]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/i2c/pd.py
eeprom24xx: avoid access to caller's data after validity ends
[libsigrokdecode.git] / decoders / i2c / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2010-2016 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, see <http://www.gnu.org/licenses/>.
18##
19
20# TODO: Look into arbitration, collision detection, clock synchronisation, etc.
21# TODO: Implement support for inverting SDA/SCL levels (0->1 and 1->0).
22# TODO: Implement support for detecting various bus errors.
23
24import sigrokdecode as srd
25
26'''
27OUTPUT_PYTHON format:
28
29Packet:
30[<ptype>, <pdata>]
31
32<ptype>:
33 - 'START' (START condition)
34 - 'START REPEAT' (Repeated START condition)
35 - 'ADDRESS READ' (Slave address, read)
36 - 'ADDRESS WRITE' (Slave address, write)
37 - 'DATA READ' (Data, read)
38 - 'DATA WRITE' (Data, write)
39 - 'STOP' (STOP condition)
40 - 'ACK' (ACK bit)
41 - 'NACK' (NACK bit)
42 - 'BITS' (<pdata>: list of data/address bits and their ss/es numbers)
43
44<pdata> is the data or address byte associated with the 'ADDRESS*' and 'DATA*'
45command. Slave addresses do not include bit 0 (the READ/WRITE indication bit).
46For example, a slave address field could be 0x51 (instead of 0xa2).
47For 'START', 'START REPEAT', 'STOP', 'ACK', and 'NACK' <pdata> is None.
48'''
49
50# CMD: [annotation-type-index, long annotation, short annotation]
51proto = {
52 'START': [0, 'Start', 'S'],
53 'START REPEAT': [1, 'Start repeat', 'Sr'],
54 'STOP': [2, 'Stop', 'P'],
55 'ACK': [3, 'ACK', 'A'],
56 'NACK': [4, 'NACK', 'N'],
57 'BIT': [5, 'Bit', 'B'],
58 'ADDRESS READ': [6, 'Address read', 'AR'],
59 'ADDRESS WRITE': [7, 'Address write', 'AW'],
60 'DATA READ': [8, 'Data read', 'DR'],
61 'DATA WRITE': [9, 'Data write', 'DW'],
62}
63
64class Decoder(srd.Decoder):
65 api_version = 3
66 id = 'i2c'
67 name = 'I²C'
68 longname = 'Inter-Integrated Circuit'
69 desc = 'Two-wire, multi-master, serial bus.'
70 license = 'gplv2+'
71 inputs = ['logic']
72 outputs = ['i2c']
73 tags = ['Embedded/industrial']
74 channels = (
75 {'id': 'scl', 'name': 'SCL', 'desc': 'Serial clock line'},
76 {'id': 'sda', 'name': 'SDA', 'desc': 'Serial data line'},
77 )
78 options = (
79 {'id': 'address_format', 'desc': 'Displayed slave address format',
80 'default': 'shifted', 'values': ('shifted', 'unshifted')},
81 )
82 annotations = (
83 ('start', 'Start condition'),
84 ('repeat-start', 'Repeat start condition'),
85 ('stop', 'Stop condition'),
86 ('ack', 'ACK'),
87 ('nack', 'NACK'),
88 ('bit', 'Data/address bit'),
89 ('address-read', 'Address read'),
90 ('address-write', 'Address write'),
91 ('data-read', 'Data read'),
92 ('data-write', 'Data write'),
93 ('warning', 'Warning'),
94 )
95 annotation_rows = (
96 ('bits', 'Bits', (5,)),
97 ('addr-data', 'Address/data', (0, 1, 2, 3, 4, 6, 7, 8, 9)),
98 ('warnings', 'Warnings', (10,)),
99 )
100 binary = (
