]> sigrok.org Git - libsigrok.git/blame - src/hardware/saleae-logicpro/protocol.c
saleae-logicpro: Initial implementation.
[libsigrok.git] / src / hardware / saleae-logicpro / protocol.c
CommitLineData
a8e913c4
JL
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2017 Jan Luebbe <jluebbe@lasnet.de>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
ca7d19b5 21#include <string.h>
a8e913c4
JL
22#include "protocol.h"
23
ca7d19b5
JL
24#define COMMAND_START_CAPTURE 0x01
25#define COMMAND_STOP_CAPTURE 0x02
26#define COMMAND_READ_EEPROM 0x07
27#define COMMAND_WRITE_REG 0x80
28#define COMMAND_READ_REG 0x81
29#define COMMAND_WRITE_I2C 0x87
30#define COMMAND_READ_I2C 0x88
31#define COMMAND_WAKE_I2C 0x89
32#define COMMAND_READ_FW_VER 0x8b
33
34#define REG_LED_RED 0x0f
35#define REG_LED_GREEN 0x10
36#define REG_LED_BLUE 0x11
37
38static void iterate_lfsr(const struct sr_dev_inst *sdi)
39{
40 struct dev_context *devc = sdi->priv;
41 uint32_t lfsr = devc->lfsr;
42 int i, max;
43
44 max = (lfsr & 0x1f) + 34;
45 for (i = 0; i <= max; i++) {
46 lfsr = (lfsr >> 1) | \
47 ((lfsr ^ \
48 (lfsr >> 1) ^ \
49 (lfsr >> 21) ^ \
50 (lfsr >> 31) \
51 ) << 31);
52 }
53 sr_dbg("Iterate 0x%08x -> 0x%08x", devc->lfsr, lfsr);
54 devc->lfsr = lfsr;
55}
56
57static void encrypt(const struct sr_dev_inst *sdi, const uint8_t *in, uint8_t *out, uint8_t len)
58{
59 struct dev_context *devc = sdi->priv;
60 uint32_t lfsr = devc->lfsr;
61 uint8_t value, mask;
62 int i;
63
64 for (i = 0; i < len; i++) {
65 value = in[i];
66 mask = lfsr >> (i%4*8);
67 if (i == 0)
68 value = (value & 0x28) | ((value ^ mask) & ~0x28);
69 else
70 value = value ^ mask;
71 out[i] = value;
72 }
73 iterate_lfsr(sdi);
74}
75
76static void decrypt(const struct sr_dev_inst *sdi, uint8_t *data, uint8_t len)
77{
78 struct dev_context *devc = sdi->priv;
79 uint32_t lfsr = devc->lfsr;
80 int i;
81
82 for (i = 0; i < len; i++) {
83 data[i] ^= (lfsr >> (i%4*8));
84 }
85 iterate_lfsr(sdi);
86}
87
88static int transact(const struct sr_dev_inst *sdi,
89 const uint8_t *req, uint8_t req_len,
90 uint8_t *rsp, uint8_t rsp_len)
91{
92 struct sr_usb_dev_inst *usb = sdi->conn;
93 uint8_t *req_enc;
94 uint8_t rsp_dummy[1] = {};
95 int ret, xfer;
96
97 if (req_len < 2 || req_len > 64 || rsp_len > 128 ||
98 !req || (rsp_len > 0 && !rsp))
99 return SR_ERR_ARG;
100
101 req_enc = g_malloc(req_len);
102 encrypt(sdi, req, req_enc, req_len);
103
104 ret = libusb_bulk_transfer(usb->devhdl, 1, req_enc, req_len, &xfer, 1000);
105 if (ret != 0) {
106 sr_dbg("Failed to send request 0x%02x: %s.",
107 req[1], libusb_error_name(ret));
108 return SR_ERR;
109 }
110 if (xfer != req_len) {
111 sr_dbg("Failed to send request 0x%02x: incorrect length "
112 "%d != %d.", req[1], xfer, req_len);
113 return SR_ERR;
114 }
115
116 if (req[0] == 0x20) { // reseed
117 return SR_OK;
118 } else if (rsp_len == 0) {
