]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/spiflash/pd.py
decoder: rename iteration variables to improve readability
[libsigrokdecode.git] / decoders / spiflash / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2011-2020 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, see <http://www.gnu.org/licenses/>.
18##
19
20import sigrokdecode as srd
21import re
22from common.srdhelper import SrdIntEnum
23from .lists import *
24
25L = len(cmds)
26
27a = [re.sub('\/', '_', c[0]).replace('2READ', 'READ2X') for c in cmds.values()] + ['BIT', 'FIELD', 'WARN']
28Ann = SrdIntEnum.from_list('Ann', a)
29
30def cmd_annotation_classes():
31 return tuple([tuple([cmd[0].lower(), cmd[1]]) for cmd in cmds.values()])
32
33def decode_dual_bytes(sio0, sio1):
34 # Given a byte in SIO0 (MOSI) of even bits and a byte in
35 # SIO1 (MISO) of odd bits, return a tuple of two bytes.
36 def combine_byte(even, odd):
37 result = 0
38 for bit in range(4):
39 if even & (1 << bit):
40 result |= 1 << (bit*2)
41 if odd & (1 << bit):
42 result |= 1 << ((bit*2) + 1)
43 return result
44 return (combine_byte(sio0 >> 4, sio1 >> 4), combine_byte(sio0, sio1))
45
46def decode_status_reg(data):
47 # TODO: Additional per-bit(s) self.put() calls with correct start/end.
48
49 # Bits[0:0]: WIP (write in progress)
50 s = 'W' if (data & (1 << 0)) else 'No w'
51 ret = '%srite operation in progress.\n' % s
52
53 # Bits[1:1]: WEL (write enable latch)
54 s = '' if (data & (1 << 1)) else 'not '
55 ret += 'Internal write enable latch is %sset.\n' % s
56
57 # Bits[5:2]: Block protect bits
58 # TODO: More detailed decoding (chip-dependent).
59 ret += 'Block protection bits (BP3-BP0): 0x%x.\n' % ((data & 0x3c) >> 2)
60
61 # Bits[6:6]: Continuously program mode (CP mode)
62 s = '' if (data & (1 << 6)) else 'not '
63 ret += 'Device is %sin continuously program mode (CP mode).\n' % s
64
65 # Bits[7:7]: SRWD (status register write disable)
66 s = 'not ' if (data & (1 << 7)) else ''
67 ret += 'Status register writes are %sallowed.\n' % s
68
69 return ret
70
71class Decoder(srd.Decoder):
72 api_version = 3
73 id = 'spiflash'
74 name = 'SPI flash/EEPROM'
75 longname = 'SPI flash/EEPROM chips'
76 desc = 'xx25 series SPI (NOR) flash/EEPROM chip protocol.'
77 license = 'gplv2+'
78 inputs = ['spi']
79 outputs = []
80 tags = ['IC', 'Memory']
81 annotations = cmd_annotation_classes() + (
82 ('bit', 'Bit'),
83 ('field', 'Field'),
84 ('warning', 'Warning'),
85 )
86 annotation_rows = (
87 ('bits', 'Bits', (L + 0,)),
88 ('fields', 'Fields', (L + 1,)),
89 ('commands', 'Commands', tuple(range(len(cmds)))),
90 ('warnings', 'Warnings', (L + 2,)),
91 )
92 options = (
93 {'id': 'chip', 'desc': 'Chip', 'default': tuple(chips.keys())[0],
94 'values': tuple(chips.keys())},
95 {'id': 'format', 'desc': 'Data format', 'default': 'hex',
96 'values': ('hex', 'ascii')},
97 )
98
99 def __init__(self):
100 self.reset()
101
102 def reset(self):
103 self.device_id = -1
104 self.on_end_transaction = None
105 self.end_current_transaction()
106 self.writestate = 0
107
108 # Build dict mapping command keys to handler functions. Each
109 # command in 'cmds' (defined in lists.py) has a matching
110 # handler self.handle_<shortname>.
