]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/rtc8564/pd.py
Various PDs: Drop currently unsupported probes in stacked PDs.
[libsigrokdecode.git] / decoders / rtc8564 / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2012-2014 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21import sigrokdecode as srd
22
23# Return the specified BCD number (max. 8 bits) as integer.
24def bcd2int(b):
25 return (b & 0x0f) + ((b >> 4) * 10)
26
27def reg_list():
28 l = []
29 for i in range(8 + 1):
30 l.append(('reg-0x%02x' % i, 'Register 0x%02x' % i))
31
32 return tuple(l)
33
34class Decoder(srd.Decoder):
35 api_version = 1
36 id = 'rtc8564'
37 name = 'RTC-8564'
38 longname = 'Epson RTC-8564 JE/NB'
39 desc = 'Realtime clock module protocol.'
40 license = 'gplv2+'
41 inputs = ['i2c']
42 outputs = ['rtc8564']
43 annotations = reg_list() + (
44 ('read', 'Read date/time'),
45 ('write', 'Write date/time'),
46 ('bit-reserved', 'Reserved bit'),
47 ('bit-vl', 'VL bit'),
48 ('bit-century', 'Century bit'),
49 ('reg-read', 'Register read'),
50 ('reg-write', 'Register write'),
51 )
52 annotation_rows = (
53 ('bits', 'Bits', tuple(range(0, 8 + 1)) + (11, 12, 13)),
54 ('regs', 'Register access', (14, 15)),
55 ('date-time', 'Date/time', (9, 10)),
56 )
57
58 def __init__(self, **kwargs):
59 self.state = 'IDLE'
60 self.hours = -1
61 self.minutes = -1
62 self.seconds = -1
63 self.days = -1
64 self.weekdays = -1
65 self.months = -1
66 self.years = -1
67 self.bits = []
68
69 def start(self):
70 # self.out_python = self.register(srd.OUTPUT_PYTHON)
71 self.out_ann = self.register(srd.OUTPUT_ANN)
72
73 def putx(self, data):
74 self.put(self.ss, self.es, self.out_ann, data)
75
76 def putd(self, bit1, bit2, data):
77 self.put(self.bits[bit1][1], self.bits[bit2][2], self.out_ann, data)
78
79 def putr(self, bit):
80 self.put(self.bits[bit][1], self.bits[bit][2], self.out_ann,
81 [11, ['Reserved bit', 'Reserved', 'Rsvd', 'R']])
82
83 def handle_reg_0x00(self, b): # Control register 1
84 pass
85
86 def handle_reg_0x01(self, b): # Control register 2
87 ti_tp = 1 if (b & (1 << 4)) else 0
88 af = 1 if (b & (1 << 3)) else 0
89 tf = 1 if (b & (1 << 2)) else 0
90 aie = 1 if (b & (1 << 1)) else 0
91 tie = 1 if (b & (1 << 0)) else 0
92
93 ann = ''
94
95 s = 'repeated' if ti_tp else 'single-shot'
96 ann += 'TI/TP = %d: %s operation upon fixed-cycle timer interrupt '\
97 'events\n' % (ti_tp, s)
98 s = '' if af else 'no '
99 ann += 'AF = %d: %salarm interrupt detected\n' % (af, s)
100 s = '' if tf else 'no '
101 ann += 'TF = %d: %sfixed-cycle timer interrupt detected\n' % (tf, s)
102 s = 'enabled' if aie else 'prohibited'
103 ann += 'AIE = %d: INT# pin output %s when an alarm interrupt '\
104 'occurs\n' % (aie, s)
105 s = 'enabled' if tie else 'prohibited'
106 ann += 'TIE = %d: INT# pin output %s when a fixed-cycle interrupt '\
107 'event occurs\n' % (tie, s)
108
109 self.putx([1, [ann]])
110
111 def handle_reg_0x02(self, b): # Seconds / Voltage-low bit
112 vl = 1 if (b & (1 << 7)) else 0
113 self.putd(7, 7, [12, ['Voltage low: %d' % vl, 'Volt. low: %d' % vl,
114 'VL: %d' % vl, 'VL']])
115 s = self.seconds = bcd2int(b & 0x7f)
116 self.putd(6, 0, [2, ['Second: %d' % s, 'Sec: %d' % s, 'S: %d' % s, 'S']])
117
118 def handle_reg_0x03(self, b): # Minutes
119 self.putr(7)
120 m = self.minutes = bcd2int(b & 0x7f)
121 self.putd(6, 0, [3, ['Minute: %d' % m, 'Min: %d' % m, 'M: %d' % m, 'M']])
122
123 def handle_reg_0x04(self, b): # Hours
124 self.putr(7)
125 self.putr(6)
126 h = self.hours = bcd2int(b & 0x3f)
127 self.putd(5, 0, [4, ['Hour: %d' % h, 'H: %d' % h, 'H']])
128
129 def handle_reg_0x05(self, b): # Days
130 self.putr(7)
131 self.putr(6)
132 d = self.days = bcd2int(b & 0x3f)
133 self.putd(5, 0, [5, ['Day: %d' % d, 'D: %d' % d, 'D']])
134
135 def handle_reg_0x06(self, b): # Weekdays
136 for i in (7, 6, 5, 4, 3):
137 self.putr(i)
138 w = self.weekdays = bcd2int(b & 0x07)