119 rsp = rsp_dummy;
120 rsp_len = sizeof(rsp_dummy);
121 }
122
123 ret = libusb_bulk_transfer(usb->devhdl, 0x80 | 1, rsp, rsp_len,
124 &xfer, 1000);
125 if (ret != 0) {
126 sr_dbg("Failed to receive response to request 0x%02x: %s.",
127 req[1], libusb_error_name(ret));
128 return SR_ERR;
129 }
130 if (xfer != rsp_len) {
131 sr_dbg("Failed to receive response to request 0x%02x: "
132 "incorrect length %d != %d.", req[1], xfer, rsp_len);
133 return SR_ERR;
134 }
135
136 decrypt(sdi, rsp, rsp_len);
137
138 return SR_OK;
139}
140
141static int reseed(const struct sr_dev_inst *sdi)
142{
143 struct dev_context *devc = sdi->priv;
144 uint8_t req[] = {0x20, 0x24, 0x4b, 0x35, 0x8e};
145
146 devc->lfsr = 0;
147 return transact(sdi, req, sizeof(req), NULL, 0);
148}
149
150static int write_regs(const struct sr_dev_inst *sdi, uint8_t (*regs)[2], uint8_t cnt)
151{
152 uint8_t req[64];
153 int i;
154
155 if (cnt < 1 || cnt > 30)
156 return SR_ERR_ARG;
157
158 req[0] = 0x00;
159 req[1] = COMMAND_WRITE_REG;
160 req[2] = cnt;
161
162 for (i = 0; i < cnt; i++) {
163 req[3 + 2 * i] = regs[i][0];
164 req[4 + 2 * i] = regs[i][1];
165 }
166
167 return transact(sdi, req, 3 + 2*cnt, NULL, 0);
168}
169
170static int write_reg(const struct sr_dev_inst *sdi,
171 uint8_t address, uint8_t value)
172{
173 uint8_t regs[2] = {address, value};
174
175 return write_regs(sdi, &regs, 1);
176}
177
178static int get_firmware_version(const struct sr_dev_inst *sdi)
a8e913c4 179{
ca7d19b5
JL
180 uint8_t req[2] = {0x00, COMMAND_READ_FW_VER};
181 uint8_t rsp[128] = {};
182 int ret;
183
184 ret = transact(sdi, req, sizeof(req), rsp, sizeof(rsp));
185 if (ret == SR_OK) {
186 rsp[63] = 0;
187 sr_dbg("fw-version: %s", rsp);
188 }
189
190 return ret;
191}
a8e913c4 192
ca7d19b5
JL
193static int read_i2c(const struct sr_dev_inst *sdi, uint8_t *data, uint8_t len)
194{
195 uint8_t req[5];
196 uint8_t rsp[1+128];
197 int ret;
a8e913c4 198
ca7d19b5
JL
199 if (len < 1 || len > 128 || !data)
200 return SR_ERR_ARG;
a8e913c4 201
ca7d19b5
JL
202 req[0] = 0x00;
203 req[1] = COMMAND_READ_I2C;
204 req[2] = 0xc0; // fixed address
205 req[3] = len;
206 req[4] = 0; // len msb?
a8e913c4 207
ca7d19b5
JL
208 ret = transact(sdi, req, sizeof(req), rsp, 1 + len);
209 if (ret != SR_OK) {
210 return ret;
211 }
212 if (rsp[0] != 0x02) {
213 sr_dbg("Failed to do I2C read (0x%02x).", rsp[0]);
214 return SR_ERR;
a8e913c4
JL
215 }
216
ca7d19b5
JL
217 memcpy(data, rsp+1, len);
218 return SR_OK;
219}
220
221static int write_i2c(const struct sr_dev_inst *sdi, const uint8_t *data, uint8_t len)
222{
223 uint8_t req[5 + 128];
224 uint8_t rsp[1];
225 int ret;
226
227 if (len < 1 || len > 128 || !data)
228 return SR_ERR_ARG;
229
230 req[0] = 0x00;
231 req[1] = COMMAND_WRITE_I2C;
232 req[2] = 0xc0; // fixed address
233 req[3] = len;
234 req[4] = 0; // len msb?