101 ('address-read', 'Address read'),
102 ('address-write', 'Address write'),
103 ('data-read', 'Data read'),
104 ('data-write', 'Data write'),
105 )
106
107 def __init__(self):
108 self.reset()
109
110 def reset(self):
111 self.samplerate = None
112 self.ss = self.es = self.ss_byte = -1
113 self.bitcount = 0
114 self.databyte = 0
115 self.is_write = None
116 self.rem_addr_bytes = None
117 self.is_repeat_start = False
118 self.state = 'FIND START'
119 self.pdu_start = None
120 self.pdu_bits = 0
121 self.data_bits = []
122
123 def metadata(self, key, value):
124 if key == srd.SRD_CONF_SAMPLERATE:
125 self.samplerate = value
126
127 def start(self):
128 self.out_python = self.register(srd.OUTPUT_PYTHON)
129 self.out_ann = self.register(srd.OUTPUT_ANN)
130 self.out_binary = self.register(srd.OUTPUT_BINARY)
131 self.out_bitrate = self.register(srd.OUTPUT_META,
132 meta=(int, 'Bitrate', 'Bitrate from Start bit to Stop bit'))
133
134 def putx(self, data):
135 self.put(self.ss, self.es, self.out_ann, data)
136
137 def putp(self, data):
138 self.put(self.ss, self.es, self.out_python, data)
139
140 def putb(self, data):
141 self.put(self.ss, self.es, self.out_binary, data)
142
143 def handle_start(self, pins):
144 self.ss, self.es = self.samplenum, self.samplenum
145 self.pdu_start = self.samplenum
146 self.pdu_bits = 0
147 cmd = 'START REPEAT' if self.is_repeat_start else 'START'
148 self.putp([cmd, None])
149 self.putx([proto[cmd][0], proto[cmd][1:]])
150 self.state = 'FIND ADDRESS'
151 self.bitcount = self.databyte = 0
152 self.is_repeat_start = True
153 self.is_write = None
154 self.rem_addr_bytes = None
155 self.data_bits = []
156
157 # Gather 8 bits of data plus the ACK/NACK bit.
158 def handle_address_or_data(self, pins):
159 scl, sda = pins
160 self.pdu_bits += 1
161
162 # Address and data are transmitted MSB-first.
163 self.databyte <<= 1
164 self.databyte |= sda
165
166 # Remember the start of the first data/address bit.
167 if self.bitcount == 0:
168 self.ss_byte = self.samplenum
169
170 # Store individual bits and their start/end samplenumbers.
171 # In the list, index 0 represents the LSB (I²C transmits MSB-first).
172 self.data_bits.insert(0, [sda, self.samplenum, self.samplenum])
173 if self.bitcount > 0:
174 self.data_bits[1][2] = self.samplenum
175 if self.bitcount == 7:
176 self.bitwidth = self.data_bits[1][2] - self.data_bits[2][2]
177 self.data_bits[0][2] += self.bitwidth
178
179 # Return if we haven't collected all 8 + 1 bits, yet.
180 if self.bitcount < 7:
181 self.bitcount += 1
182 return
183
184 d = self.databyte
185 if self.state == 'FIND ADDRESS':
186 # The READ/WRITE bit is only in the first address byte, not
187 # in data bytes. Address bit pattern 0b1111_0xxx means that
188 # this is a 10bit slave address, another byte follows. Get
189 # the R/W direction and the address bytes count from the
190 # first byte in the I2C transfer.