139 self.putd(2, 0, [6, ['Weekday: %d' % w, 'WD: %d' % w, 'WD', 'W']])
140
141 def handle_reg_0x07(self, b): # Months / century bit
142 c = 1 if (b & (1 << 7)) else 0
143 self.putd(7, 7, [13, ['Century bit: %d' % c, 'Century: %d' % c,
144 'Cent: %d' % c, 'C: %d' % c, 'C']])
145 self.putr(6)
146 self.putr(5)
147 m = self.months = bcd2int(b & 0x1f)
148 self.putd(4, 0, [7, ['Month: %d' % m, 'Mon: %d' % m, 'M: %d' % m, 'M']])
149
150 def handle_reg_0x08(self, b): # Years
151 y = self.years = bcd2int(b & 0xff)
152 self.putx([8, ['Year: %d' % y, 'Y: %d' % y, 'Y']])
153
154 def handle_reg_0x09(self, b): # Alarm, minute
155 pass
156
157 def handle_reg_0x0a(self, b): # Alarm, hour
158 pass
159
160 def handle_reg_0x0b(self, b): # Alarm, day
161 pass
162
163 def handle_reg_0x0c(self, b): # Alarm, weekday
164 pass
165
166 def handle_reg_0x0d(self, b): # CLKOUT output
167 pass
168
169 def handle_reg_0x0e(self, b): # Timer setting
170 pass
171
172 def handle_reg_0x0f(self, b): # Down counter for fixed-cycle timer
173 pass
174
175 def decode(self, ss, es, data):
176 cmd, databyte = data
177
178 # Collect the 'BITS' packet, then return. The next packet is
179 # guaranteed to belong to these bits we just stored.
180 if cmd == 'BITS':
181 self.bits = databyte
182 return
183
184 # Store the start/end samples of this I²C packet.
185 self.ss, self.es = ss, es
186
187 # State machine.
188 if self.state == 'IDLE':
189 # Wait for an I²C START condition.
190 if cmd != 'START':
191 return
192 self.state = 'GET SLAVE ADDR'
193 self.block_start_sample = ss
194 elif self.state == 'GET SLAVE ADDR':
195 # Wait for an address write operation.
196 # TODO: We should only handle packets to the RTC slave (0xa2/0xa3).
197 if cmd != 'ADDRESS WRITE':
198 return
199 self.state = 'GET REG ADDR'
200 elif self.state == 'GET REG ADDR':
201 # Wait for a data write (master selects the slave register).
202 if cmd != 'DATA WRITE':
203 return
204 self.reg = databyte
205 self.state = 'WRITE RTC REGS'
206 elif self.state == 'WRITE RTC REGS':
207 # If we see a Repeated Start here, it's probably an RTC read.
208 if cmd == 'START REPEAT':
209 self.state = 'READ RTC REGS'
210 return
211 # Otherwise: Get data bytes until a STOP condition occurs.
212 if cmd == 'DATA WRITE':
213 r, s = self.reg, '%02X: %02X' % (self.reg, databyte)
214 self.putx([15, ['Write register %s' % s, 'Write reg %s' % s,
215 'WR %s' % s, 'WR', 'W']])
216 handle_reg = getattr(self, 'handle_reg_0x%02x' % self.reg)
217 handle_reg(databyte)
218 self.reg += 1
219 # TODO: Check for NACK!
220 elif cmd == 'STOP':
221 # TODO: Handle read/write of only parts of these items.
222 d = '%02d.%02d.%02d %02d:%02d:%02d' % (self.days, self.months,
223 self.years, self.hours, self.minutes, self.seconds)
224 self.put(self.block_start_sample, es, self.out_ann,
225 [9, ['Write date/time: %s' % d, 'Write: %s' % d,
226 'W: %s' % d]])
227 self.state = 'IDLE'
228 else:
229 pass # TODO
230 elif self.state == 'READ RTC REGS':
231 # Wait for an address read operation.
232 # TODO: We should only handle packets to the RTC slave (0xa2/0xa3).
233 if cmd == 'ADDRESS READ':
234 self.state = 'READ RTC REGS2'
235 return
236 else:
237 pass # TODO
238 elif self.state == 'READ RTC REGS2':
239 if cmd == 'DATA READ':
240 r, s = self.reg, '%02X: %02X' % (self.reg, databyte)
241 self.putx([15, ['Read register %s' % s, 'Read reg %s' % s,
242 'RR %s' % s, 'RR', 'R']])
243 handle_reg = getattr(self, 'handle_reg_0x%02x' % self.reg)
244 handle_reg(databyte)
245 self.reg += 1
246 # TODO: Check for NACK!
247 elif cmd == 'STOP':
248 d = '%02d.%02d.%02d %02d:%02d:%02d' % (self.days, self.months,
249 self.years, self.hours, self.minutes, self.seconds)
250 self.put(self.block_start_sample, es, self.out_ann,
251 [10, ['Read date/time: %s' % d, 'Read: %s' % d,
252 'R: %s' % d]])
253 self.state = 'IDLE'
254 else:
255 pass # TODO?
256 else:
257 raise Exception('Invalid state: %s' % self.state)
258