]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/rtc8564/pd.py
Add NEC IR protocol decoder.
[libsigrokdecode.git] / decoders / rtc8564 / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2012-2014 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21import sigrokdecode as srd
22
23# Return the specified BCD number (max. 8 bits) as integer.
24def bcd2int(b):
25 return (b & 0x0f) + ((b >> 4) * 10)
26
27def reg_list():
28 l = []
29 for i in range(8 + 1):
30 l.append(('reg-0x%02x' % i, 'Register 0x%02x' % i))
31
32 return tuple(l)
33
34class Decoder(srd.Decoder):
35 api_version = 1
36 id = 'rtc8564'
37 name = 'RTC-8564'
38 longname = 'Epson RTC-8564 JE/NB'
39 desc = 'Realtime clock module protocol.'
40 license = 'gplv2+'
41 inputs = ['i2c']
42 outputs = ['rtc8564']
43 optional_probes = (
44 {'id': 'clkout', 'name': 'CLKOUT', 'desc': 'Clock output'},
45 {'id': 'clkoe', 'name': 'CLKOE', 'desc': 'Clock output enable'},
46 {'id': 'int', 'name': 'INT#', 'desc': 'Interrupt'},
47 )
48 annotations = reg_list() + (
49 ('read', 'Read date/time'),
50 ('write', 'Write date/time'),
51 ('bit-reserved', 'Reserved bit'),
52 ('bit-vl', 'VL bit'),
53 ('bit-century', 'Century bit'),
54 ('reg-read', 'Register read'),
55 ('reg-write', 'Register write'),
56 )
57 annotation_rows = (
58 ('bits', 'Bits', tuple(range(0, 8 + 1)) + (11, 12, 13)),
59 ('regs', 'Register access', (14, 15)),
60 ('date-time', 'Date/time', (9, 10)),
61 )
62
63 def __init__(self, **kwargs):
64 self.state = 'IDLE'
65 self.hours = -1
66 self.minutes = -1
67 self.seconds = -1
68 self.days = -1
69 self.weekdays = -1
70 self.months = -1
71 self.years = -1
72 self.bits = []
73
74 def start(self):
75 # self.out_python = self.register(srd.OUTPUT_PYTHON)
76 self.out_ann = self.register(srd.OUTPUT_ANN)
77
78 def putx(self, data):
79 self.put(self.ss, self.es, self.out_ann, data)
80
81 def putd(self, bit1, bit2, data):
82 self.put(self.bits[bit1][1], self.bits[bit2][2], self.out_ann, data)
83
84 def putr(self, bit):
85 self.put(self.bits[bit][1], self.bits[bit][2], self.out_ann,
86 [11, ['Reserved bit', 'Reserved', 'Rsvd', 'R']])
87
88 def handle_reg_0x00(self, b): # Control register 1
89 pass
90
91 def handle_reg_0x01(self, b): # Control register 2
92 ti_tp = 1 if (b & (1 << 4)) else 0
93 af = 1 if (b & (1 << 3)) else 0
94 tf = 1 if (b & (1 << 2)) else 0
95 aie = 1 if (b & (1 << 1)) else 0
96 tie = 1 if (b & (1 << 0)) else 0
97
98 ann = ''
99
100 s = 'repeated' if ti_tp else 'single-shot'
101 ann += 'TI/TP = %d: %s operation upon fixed-cycle timer interrupt '\
102 'events\n' % (ti_tp, s)
103 s = '' if af else 'no '
104 ann += 'AF = %d: %salarm interrupt detected\n' % (af, s)
105 s = '' if tf else 'no '
106 ann += 'TF = %d: %sfixed-cycle timer interrupt detected\n' % (tf, s)
107 s = 'enabled' if aie else 'prohibited'
108 ann += 'AIE = %d: INT# pin output %s when an alarm interrupt '\
109 'occurs\n' % (aie, s)
110 s = 'enabled' if tie else 'prohibited'
111 ann += 'TIE = %d: INT# pin output %s when a fixed-cycle interrupt '\
112 'event occurs\n' % (tie, s)
113
114 self.putx([1, [ann]])
115
116 def handle_reg_0x02(self, b): # Seconds / Voltage-low bit
117 vl = 1 if (b & (1 << 7)) else 0
118 self.putd(7, 7, [12, ['Voltage low: %d' % vl, 'Volt. low: %d' % vl,
119 'VL: %d' % vl, 'VL']])
120 s = self.seconds = bcd2int(b & 0x7f)
121 self.putd(6, 0, [2, ['Second: %d' % s, 'Sec: %d' % s, 'S: %d' % s, 'S']])
122
123 def handle_reg_0x03(self, b): # Minutes
124 self.putr(7)
125 m = self.minutes = bcd2int(b & 0x7f)
126 self.putd(6, 0, [3, ['Minute: %d' % m, 'Min: %d' % m, 'M: %d' % m, 'M']])
127
128 def handle_reg_0x04(self, b): # Hours
129 self.putr(7)
130 self.putr(6)
131 h = self.hours = bcd2int(b & 0x3f)
132 self.putd(5, 0, [4, ['Hour: %d' % h, 'H: %d' % h, 'H']])
133
134 def handle_reg_0x05(self, b): # Days
135 self.putr(7)
136 self.putr(6)
137 d = self.days = bcd2int(b & 0x3f)
138 self.putd(5, 0, [5, ['Day: %d' % d, 'D: %d' % d, 'D']])
139
140 def handle_reg_0x06(self, b): # Weekdays
