]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/uart/pd.py
configure.ac: Also check for Python 3.6.
[libsigrokdecode.git] / decoders / uart / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2011-2014 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21import sigrokdecode as srd
22from math import floor, ceil
23
24'''
25OUTPUT_PYTHON format:
26
27Packet:
28[<ptype>, <rxtx>, <pdata>]
29
30This is the list of <ptype>s and their respective <pdata> values:
31 - 'STARTBIT': The data is the (integer) value of the start bit (0/1).
32 - 'DATA': This is always a tuple containing two items:
33 - 1st item: the (integer) value of the UART data. Valid values
34 range from 0 to 511 (as the data can be up to 9 bits in size).
35 - 2nd item: the list of individual data bits and their ss/es numbers.
36 - 'PARITYBIT': The data is the (integer) value of the parity bit (0/1).
37 - 'STOPBIT': The data is the (integer) value of the stop bit (0 or 1).
38 - 'INVALID STARTBIT': The data is the (integer) value of the start bit (0/1).
39 - 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1).
40 - 'PARITY ERROR': The data is a tuple with two entries. The first one is
41 the expected parity value, the second is the actual parity value.
42 - TODO: Frame error?
43
44The <rxtx> field is 0 for RX packets, 1 for TX packets.
45'''
46
47# Used for differentiating between the two data directions.
48RX = 0
49TX = 1
50
51# Given a parity type to check (odd, even, zero, one), the value of the
52# parity bit, the value of the data, and the length of the data (5-9 bits,
53# usually 8 bits) return True if the parity is correct, False otherwise.
54# 'none' is _not_ allowed as value for 'parity_type'.
55def parity_ok(parity_type, parity_bit, data, num_data_bits):
56
57 # Handle easy cases first (parity bit is always 1 or 0).
58 if parity_type == 'zero':
59 return parity_bit == 0
60 elif parity_type == 'one':
61 return parity_bit == 1
62
63 # Count number of 1 (high) bits in the data (and the parity bit itself!).
64 ones = bin(data).count('1') + parity_bit
65
66 # Check for odd/even parity.
67 if parity_type == 'odd':
68 return (ones % 2) == 1
69 elif parity_type == 'even':
70 return (ones % 2) == 0
71
72class SamplerateError(Exception):
73 pass
74
75class ChannelError(Exception):
76 pass
77
78class Decoder(srd.Decoder):
79 api_version = 2
80 id = 'uart'
81 name = 'UART'
82 longname = 'Universal Asynchronous Receiver/Transmitter'
83 desc = 'Asynchronous, serial bus.'
84 license = 'gplv2+'
85 inputs = ['logic']
86 outputs = ['uart']
87 optional_channels = (
88 # Allow specifying only one of the signals, e.g. if only one data
89 # direction exists (or is relevant).
90 {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
91 {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
92 )
93 options = (
94 {'id': 'baudrate', 'desc': 'Baud rate', 'default': 115200},
95 {'id': 'num_data_bits', 'desc': 'Data bits', 'default': 8,
96 'values': (5, 6, 7, 8, 9)},
97 {'id': 'parity_type', 'desc': 'Parity type', 'default': 'none',
98 'values': ('none', 'odd', 'even', 'zero', 'one')},
99 {'id': 'parity_check', 'desc': 'Check parity?', 'default': 'yes',
100 'values': ('yes', 'no')},
101 {'id': 'num_stop_bits', 'desc': 'Stop bits', 'default': 1.0,
102 'values': (0.0, 0.5, 1.0, 1.5)},
103 {'id': 'bit_order', 'desc': 'Bit order', 'default': 'lsb-first',
104 'values': ('lsb-first', 'msb-first')},
105 {'id': 'format', 'desc': 'Data format', 'default': 'hex',
106 'values': ('ascii', 'dec', 'hex', 'oct', 'bin')},
107 {'id': 'invert_rx', 'desc': 'Invert RX?', 'default': 'no',
108 'values': ('yes', 'no')},
109 {'id': 'invert_tx', 'desc': 'Invert TX?', 'default': 'no',
110 'values': ('yes', 'no')},
111 )
