZ(100)) {
1302 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
1303
1304 /* Find which pin to trigger on from mask. */
1305 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1306 if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
1307 (1 << triggerpin))
1308 break;
1309
1310 /* Set trigger pin and light LED on trigger. */
1311 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1312
1313 /* Default rising edge. */
1314 if (devc->trigger.fallingmask)
1315 triggerselect |= 1 << 3;
1316
1317 /* All other modes. */
1318 } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1319 build_basic_trigger(&lut, devc);
1320
1321 sigma_write_trigger_lut(&lut, devc);
1322
1323 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1324 }
1325
1326 /* Setup trigger in and out pins to default values. */
1327 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1328 triggerinout_conf.trgout_bytrigger = 1;
1329 triggerinout_conf.trgout_enable = 1;
1330
1331 sigma_write_register(WRITE_TRIGGER_OPTION,
1332 (uint8_t *) &triggerinout_conf,
1333 sizeof(struct triggerinout), devc);
1334
1335 /* Go back to normal mode. */
1336 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
1337
1338 /* Set clock select register. */
1339 if (devc->cur_samplerate == SR_MHZ(200))
1340 /* Enable 4 probes. */
1341 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1342 else if (devc->cur_samplerate == SR_MHZ(100))
1343 /* Enable 8 probes. */
1344 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
1345 else {
1346 /*
1347 * 50 MHz mode (or fraction thereof). Any fraction down to
1348 * 50 MHz / 256 can be used, but is not supported by sigrok API.
1349 */
1350 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
1351
1352 clockselect.async = 0;
1353 clockselect.fraction = frac;
1354 clockselect.disabled_probes = 0;
1355
1356 sigma_write_register(WRITE_CLOCK_SELECT,
1357 (uint8_t *) &clockselect,
1358 sizeof(clockselect), devc);
1359 }
1360
1361 /* Setup maximum post trigger time. */
1362 sigma_set_register(WRITE_POST_TRIGGER,
1363 (devc->capture_ratio * 255) / 100, devc);
1364
1365 /* Start acqusition. */
1366 gettimeofday(&devc->start_tv, 0);
1367 sigma_set_register(WRITE_MODE, 0x0d, devc);
1368
1369 devc->session_dev_id = cb_data;
1370
1371 if (!(packet = g_try_malloc(sizeof(struct sr_datafeed_packet)))) {
1372 sr_err("%s: packet malloc failed.", __func__);
1373 return SR_ERR_MALLOC;
1374 }
1375
1376 if (!(header = g_try_malloc(sizeof(struct sr_datafeed_header)))) {
1377 sr_err("%s: header malloc failed.", __func__);
1378 return SR_ERR_MALLOC;
1379 }
1380
1381 /* Send header packet to the session bus. */
1382 packet->type = SR_DF_HEADER;
1383 packet->payload = header;
1384 header->feed_version = 1;
1385 gettimeofday(&header->starttime, NULL);
1386 sr_session_send(devc->session_dev_id, packet);
1387
1388 /* Add capture source. */
1389 sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
1390
1391 g_free(header);
1392 g_free(packet);
1393
1394 devc->state.state = SIGMA_CAPTURE;
1395
1396 return SR_OK;
1397}
1398
1399static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
1400{
1401 struct dev_context *devc;
1402 uint8_t modestatus;
1403
1404 (void)cb_data;
1405
1406 sr_source_remove(0);
1407
1408 if (!(devc = sdi->priv)) {
1409 sr_err("%s: sdi->priv was NULL", __func__);
1410 return SR_ERR_BUG;
1411 }
1412
1413 /* Stop acquisition. */
1414 sigma_set_register(WRITE_MODE, 0x11, devc);
1415
1416 /* Set SDRAM Read Enable. */
1417 sigma_set_register(WRITE_MODE, 0x02, devc);
1418
1419 /* Get the current position. */
1420 sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1421
1422 /* Check if trigger has fired. */
1423 modestatus = sigma_get_register(READ_MODE, devc);
1424 if (modestatus & 0x20)
1425 devc->state.triggerchunk = devc->state.triggerpos / 512;
1426 else
1427 devc->state.triggerchunk = -1;
1428
1429 devc->state.chunks_downloaded = 0;
1430
1431 devc->state.state = SIGMA_DOWNLOAD;
1432
1433 return SR_OK;
1434}
1435
1436SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1437 .name = "asix-sigma",
1438 .longname = "ASIX SIGMA/SIGMA2",
1439 .api_version = 1,
1440 .init = hw_init,
1441 .cleanup = hw_cleanup,
1442 .scan = hw_scan,
1443 .dev_list = hw_dev_list,
1444 .dev_clear = clear_instances,
1445 .config_get = config_get,
1446 .config_set = config_set,
1447 .config_list = config_list,
1448 .dev_open = hw_dev_open,
1449 .dev_close = hw_dev_close,
1450 .dev_acquisition_start = hw_dev_acquisition_start,
1451 .dev_acquisition_stop = hw_dev_acquisition_stop,
1452 .priv = NULL,
1453};