111 def get_handler(cmd):
112 s = 'handle_%s' % cmds[cmd][0].lower().replace('/', '_')
113 return getattr(self, s)
114 self.cmd_handlers = dict((cmd, get_handler(cmd)) for cmd in cmds.keys())
115
116 def end_current_transaction(self):
117 if self.on_end_transaction is not None: # Callback for CS# transition.
118 self.on_end_transaction()
119 self.on_end_transaction = None
120 self.state = None
121 self.cmdstate = 1
122 self.addr = 0
123 self.data = []
124
125 def start(self):
126 self.out_ann = self.register(srd.OUTPUT_ANN)
127 self.chip = chips[self.options['chip']]
128 self.vendor = self.options['chip'].split('_')[0]
129
130 def putx(self, data):
131 # Simplification, most annotations span exactly one SPI byte/packet.
132 self.put(self.ss, self.es, self.out_ann, data)
133
134 def putf(self, data):
135 self.put(self.ss_field, self.es_field, self.out_ann, data)
136
137 def putc(self, data):
138 self.put(self.ss_cmd, self.es_cmd, self.out_ann, data)
139
140 def device(self):
141 return device_name[self.vendor].get(self.device_id, 'Unknown')
142
143 def vendor_device(self):
144 return '%s %s' % (self.chip['vendor'], self.device())
145
146 def cmd_ann_list(self):
147 x, s = cmds[self.state][0], cmds[self.state][1]
148 return ['Command: %s (%s)' % (s, x), 'Command: %s' % s,
149 'Cmd: %s' % s, 'Cmd: %s' % x, x]
150
151 def cmd_vendor_dev_list(self):
152 c, d = cmds[self.state], 'Device = %s' % self.vendor_device()
153 return ['%s (%s): %s' % (c[1], c[0], d), '%s: %s' % (c[1], d),
154 '%s: %s' % (c[0], d), d, self.vendor_device()]
155
156 def emit_cmd_byte(self):
157 self.ss_cmd = self.ss
158 self.putx([Ann.FIELD, self.cmd_ann_list()])
159 self.addr = 0
160
161 def emit_addr_bytes(self, mosi):
162 self.addr |= (mosi << ((4 - self.cmdstate) * 8))
163 b = ((3 - (self.cmdstate - 2)) * 8) - 1
164 self.putx([Ann.BIT,
165 ['Address bits %d..%d: 0x%02x' % (b, b - 7, mosi),
166 'Addr bits %d..%d: 0x%02x' % (b, b - 7, mosi),
167 'Addr bits %d..%d' % (b, b - 7), 'A%d..A%d' % (b, b - 7)]])
168 if self.cmdstate == 2:
169 self.ss_field = self.ss
170 if self.cmdstate == 4:
171 self.es_field = self.es
172 self.putf([Ann.FIELD, ['Address: 0x%06x' % self.addr,
173 'Addr: 0x%06x' % self.addr, '0x%06x' % self.addr]])
174
175 def handle_wren(self, mosi, miso):
176 self.putx([Ann.WREN, self.cmd_ann_list()])
177 self.writestate = 1
178
179 def handle_wrdi(self, mosi, miso):
180 self.putx([Ann.WRDI, self.cmd_ann_list()])
181 self.writestate = 0
182
183 def handle_rdid(self, mosi, miso):
184 if self.cmdstate == 1:
185 # Byte 1: Master sends command ID.
186 self.emit_cmd_byte()
187 elif self.cmdstate == 2:
188 # Byte 2: Slave sends the JEDEC manufacturer ID.
189 self.putx([Ann.FIELD, ['Manufacturer ID: 0x%02x' % miso]])
190 elif self.cmdstate == 3:
191 # Byte 3: Slave sends the memory type.
192 self.putx([Ann.FIELD, ['Memory type: 0x%02x' % miso]])
193 elif self.cmdstate == 4:
194 # Byte 4: Slave sends the device ID.