141 for i in (7, 6, 5, 4, 3):
142 self.putr(i)
143 w = self.weekdays = bcd2int(b & 0x07)
144 self.putd(2, 0, [6, ['Weekday: %d' % w, 'WD: %d' % w, 'WD', 'W']])
145
146 def handle_reg_0x07(self, b): # Months / century bit
147 c = 1 if (b & (1 << 7)) else 0
148 self.putd(7, 7, [13, ['Century bit: %d' % c, 'Century: %d' % c,
149 'Cent: %d' % c, 'C: %d' % c, 'C']])
150 self.putr(6)
151 self.putr(5)
152 m = self.months = bcd2int(b & 0x1f)
153 self.putd(4, 0, [7, ['Month: %d' % m, 'Mon: %d' % m, 'M: %d' % m, 'M']])
154
155 def handle_reg_0x08(self, b): # Years
156 y = self.years = bcd2int(b & 0xff)
157 self.putx([8, ['Year: %d' % y, 'Y: %d' % y, 'Y']])
158
159 def handle_reg_0x09(self, b): # Alarm, minute
160 pass
161
162 def handle_reg_0x0a(self, b): # Alarm, hour
163 pass
164
165 def handle_reg_0x0b(self, b): # Alarm, day
166 pass
167
168 def handle_reg_0x0c(self, b): # Alarm, weekday
169 pass
170
171 def handle_reg_0x0d(self, b): # CLKOUT output
172 pass
173
174 def handle_reg_0x0e(self, b): # Timer setting
175 pass
176
177 def handle_reg_0x0f(self, b): # Down counter for fixed-cycle timer
178 pass
179
180 def decode(self, ss, es, data):
181 cmd, databyte = data
182
183 # Collect the 'BITS' packet, then return. The next packet is
184 # guaranteed to belong to these bits we just stored.
185 if cmd == 'BITS':
186 self.bits = databyte
187 return
188
189 # Store the start/end samples of this I²C packet.
190 self.ss, self.es = ss, es
191
192 # State machine.
193 if self.state == 'IDLE':
194 # Wait for an I²C START condition.
195 if cmd != 'START':
196 return
197 self.state = 'GET SLAVE ADDR'
198 self.block_start_sample = ss
199 elif self.state == 'GET SLAVE ADDR':
200 # Wait for an address write operation.
201 # TODO: We should only handle packets to the RTC slave (0xa2/0xa3).
202 if cmd != 'ADDRESS WRITE':
203 return
204 self.state = 'GET REG ADDR'
205 elif self.state == 'GET REG ADDR':
206 # Wait for a data write (master selects the slave register).
207 if cmd != 'DATA WRITE':
208 return
209 self.reg = databyte
210 self.state = 'WRITE RTC REGS'
211 elif self.state == 'WRITE RTC REGS':
212 # If we see a Repeated Start here, it's probably an RTC read.
213 if cmd == 'START REPEAT':
214 self.state = 'READ RTC REGS'
215 return
216 # Otherwise: Get data bytes until a STOP condition occurs.
217 if cmd == 'DATA WRITE':
218 r, s = self.reg, '%02X: %02X' % (self.reg, databyte)
219 self.putx([15, ['Write register %s' % s, 'Write reg %s' % s,
220 'WR %s' % s, 'WR', 'W']])
221 handle_reg = getattr(self, 'handle_reg_0x%02x' % self.reg)
222 handle_reg(databyte)
223 self.reg += 1
224 # TODO: Check for NACK!
225 elif cmd == 'STOP':
226 # TODO: Handle read/write of only parts of these items.
227 d = '%02d.%02d.%02d %02d:%02d:%02d' % (self.days, self.months,
228 self.years, self.hours, self.minutes, self.seconds)
229 self.put(self.block_start_sample, es, self.out_ann,
230 [9, ['Write date/time: %s' % d, 'Write: %s' % d,
231 'W: %s' % d]])
232 self.state = 'IDLE'
233 else:
234 pass # TODO
235 elif self.state == 'READ RTC REGS':
236 # Wait for an address read operation.
237 # TODO: We should only handle packets to the RTC slave (0xa2/0xa3).
238 if cmd == 'ADDRESS READ':
239 self.state = 'READ RTC REGS2'
240 return
241 else:
242 pass # TODO
243 elif self.state == 'READ RTC REGS2':
244 if cmd == 'DATA READ':
245 r, s = self.reg, '%02X: %02X' % (self.reg, databyte)
246 self.putx([15, ['Read register %s' % s, 'Read reg %s' % s,
247 'RR %s' % s, 'RR', 'R']])
248 handle_reg = getattr(self, 'handle_reg_0x%02x' % self.reg)
249 handle_reg(databyte)
250 self.reg += 1
251 # TODO: Check for NACK!
252 elif cmd == 'STOP':
253 d = '%02d.%02d.%02d %02d:%02d:%02d' % (self.days, self.months,
254 self.years, self.hours, self.minutes, self.seconds)
255 self.put(self.block_start_sample, es, self.out_ann,
256 [10, ['Read date/time: %s' % d, 'Read: %s' % d,
257 'R: %s' % d]])
258 self.state = 'IDLE'
259 else:
260 pass # TODO?
261 else:
262 raise Exception('Invalid state: %s' % self.state)
263