235 memcpy(req + 5, data, len);
236
237 ret = transact(sdi, req, 5 + len, rsp, sizeof(rsp));
238 if (ret != SR_OK) {
239 return ret;
240 }
241 if (rsp[0] != 0x02) {
242 sr_dbg("Failed to do I2C write (0x%02x).", rsp[0]);
243 return SR_ERR;
244 }
245
246 return SR_OK;
247}
248
249static int wake_i2c(const struct sr_dev_inst *sdi)
250{
251 uint8_t req[] = {0x00, COMMAND_WAKE_I2C};
252 uint8_t rsp[1] = {};
253 uint8_t i2c_rsp[1+1+2] = {};
254 int ret;
255
256 ret = transact(sdi, req, sizeof(req), rsp, sizeof(rsp));
257 if (ret != SR_OK) {
258 return ret;
259 }
260 if (rsp[0] != 0x00) {
261 sr_dbg("Failed to do I2C wake trigger (0x%02x).", rsp[0]);
262 return SR_ERR;
263 }
264
265 ret = read_i2c(sdi, i2c_rsp, sizeof(i2c_rsp));
266 if (ret != SR_OK) {
267 return ret;
268 }
269 if (i2c_rsp[1] != 0x11) {
270 sr_dbg("Failed to do I2C wake read (0x%02x).", i2c_rsp[0]);
271 return SR_ERR;
272 }
273
274 return SR_OK;
275}
276
277static int crypto_random(const struct sr_dev_inst *sdi, uint8_t *data)
278{
279 uint8_t i2c_req[8] = {0x03, 0x07, 0x1b, 0x00, 0x00, 0x00, 0x24, 0xcd};
280 uint8_t i2c_rsp[1+32+2] = {};
281 int ret;
282
283 ret = write_i2c(sdi, i2c_req, sizeof(i2c_req));
284 if (ret != SR_OK) {
285 return ret;
286 }
287
288 g_usleep(100000); // TODO: poll instead
289
290 ret = read_i2c(sdi, i2c_rsp, sizeof(i2c_rsp));
291 if (ret != SR_OK) {
292 return ret;
293 }
294
295 if (data) {
296 memcpy(data, i2c_rsp+1, 32);
297 }
298
299 return SR_OK;
300}
301
302static int crypto_nonce(const struct sr_dev_inst *sdi, uint8_t *data)
303{
304 uint8_t i2c_req[6+20+2] = {0x03, 0x1b, 0x16, 0x00, 0x00, 0x00};
305 uint8_t i2c_rsp[1+32+2] = {};
306 int ret;
307
308 // CRC
309 i2c_req[26] = 0x7d;
310 i2c_req[27] = 0xe0;
311
312 ret = write_i2c(sdi, i2c_req, sizeof(i2c_req));
313 if (ret != SR_OK) {
314 return ret;
315 }
316
317 g_usleep(100000); // TODO: poll instead
318
319 ret = read_i2c(sdi, i2c_rsp, sizeof(i2c_rsp));
320 if (ret != SR_OK) {
321 return ret;
322 }
323
324 if (data) {
325 memcpy(data, i2c_rsp+1, 32);
326 }
327
328 return SR_OK;
329}
330
331static int crypto_sign(const struct sr_dev_inst *sdi, uint8_t *data, uint8_t *crc)
332{
333 uint8_t i2c_req[8] = {0x03, 0x07, 0x41, 0x80, 0x00, 0x00, 0x28, 0x05};
334 uint8_t i2c_rsp[1+64+2] = {};
335 int ret;
336
337 ret = write_i2c(sdi, i2c_req, sizeof(i2c_req));
338 if (ret != SR_OK) {
339 return ret;
340 }
341
342 g_usleep(100000); // TODO: poll instead
343
344 ret = read_i2c(sdi, i2c_rsp, sizeof(i2c_rsp));
345 if (ret != SR_OK) {
346 return ret;
347 }
348
349 memcpy(data, i2c_rsp+1, 64);
350 memcpy(crc, i2c_rsp+1+64, 2);
351
352 return SR_OK;
353}
354
355static int authenticate(const struct sr_dev_inst *sdi)
356{
357 struct dev_context *devc = sdi->priv;
358 uint8_t random[32] = {};
359 uint8_t nonce[32] = {};
360 uint8_t sig[64] = {};
361 uint8_t sig_crc[64] = {};
362 uint32_t lfsr;
363 int i, ret;
364
365 ret = wake_i2c(sdi);
366 if (ret != SR_OK)
367 return ret;
368
369 ret = crypto_random(sdi, random);
370 if (ret != SR_OK)
371 return ret;
372 sr_dbg("random: 0x%02x 0x%02x 0x%02x 0x%02x", random[0], random[1], random[2], random[3]);
373
374 ret = crypto_nonce(sdi, nonce);
375 if (ret != SR_OK)
376 return ret;
377 sr_dbg("nonce: 0x%02x 0x%02x 0x%02x 0x%02x", nonce[0], nonce[1], nonce[2], nonce[3]);
378
379 ret = crypto_nonce(sdi, nonce);