195 self.device_id = miso
196 self.putx([Ann.FIELD, ['Device ID: 0x%02x' % miso]])
197
198 if self.cmdstate == 4:
199 self.es_cmd = self.es
200 self.putc([Ann.RDID, self.cmd_vendor_dev_list()])
201 self.state = None
202 else:
203 self.cmdstate += 1
204
205 def handle_rdsr(self, mosi, miso):
206 # Read status register: Master asserts CS#, sends RDSR command,
207 # reads status register byte. If CS# is kept asserted, the status
208 # register can be read continuously / multiple times in a row.
209 # When done, the master de-asserts CS# again.
210 if self.cmdstate == 1:
211 # Byte 1: Master sends command ID.
212 self.emit_cmd_byte()
213 elif self.cmdstate >= 2:
214 # Bytes 2-x: Slave sends status register as long as master clocks.
215 self.es_cmd = self.es
216 self.putx([Ann.BIT, [decode_status_reg(miso)]])
217 self.putx([Ann.FIELD, ['Status register']])
218 self.putc([Ann.RDSR, self.cmd_ann_list()])
219 # Set write latch state.
220 self.writestate = 1 if (miso & (1 << 1)) else 0
221 self.cmdstate += 1
222
223 def handle_rdsr2(self, mosi, miso):
224 # Read status register 2: Master asserts CS#, sends RDSR2 command,
225 # reads status register 2 byte. If CS# is kept asserted, the status
226 # register 2 can be read continuously / multiple times in a row.
227 # When done, the master de-asserts CS# again.
228 if self.cmdstate == 1:
229 # Byte 1: Master sends command ID.
230 self.emit_cmd_byte()
231 elif self.cmdstate >= 2:
232 # Bytes 2-x: Slave sends status register 2 as long as master clocks.
233 self.es_cmd = self.es
234 # TODO: Decode status register 2 correctly.
235 self.putx([Ann.BIT, [decode_status_reg(miso)]])
236 self.putx([Ann.FIELD, ['Status register 2']])
237 self.putc([Ann.RDSR2, self.cmd_ann_list()])
238 self.cmdstate += 1
239
240 def handle_wrsr(self, mosi, miso):
241 # Write status register: Master asserts CS#, sends WRSR command,
242 # writes 1 or 2 status register byte(s).
243 # When done, the master de-asserts CS# again. If this doesn't happen
244 # the WRSR command will not be executed.
245 if self.cmdstate == 1:
246 # Byte 1: Master sends command ID.
247 self.emit_cmd_byte()
248 elif self.cmdstate == 2:
249 # Byte 2: Master sends status register 1.
250 self.putx([Ann.BIT, [decode_status_reg(mosi)]])
251 self.putx([Ann.FIELD, ['Status register 1']])
252 # Set write latch state.
253 self.writestate = 1 if (miso & (1 << 1)) else 0
254 elif self.cmdstate == 3:
255 # Byte 3: Master sends status register 2.
256 # TODO: Decode status register 2 correctly.
257 self.putx([Ann.BIT, [decode_status_reg(mosi)]])
258 self.putx([Ann.FIELD, ['Status register 2']])
259 self.es_cmd = self.es
260 self.putc([Ann.WRSR, self.cmd_ann_list()])
261 self.cmdstate += 1
262
263 def handle_read(self, mosi, miso):
264 # Read data bytes: Master asserts CS#, sends READ command, sends
265 # 3-byte address, reads >= 1 data bytes, de-asserts CS#.
266 if self.cmdstate == 1:
267 # Byte 1: Master sends command ID.
268 self.emit_cmd_byte()
269 elif self.cmdstate in (2, 3, 4):
270 # Bytes 2/3/4: Master sends read address (24bits, MSB-first).
271 self.emit_addr_bytes(mosi)
272 elif self.cmdstate >= 5:
273 # Bytes 5-x: Master reads data bytes (until CS# de-asserted).
274 self.es_field = self.es # Will be overwritten for each byte.