112 annotations = (
113 ('rx-data', 'RX data'),
114 ('tx-data', 'TX data'),
115 ('rx-start', 'RX start bits'),
116 ('tx-start', 'TX start bits'),
117 ('rx-parity-ok', 'RX parity OK bits'),
118 ('tx-parity-ok', 'TX parity OK bits'),
119 ('rx-parity-err', 'RX parity error bits'),
120 ('tx-parity-err', 'TX parity error bits'),
121 ('rx-stop', 'RX stop bits'),
122 ('tx-stop', 'TX stop bits'),
123 ('rx-warnings', 'RX warnings'),
124 ('tx-warnings', 'TX warnings'),
125 ('rx-data-bits', 'RX data bits'),
126 ('tx-data-bits', 'TX data bits'),
127 )
128 annotation_rows = (
129 ('rx-data', 'RX', (0, 2, 4, 6, 8)),
130 ('rx-data-bits', 'RX bits', (12,)),
131 ('rx-warnings', 'RX warnings', (10,)),
132 ('tx-data', 'TX', (1, 3, 5, 7, 9)),
133 ('tx-data-bits', 'TX bits', (13,)),
134 ('tx-warnings', 'TX warnings', (11,)),
135 )
136 binary = (
137 ('rx', 'RX dump'),
138 ('tx', 'TX dump'),
139 ('rxtx', 'RX/TX dump'),
140 )
141 idle_state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
142
143 def putx(self, rxtx, data):
144 s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
145 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data)
146
147 def putpx(self, rxtx, data):
148 s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
149 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_python, data)
150
151 def putg(self, data):
152 s, halfbit = self.samplenum, self.bit_width / 2.0
153 self.put(s - floor(halfbit), s + ceil(halfbit), self.out_ann, data)
154
155 def putp(self, data):
156 s, halfbit = self.samplenum, self.bit_width / 2.0
157 self.put(s - floor(halfbit), s + ceil(halfbit), self.out_python, data)
158
159 def putbin(self, rxtx, data):
160 s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
161 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_binary, data)
162
163 def __init__(self):
164 self.samplerate = None
165 self.samplenum = 0
166 self.frame_start = [-1, -1]
167 self.startbit = [-1, -1]
168 self.cur_data_bit = [0, 0]
169 self.datavalue = [0, 0]
170 self.paritybit = [-1, -1]
171 self.stopbit1 = [-1, -1]
172 self.startsample = [-1, -1]
173 self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
174 self.oldbit = [1, 1]
175 self.oldpins = [-1, -1]
176 self.databits = [[], []]
177
178 def start(self):
179 self.out_python = self.register(srd.OUTPUT_PYTHON)
180 self.out_binary = self.register(srd.OUTPUT_BINARY)
181 self.out_ann = self.register(srd.OUTPUT_ANN)
182 self.bw = (self.options['num_data_bits'] + 7) // 8
183
184 def metadata(self, key, value):
185 if key == srd.SRD_CONF_SAMPLERATE:
186 self.samplerate = value
187 # The width of one UART bit in number of samples.
188 self.bit_width = float(self.samplerate) / float(self.options['baudrate'])
189
190 # Return true if we reached the middle of the desired bit, false otherwise.
191 def reached_bit(self, rxtx, bitnum):
192 # bitpos is the samplenumber which is in the middle of the
193 # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
194 # (if used) or the first stop bit, and so on).
195 # The samples within bit are 0, 1, ..., (bit_width - 1), therefore
196 # index of the middle sample within bit window is (bit_width - 1) / 2.
197 bitpos = self.frame_start[rxtx] + (self.bit_width - 1) / 2.0
198 bitpos += bitnum * self.bit_width
199 if self.samplenum >= bitpos:
200 return True
201 return False
202
203 def reached_bit_last(self, rxtx, bitnum):
204 bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width)
205 if self.samplenum >= bitpos:
206 return True
207 return False
208
209 def wait_for_start_bit(self, rxtx, old_signal, signal):
210 # The start bit is always 0 (low). As the idle UART (and the stop bit)
211 # level is 1 (high), the beginning of a start bit is a falling edge.