191 addr_byte = d
192 if self.rem_addr_bytes is None:
193 if (addr_byte & 0xf8) == 0xf0:
194 self.rem_addr_bytes = 2
195 self.slave_addr_7 = None
196 self.slave_addr_10 = addr_byte & 0x06
197 self.slave_addr_10 <<= 7
198 else:
199 self.rem_addr_bytes = 1
200 self.slave_addr_7 = addr_byte >> 1
201 self.slave_addr_10 = None
202 is_seven = self.slave_addr_7 is not None
203 if self.is_write is None:
204 read_bit = bool(addr_byte & 1)
205 shift_seven = self.options['address_format'] == 'shifted'
206 if is_seven and shift_seven:
207 d = d >> 1
208 self.is_write = False if read_bit else True
209 else:
210 self.slave_addr_10 |= addr_byte
211
212 bin_class = -1
213 if self.state == 'FIND ADDRESS' and self.is_write:
214 cmd = 'ADDRESS WRITE'
215 bin_class = 1
216 elif self.state == 'FIND ADDRESS' and not self.is_write:
217 cmd = 'ADDRESS READ'
218 bin_class = 0
219 elif self.state == 'FIND DATA' and self.is_write:
220 cmd = 'DATA WRITE'
221 bin_class = 3
222 elif self.state == 'FIND DATA' and not self.is_write:
223 cmd = 'DATA READ'
224 bin_class = 2
225
226 self.ss, self.es = self.ss_byte, self.samplenum + self.bitwidth
227
228 self.putp(['BITS', self.data_bits])
229 self.putp([cmd, d])
230
231 self.putb([bin_class, bytes([d])])
232
233 for bit in self.data_bits:
234 self.put(bit[1], bit[2], self.out_ann, [5, ['%d' % bit[0]]])
235
236 if cmd.startswith('ADDRESS') and is_seven:
237 self.ss, self.es = self.samplenum, self.samplenum + self.bitwidth
238 w = ['Write', 'Wr', 'W'] if self.is_write else ['Read', 'Rd', 'R']
239 self.putx([proto[cmd][0], w])
240 self.ss, self.es = self.ss_byte, self.samplenum
241
242 self.putx([proto[cmd][0], ['%s: %02X' % (proto[cmd][1], d),
243 '%s: %02X' % (proto[cmd][2], d), '%02X' % d]])
244
245 # Done with this packet.
246 self.bitcount = self.databyte = 0
247 self.data_bits = []
248 self.state = 'FIND ACK'
249
250 def get_ack(self, pins):
251 scl, sda = pins
252 self.ss, self.es = self.samplenum, self.samplenum + self.bitwidth
253 cmd = 'NACK' if (sda == 1) else 'ACK'
254 self.putp([cmd, None])
255 self.putx([proto[cmd][0], proto[cmd][1:]])
256 # Slave addresses can span one or two bytes, before data bytes
257 # follow. There can be an arbitrary number of data bytes. Stick
258 # with getting more address bytes if applicable, or enter or
259 # remain in the data phase of the transfer otherwise.
260 if self.rem_addr_bytes:
261 self.rem_addr_bytes -= 1
262 if self.rem_addr_bytes:
263 self.state = 'FIND ADDRESS'
264 else:
265 self.state = 'FIND DATA'
266
267 def handle_stop(self, pins):
268 # Meta bitrate
269 if self.samplerate:
270 elapsed = 1 / float(self.samplerate) * (self.samplenum - self.pdu_start + 1)
271 bitrate = int(1 / elapsed * self.pdu_bits)
272 self.put(self.ss_byte, self.samplenum, self.out_bitrate, bitrate)
273
274 cmd = 'STOP'
275 self.ss, self.es = self.samplenum, self.samplenum
276 self.putp([cmd, None])
277 self.putx([proto[cmd][0], proto[cmd][1:]])
278 self.state = 'FIND START'
279 self.is_repeat_start = False
280 self.is_write = None
281 self.data_bits = []
282
283 def decode(self):
284 while True:
285 # State machine.
286 if self.state == 'FIND START':
287 # Wait for a START condition (S): SCL = high, SDA = falling.
288 self.handle_start(self.wait({0: 'h', 1: 'f'}))
289 elif self.state == 'FIND ADDRESS':
290 # Wait for a data bit: SCL = rising.
291 self.handle_address_or_data(self.wait({0: 'r'}))
292 elif self.state == 'FIND DATA':
293 # Wait for any of the following conditions (or combinations):
294 # a) Data sampling of receiver: SCL = rising, and/or
295 # b) START condition (S): SCL = high, SDA = falling, and/or
296 # c) STOP condition (P): SCL = high, SDA = rising
297 pins = self.wait([{0: 'r'}, {0: 'h', 1: 'f'}, {0: 'h', 1: 'r'}])
298
299 # Check which of the condition(s) matched and handle them.
300 if self.matched[0]:
301 self.handle_address_or_data(pins)
302 elif self.matched[1]:
303 self.handle_start(pins)
304 elif self.matched[2]:
305 self.handle_stop(pins)
306 elif self.state == 'FIND ACK':
307 # Wait for a data/ack bit: SCL = rising.
308 self.get_ack(self.wait({0: 'r'}))