275 if self.cmdstate == 5:
276 self.ss_field = self.ss
277 self.on_end_transaction = lambda: self.output_data_block('Data', Ann.READ)
278 self.data.append(miso)
279 self.cmdstate += 1
280
281 def handle_write_common(self, mosi, miso, ann):
282 # Write data bytes: Master asserts CS#, sends WRITE command, sends
283 # 3-byte address, writes >= 1 data bytes, de-asserts CS#.
284 if self.cmdstate == 1:
285 # Byte 1: Master sends command ID.
286 self.emit_cmd_byte()
287 if self.writestate == 0:
288 self.putc([Ann.WARN, ['Warning: WREN might be missing']])
289 elif self.cmdstate in (2, 3, 4):
290 # Bytes 2/3/4: Master sends write address (24bits, MSB-first).
291 self.emit_addr_bytes(mosi)
292 elif self.cmdstate >= 5:
293 # Bytes 5-x: Master writes data bytes (until CS# de-asserted).
294 self.es_field = self.es # Will be overwritten for each byte.
295 if self.cmdstate == 5:
296 self.ss_field = self.ss
297 self.on_end_transaction = lambda: self.output_data_block('Data', ann)
298 self.data.append(mosi)
299 self.cmdstate += 1
300
301 def handle_write1(self, mosi, miso):
302 self.handle_write_common(mosi, miso, Ann.WRITE1)
303
304 def handle_write2(self, mosi, miso):
305 self.handle_write_common(mosi, miso, Ann.WRITE2)
306
307 def handle_fast_read(self, mosi, miso):
308 # Fast read: Master asserts CS#, sends FAST READ command, sends
309 # 3-byte address + 1 dummy byte, reads >= 1 data bytes, de-asserts CS#.
310 if self.cmdstate == 1:
311 # Byte 1: Master sends command ID.
312 self.emit_cmd_byte()
313 elif self.cmdstate in (2, 3, 4):
314 # Bytes 2/3/4: Master sends read address (24bits, MSB-first).
315 self.emit_addr_bytes(mosi)
316 elif self.cmdstate == 5:
317 self.putx([Ann.BIT, ['Dummy byte: 0x%02x' % mosi]])
318 elif self.cmdstate >= 6:
319 # Bytes 6-x: Master reads data bytes (until CS# de-asserted).
320 self.es_field = self.es # Will be overwritten for each byte.
321 if self.cmdstate == 6:
322 self.ss_field = self.ss
323 self.on_end_transaction = lambda: self.output_data_block('Data', Ann.FAST_READ)
324 self.data.append(miso)
325 self.cmdstate += 1
326
327 def handle_2read(self, mosi, miso):
328 # 2x I/O read (fast read dual I/O): Master asserts CS#, sends 2READ
329 # command, sends 3-byte address + 1 dummy byte, reads >= 1 data bytes,
330 # de-asserts CS#. All data after the command is sent via two I/O pins.
331 # MOSI = SIO0 = even bits, MISO = SIO1 = odd bits.
332 if self.cmdstate != 1:
333 b1, b2 = decode_dual_bytes(mosi, miso)
334 if self.cmdstate == 1:
335 # Byte 1: Master sends command ID.
336 self.emit_cmd_byte()
337 elif self.cmdstate == 2:
338 # Bytes 2/3(/4): Master sends read address (24bits, MSB-first).
339 # Handle bytes 2 and 3 here.
340 self.emit_addr_bytes(b1)
341 self.cmdstate = 3
342 self.emit_addr_bytes(b2)
343 elif self.cmdstate == 4:
344 # Byte 5: Dummy byte. Also handle byte 4 (address LSB) here.
345 self.emit_addr_bytes(b1)
346 self.cmdstate = 5
347 self.putx([Ann.BIT, ['Dummy byte: 0x%02x' % b2]])
348 elif self.cmdstate >= 6:
349 # Bytes 6-x: Master reads data bytes (until CS# de-asserted).
350 self.es_field = self.es # Will be overwritten for each byte.