380 if (ret != SR_OK)
381 return ret;
382 sr_dbg("nonce: 0x%02x 0x%02x 0x%02x 0x%02x", nonce[0], nonce[1], nonce[2], nonce[3]);
383
384 ret = crypto_sign(sdi, sig, sig_crc);
385 if (ret != SR_OK)
386 return ret;
387 sr_dbg("sig: 0x%02x 0x%02x 0x%02x 0x%02x", sig[0], sig[1], sig[2], sig[3]);
388 sr_dbg("sig crc: 0x%02x 0x%02x", sig_crc[0], sig_crc[1]);
389
390 lfsr = 0;
391 for (i = 0; i < 28; i++)
392 lfsr ^= nonce[i] << (8*(i%4));
393 lfsr ^= sig_crc[0] | sig_crc[1] << 8;
394
395 sr_dbg("Authenticate 0x%08x -> 0x%08x", devc->lfsr, lfsr);
396 devc->lfsr = lfsr;
397
398 return SR_OK;
399}
400
401static int set_led(const struct sr_dev_inst *sdi, uint8_t r, uint8_t g, uint8_t b)
402{
403 uint8_t regs[][2] = {
404 {REG_LED_RED, r},
405 {REG_LED_GREEN, g},
406 {REG_LED_BLUE, b},
407 };
408
409 authenticate(sdi);
410
411 return write_regs(sdi, regs, G_N_ELEMENTS(regs));
412}
413
414static int configure_channels(const struct sr_dev_inst *sdi)
415{
416 struct dev_context *devc = sdi->priv;
417 const struct sr_channel *c;
418 const GSList *l;
419 uint16_t mask;
420
421 devc->dig_channel_cnt = 0;
422 devc->dig_channel_mask = 0;
423 for (l = sdi->channels; l; l = l->next) {
424 c = l->data;
425 if (!c->enabled)
426 continue;
427
428 mask = 1 << c->index;
429 devc->dig_channel_masks[devc->dig_channel_cnt++] = mask;
430 devc->dig_channel_mask |= mask;
431
432 }
433 sr_dbg("%d channels enabled (0x%04x)",
434 devc->dig_channel_cnt,
435 devc->dig_channel_mask);
436
437 return SR_OK;
438}
439
440SR_PRIV int saleae_logicpro_init(const struct sr_dev_inst *sdi)
441{
442 reseed(sdi);
443 get_firmware_version(sdi);
444 /* setting the LED doesn't work yet */
445 /* set_led(sdi, 0x00, 0x00, 0xff); */
446
447 return SR_OK;
448}
449
450SR_PRIV int saleae_logicpro_prepare(const struct sr_dev_inst *sdi)
451{
452 struct dev_context *devc = sdi->priv;
453 uint8_t regs_unknown[][2] = {
454 {0x03, 0x0f},
455 {0x04, 0x00},
456 {0x05, 0x00},
457 };
458 uint8_t regs_config[][2] = {
459 {0x00, 0x00},
460 {0x08, 0x00}, /* analog channel mask (LSB) */
461 {0x09, 0x00}, /* analog channel mask (MSB) */
462 {0x06, 0x01}, /* digital channel mask (LSB) */
463 {0x07, 0x00}, /* digital channel mask (MSB) */
464 {0x0a, 0x00}, /* analog sample rate? */
465 {0x0b, 0x64}, /* digital sample rate? */
466 {0x0c, 0x00},
467 {0x0d, 0x00}, /* analog mux rate? */
468 {0x0e, 0x01}, /* digital mux rate? */
469 {0x12, 0x04},
470 {0x13, 0x00},
471 {0x14, 0xff}, /* pre-divider? */
472 };
473 uint8_t start_req[] = {0x00, 0x01};
474 uint8_t start_rsp[2] = {};
475
476 configure_channels(sdi);
477
478 /* digital channel mask and muxing */
479 regs_config[3][1] = devc->dig_channel_mask;
480 regs_config[4][1] = devc->dig_channel_mask >> 8;
481 regs_config[9][1] = devc->dig_channel_cnt;
482
483 /* samplerate */
484 switch (devc->dig_samplerate) {
485 case SR_MHZ(1):
486 regs_config[6][1] = 0x64;
487 break;
488 case SR_MHZ(2):
489 regs_config[6][1] = 0x32;
490 break;
491 case SR_KHZ(2500):
492 regs_config[6][1] = 0x28;
493 break;
494 case SR_MHZ(10):
495 regs_config[6][1] = 0x0a;
496 break;
497 case SR_MHZ(25):
498 regs_config[6][1] = 0x04;
499 regs_config[12][1] = 0x80;
500 break;
501 case SR_MHZ(50):
502 regs_config[6][1] = 0x02;
503 regs_config[12][1] = 0x40;
504 break;
505 default:
506 return SR_ERR_ARG;
507 }
508