212 if not (old_signal == 1 and signal == 0):
213 return
214
215 # Save the sample number where the start bit begins.
216 self.frame_start[rxtx] = self.samplenum
217
218 self.state[rxtx] = 'GET START BIT'
219
220 def get_start_bit(self, rxtx, signal):
221 # Skip samples until we're in the middle of the start bit.
222 if not self.reached_bit(rxtx, 0):
223 return
224
225 self.startbit[rxtx] = signal
226
227 # The startbit must be 0. If not, we report an error and wait
228 # for the next start bit (assuming this one was spurious).
229 if self.startbit[rxtx] != 0:
230 self.putp(['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
231 self.putg([rxtx + 10, ['Frame error', 'Frame err', 'FE']])
232 self.state[rxtx] = 'WAIT FOR START BIT'
233 return
234
235 self.cur_data_bit[rxtx] = 0
236 self.datavalue[rxtx] = 0
237 self.startsample[rxtx] = -1
238
239 self.state[rxtx] = 'GET DATA BITS'
240
241 self.putp(['STARTBIT', rxtx, self.startbit[rxtx]])
242 self.putg([rxtx + 2, ['Start bit', 'Start', 'S']])
243
244 def get_data_bits(self, rxtx, signal):
245 # Skip samples until we're in the middle of the desired data bit.
246 if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1):
247 return
248
249 # Save the sample number of the middle of the first data bit.
250 if self.startsample[rxtx] == -1:
251 self.startsample[rxtx] = self.samplenum
252
253 # Get the next data bit in LSB-first or MSB-first fashion.
254 if self.options['bit_order'] == 'lsb-first':
255 self.datavalue[rxtx] >>= 1
256 self.datavalue[rxtx] |= \
257 (signal << (self.options['num_data_bits'] - 1))
258 else:
259 self.datavalue[rxtx] <<= 1
260 self.datavalue[rxtx] |= (signal << 0)
261
262 self.putg([rxtx + 12, ['%d' % signal]])
263
264 # Store individual data bits and their start/end samplenumbers.
265 s, halfbit = self.samplenum, int(self.bit_width / 2)
266 self.databits[rxtx].append([signal, s - halfbit, s + halfbit])
267
268 # Return here, unless we already received all data bits.
269 if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1:
270 self.cur_data_bit[rxtx] += 1
271 return
272
273 self.state[rxtx] = 'GET PARITY BIT'
274
275 self.putpx(rxtx, ['DATA', rxtx,
276 (self.datavalue[rxtx], self.databits[rxtx])])
277
278 b = self.datavalue[rxtx]
279 formatted = self.format_value(b)
280 if formatted is not None:
281 self.putx(rxtx, [rxtx, [formatted]])
282
283 bdata = b.to_bytes(self.bw, byteorder='big')
284 self.putbin(rxtx, [rxtx, bdata])
285 self.putbin(rxtx, [2, bdata])
286
287 self.databits[rxtx] = []
288
289 def format_value(self, v):
290 # Format value 'v' according to configured options.
291 # Reflects the user selected kind of representation, as well as
292 # the number of data bits in the UART frames.
293
294 fmt, bits = self.options['format'], self.options['num_data_bits']
295
296 # Assume "is printable" for values from 32 to including 126,
297 # below 32 is "control" and thus not printable, above 127 is
298 # "not ASCII" in its strict sense, 127 (DEL) is not printable,
299 # fall back to hex representation for non-printables.
300 if fmt == 'ascii':
301 if v in range(32, 126 + 1):
302 return chr(v)
303 hexfmt = "[{:02X}]" if bits <= 8 else "[{:03X}]"
304 return hexfmt.format(v)
305
306 # Mere number to text conversion without prefix and padding
307 # for the "decimal" output format.
308 if fmt == 'dec':
309 return "{:d}".format(v)
310
311 # Padding with leading zeroes for hex/oct/bin formats, but
312 # without a prefix for density -- since the format is user
313 # specified, there is no ambiguity.