351 if self.cmdstate == 6:
352 self.ss_field = self.ss
353 self.on_end_transaction = lambda: self.output_data_block('Data', Ann.READ2X)
354 self.data.append(b1)
355 self.data.append(b2)
356 self.cmdstate += 1
357
358 def handle_status(self, mosi, miso):
359 if self.cmdstate == 1:
360 # Byte 1: Master sends command ID.
361 self.emit_cmd_byte()
362 self.on_end_transaction = lambda: self.putc([Ann.STATUS, [cmds[self.state][1]]])
363 else:
364 # Will be overwritten for each byte.
365 self.es_cmd = self.es
366 self.es_field = self.es
367 if self.cmdstate == 2:
368 self.ss_field = self.ss
369 self.putx([Ann.BIT, ['Status register byte %d: 0x%02x' % ((self.cmdstate % 2) + 1, miso)]])
370 self.cmdstate += 1
371
372 # TODO: Warn/abort if we don't see the necessary amount of bytes.
373 def handle_se(self, mosi, miso):
374 if self.cmdstate == 1:
375 # Byte 1: Master sends command ID.
376 self.emit_cmd_byte()
377 if self.writestate == 0:
378 self.putx([Ann.WARN, ['Warning: WREN might be missing']])
379 elif self.cmdstate in (2, 3, 4):
380 # Bytes 2/3/4: Master sends sector address (24bits, MSB-first).
381 self.emit_addr_bytes(mosi)
382
383 if self.cmdstate == 4:
384 self.es_cmd = self.es
385 d = 'Erase sector %d (0x%06x)' % (self.addr, self.addr)
386 self.putc([Ann.SE, [d]])
387 # TODO: Max. size depends on chip, check that too if possible.
388 if self.addr % 4096 != 0:
389 # Sector addresses must be 4K-aligned (same for all 3 chips).
390 self.putc([Ann.WARN, ['Warning: Invalid sector address!']])
391 self.state = None
392 else:
393 self.cmdstate += 1
394
395 def handle_be(self, mosi, miso):
396 pass # TODO
397
398 def handle_ce(self, mosi, miso):
399 self.putx([Ann.CE, self.cmd_ann_list()])
400 if self.writestate == 0:
401 self.putx([Ann.WARN, ['Warning: WREN might be missing']])
402
403 def handle_ce2(self, mosi, miso):
404 self.putx([Ann.CE2, self.cmd_ann_list()])
405 if self.writestate == 0:
406 self.putx([Ann.WARN, ['Warning: WREN might be missing']])
407
408 def handle_pp(self, mosi, miso):
409 # Page program: Master asserts CS#, sends PP command, sends 3-byte
410 # page address, sends >= 1 data bytes, de-asserts CS#.
411 if self.cmdstate == 1:
412 # Byte 1: Master sends command ID.
413 self.emit_cmd_byte()
414 elif self.cmdstate in (2, 3, 4):
415 # Bytes 2/3/4: Master sends page address (24bits, MSB-first).
416 self.emit_addr_bytes(mosi)
417 elif self.cmdstate >= 5:
418 # Bytes 5-x: Master sends data bytes (until CS# de-asserted).
419 self.es_field = self.es # Will be overwritten for each byte.
420 if self.cmdstate == 5:
421 self.ss_field = self.ss
422 self.on_end_transaction = lambda: self.output_data_block('Data', Ann.PP)
423 self.data.append(mosi)
424 self.cmdstate += 1
425
426 def handle_cp(self, mosi, miso):
427 pass # TODO
428
429 def handle_dp(self, mosi, miso):
430 pass # TODO
431
432 def handle_rdp_res(self, mosi, miso):
433 if self.cmdstate == 1:
434 # Byte 1: Master sends command ID.
435 self.emit_cmd_byte()
436 elif self.cmdstate in (2, 3, 4):
437 # Bytes 2/3/4: Master sends three dummy bytes.
438 self.putx([Ann.FIELD, ['Dummy byte: %02x' % mosi]])
439 elif self.cmdstate == 5:
440 # Byte 5: Slave sends device ID.