509 authenticate(sdi);
510
511 write_reg(sdi, 0x15, 0x03);
512 write_regs(sdi, regs_unknown, G_N_ELEMENTS(regs_unknown));
513 write_regs(sdi, regs_config, G_N_ELEMENTS(regs_config));
514
515 transact(sdi, start_req, sizeof(start_req), start_rsp, sizeof(start_rsp));
516
517 return SR_OK;
518}
519
520SR_PRIV int saleae_logicpro_start(const struct sr_dev_inst *sdi)
521{
522 struct dev_context *devc = sdi->priv;
523
524 devc->conv_size = 0;
525 devc->batch_index = 0;
526
527 write_reg(sdi, 0x00, 0x01);
528
529 return SR_OK;
530}
531
532SR_PRIV int saleae_logicpro_stop(const struct sr_dev_inst *sdi)
533{
534 uint8_t stop_req[] = {0x00, 0x02};
535 uint8_t stop_rsp[2] = {};
536
537 write_reg(sdi, 0x00, 0x00);
538 transact(sdi, stop_req, sizeof(stop_req), stop_rsp, sizeof(stop_rsp));
539
540 return SR_OK;
541}
542
543static void saleae_logicpro_send_data(const struct sr_dev_inst *sdi,
544 void *data, size_t length, size_t unitsize)
545{
546 const struct sr_datafeed_logic logic = {
547 .length = length,
548 .unitsize = unitsize,
549 .data = data
550 };
551
552 const struct sr_datafeed_packet packet = {
553 .type = SR_DF_LOGIC,
554 .payload = &logic
555 };
556
557 sr_session_send(sdi, &packet);
558}
559
560/*
561 * One batch from the device consists of 32 samples per active digital channel.
562 * This stream of batches is packed into USB packets with 16384 bytes each.
563 */
564static void saleae_logicpro_convert_data(const struct sr_dev_inst *sdi,
565 const uint32_t *src, size_t srccnt)
566{
567 struct dev_context *devc = sdi->priv;
568 uint8_t *dst = devc->conv_buffer;
569 uint32_t samples;
570 uint16_t channel_mask;
571 unsigned int sample_index, batch_index;
572 uint16_t *dst_batch;
573
574 /* copy partial batch to the beginning */
575 memcpy(dst, dst+devc->conv_size, CONV_BATCH_SIZE);
576 /* reset converted size */
577 devc->conv_size = 0;
578
579 batch_index = devc->batch_index;
580 while (srccnt--) {
581 samples = *src++;
582 dst_batch = (uint16_t*)dst;
583
584 /* first index of the batch */
585 if (batch_index == 0)
586 memset(dst, 0, CONV_BATCH_SIZE);
587
588 /* convert one channel */
589 channel_mask = devc->dig_channel_masks[batch_index];
590 for (sample_index = 0; sample_index <= 31; sample_index++)
591 if ((samples >> (31-sample_index)) & 1)
592 dst_batch[sample_index] |= channel_mask;
593
594 /* last index of the batch */
595 if (++batch_index == devc->dig_channel_cnt) {
596 devc->conv_size += CONV_BATCH_SIZE;
597 batch_index = 0;
598 dst += CONV_BATCH_SIZE;
599 }
600 }
601 devc->batch_index = batch_index;
602}
603
604SR_PRIV void LIBUSB_CALL saleae_logicpro_receive_data(struct libusb_transfer *transfer)
605{
606 const struct sr_dev_inst *sdi = transfer->user_data;
607 struct dev_context *devc = sdi->priv;
608 int ret;
609
610 switch (transfer->status) {
611 case LIBUSB_TRANSFER_NO_DEVICE:
612 sr_dbg("FIXME no device");
613 return;
614 case LIBUSB_TRANSFER_COMPLETED:
615 case LIBUSB_TRANSFER_TIMED_OUT: /* We may have received some data though. */
616 break;
617 default:
618 // FIXME
619 return;
620 }
621
622 saleae_logicpro_convert_data(sdi, (uint32_t*)transfer->buffer, 16*1024/4);
623 saleae_logicpro_send_data(sdi, devc->conv_buffer, devc->conv_size, 2);
624
625 if ((ret = libusb_submit_transfer(transfer)) != LIBUSB_SUCCESS)
626 sr_dbg("FIXME resubmit failed");
a8e913c4 627}