314 if fmt == 'hex':
315 digits = (bits + 4 - 1) // 4
316 fmtchar = "X"
317 elif fmt == 'oct':
318 digits = (bits + 3 - 1) // 3
319 fmtchar = "o"
320 elif fmt == 'bin':
321 digits = bits
322 fmtchar = "b"
323 else:
324 fmtchar = None
325 if fmtchar is not None:
326 fmt = "{{:0{:d}{:s}}}".format(digits, fmtchar)
327 return fmt.format(v)
328
329 return None
330
331 def get_parity_bit(self, rxtx, signal):
332 # If no parity is used/configured, skip to the next state immediately.
333 if self.options['parity_type'] == 'none':
334 self.state[rxtx] = 'GET STOP BITS'
335 return
336
337 # Skip samples until we're in the middle of the parity bit.
338 if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1):
339 return
340
341 self.paritybit[rxtx] = signal
342
343 self.state[rxtx] = 'GET STOP BITS'
344
345 if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
346 self.datavalue[rxtx], self.options['num_data_bits']):
347 self.putp(['PARITYBIT', rxtx, self.paritybit[rxtx]])
348 self.putg([rxtx + 4, ['Parity bit', 'Parity', 'P']])
349 else:
350 # TODO: Return expected/actual parity values.
351 self.putp(['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
352 self.putg([rxtx + 6, ['Parity error', 'Parity err', 'PE']])
353
354 # TODO: Currently only supports 1 stop bit.
355 def get_stop_bits(self, rxtx, signal):
356 # Skip samples until we're in the middle of the stop bit(s).
357 skip_parity = 0 if self.options['parity_type'] == 'none' else 1
358 b = self.options['num_data_bits'] + 1 + skip_parity
359 if not self.reached_bit(rxtx, b):
360 return
361
362 self.stopbit1[rxtx] = signal
363
364 # Stop bits must be 1. If not, we report an error.
365 if self.stopbit1[rxtx] != 1:
366 self.putp(['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
367 self.putg([rxtx + 10, ['Frame error', 'Frame err', 'FE']])
368 # TODO: Abort? Ignore the frame? Other?
369
370 self.state[rxtx] = 'WAIT FOR START BIT'
371
372 self.putp(['STOPBIT', rxtx, self.stopbit1[rxtx]])
373 self.putg([rxtx + 4, ['Stop bit', 'Stop', 'T']])
374
375 def decode(self, ss, es, data):
376 if not self.samplerate:
377 raise SamplerateError('Cannot decode without samplerate.')
378 for (self.samplenum, pins) in data:
379
380 # We want to skip identical samples for performance reasons but,
381 # for now, we can only do that when we are in the idle state
382 # (meaning both channels are waiting for the start bit).
383 if self.state == self.idle_state and self.oldpins == pins:
384 continue
385
386 self.oldpins, (rx, tx) = pins, pins
387
388 if self.options['invert_rx'] == 'yes':
389 rx = not rx
390 if self.options['invert_tx'] == 'yes':
391 tx = not tx
392
393 # Either RX or TX (but not both) can be omitted.
394 has_pin = [rx in (0, 1), tx in (0, 1)]
395 if has_pin == [False, False]:
396 raise ChannelError('Either TX or RX (or both) pins required.')
397
398 # State machine.
399 for rxtx in (RX, TX):
400 # Don't try to handle RX (or TX) if not supplied.
401 if not has_pin[rxtx]:
402 continue
403
404 signal = rx if (rxtx == RX) else tx
405
406 if self.state[rxtx] == 'WAIT FOR START BIT':
407 self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal)
408 elif self.state[rxtx] == 'GET START BIT':
409 self.get_start_bit(rxtx, signal)
410 elif self.state[rxtx] == 'GET DATA BITS':
411 self.get_data_bits(rxtx, signal)
412 elif self.state[rxtx] == 'GET PARITY BIT':
413 self.get_parity_bit(rxtx, signal)
414 elif self.state[rxtx] == 'GET STOP BITS':
415 self.get_stop_bits(rxtx, signal)
416
417 # Save current RX/TX values for the next round.
418 self.oldbit[rxtx] = signal