441 self.es_cmd = self.es
442 self.device_id = miso
443 self.putx([Ann.FIELD, ['Device ID: %s' % self.device()]])
444 d = 'Device = %s' % self.vendor_device()
445 self.putc([Ann.RDP_RES, self.cmd_vendor_dev_list()])
446 self.state = None
447 self.cmdstate += 1
448
449 def handle_rems(self, mosi, miso):
450 if self.cmdstate == 1:
451 # Byte 1: Master sends command ID.
452 self.emit_cmd_byte()
453 elif self.cmdstate in (2, 3):
454 # Bytes 2/3: Master sends two dummy bytes.
455 self.putx([Ann.FIELD, ['Dummy byte: 0x%02x' % mosi]])
456 elif self.cmdstate == 4:
457 # Byte 4: Master sends 0x00 or 0x01.
458 # 0x00: Master wants manufacturer ID as first reply byte.
459 # 0x01: Master wants device ID as first reply byte.
460 self.manufacturer_id_first = True if (mosi == 0x00) else False
461 d = 'manufacturer' if (mosi == 0x00) else 'device'
462 self.putx([Ann.FIELD, ['Master wants %s ID first' % d]])
463 elif self.cmdstate == 5:
464 # Byte 5: Slave sends manufacturer ID (or device ID).
465 self.ids = [miso]
466 d = 'Manufacturer' if self.manufacturer_id_first else 'Device'
467 self.putx([Ann.FIELD, ['%s ID: 0x%02x' % (d, miso)]])
468 elif self.cmdstate == 6:
469 # Byte 6: Slave sends device ID (or manufacturer ID).
470 self.ids.append(miso)
471 d = 'Device' if self.manufacturer_id_first else 'Manufacturer'
472 self.putx([Ann.FIELD, ['%s ID: 0x%02x' % (d, miso)]])
473
474 if self.cmdstate == 6:
475 id_ = self.ids[1] if self.manufacturer_id_first else self.ids[0]
476 self.device_id = id_
477 self.es_cmd = self.es
478 self.putc([Ann.REMS, self.cmd_vendor_dev_list()])
479 self.state = None
480 else:
481 self.cmdstate += 1
482
483 def handle_rems2(self, mosi, miso):
484 pass # TODO
485
486 def handle_enso(self, mosi, miso):
487 pass # TODO
488
489 def handle_exso(self, mosi, miso):
490 pass # TODO
491
492 def handle_rdscur(self, mosi, miso):
493 pass # TODO
494
495 def handle_wrscur(self, mosi, miso):
496 pass # TODO
497
498 def handle_esry(self, mosi, miso):
499 pass # TODO
500
501 def handle_dsry(self, mosi, miso):
502 pass # TODO
503
504 def output_data_block(self, label, idx):
505 # Print accumulated block of data
506 # (called on CS# de-assert via self.on_end_transaction callback).
507 self.es_cmd = self.es # End on the CS# de-assert sample.
508 if self.options['format'] == 'hex':
509 s = ' '.join([('%02x' % b) for b in self.data])
510 else:
511 s = ''.join(map(chr, self.data))
512 self.putf([Ann.FIELD, ['%s (%d bytes)' % (label, len(self.data))]])
513 self.putc([idx, ['%s (addr 0x%06x, %d bytes): %s' % \
514 (cmds[self.state][1], self.addr, len(self.data), s)]])
515
516 def decode(self, ss, es, data):
517 ptype, mosi, miso = data
518
519 self.ss, self.es = ss, es
520
521 if ptype == 'CS-CHANGE':
522 self.end_current_transaction()
523
524 if ptype != 'DATA':
525 return
526
527 # If we encountered a known chip command, enter the resp. state.
528 if self.state is None:
529 self.state = mosi
530 self.cmdstate = 1
531
532 # Handle commands.
533 try:
534 self.cmd_handlers[self.state](mosi, miso)
535 except KeyError:
536 self.putx([Ann.BIT, ['Unknown command: 0x%02x' % mosi]])
537 self.state = None