]> sigrok.org Git - libsigrokdecode.git/blame - decoders/onewire/onewire.py
commiting new unfinished 1-wire decoder
[libsigrokdecode.git] / decoders / onewire / onewire.py
CommitLineData
51990c45
IJ
1##
2## This file is part of the sigrok project.
3##
4## Copyright (C) 2011-2012 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21# 1-Wire protocol decoder
22
23import sigrokdecode as srd
24
25# Annotation feed formats
26ANN_ASCII = 0
27ANN_DEC = 1
28ANN_HEX = 2
29ANN_OCT = 3
30ANN_BITS = 4
31
32class Decoder(srd.Decoder):
33 api_version = 1
34 id = 'onewire'
35 name = '1-Wire'
36 longname = ''
37 desc = '1-Wire bus and MicroLan'
38 license = 'gplv2+'
39 inputs = ['logic']
40 outputs = ['onewire']
41 probes = [
42 {'id': 'owr', 'name': 'OWR', 'desc': '1-Wire bus'},
43 ]
44 optional_probes = [
45 {'id': 'pwr', 'name': 'PWR', 'desc': '1-Wire power'},
46 ]
47 options = {
48 'overdrive': ['Overdrive', 0],
49 }
50 annotations = [
51 ['ASCII', 'Data bytes as ASCII characters'],
52 ['Decimal', 'Databytes as decimal, integer values'],
53 ['Hex', 'Data bytes in hex format'],
54 ['Octal', 'Data bytes as octal numbers'],
55 ['Bits', 'Data bytes in bit notation (sequence of 0/1 digits)'],
56 ]
57
58 def putx(self, data):
59 self.put(self.startsample, self.samplenum - 1, self.out_ann, data)
60
61 def __init__(self, **kwargs):
62 # Common variables
63 self.samplenum = 0
64 # Link layer variables
65 self.lnk_state = 'WAIT FOR EVENT'
66 self.lnk_event = 'NONE'
67 self.lnk_start = -1
68 self.lnk_bit = -1
69 self.lnk_cnt = 0
70 self.lnk_byte = -1
71 # Network layer variables
72 self.net_state = 'WAIT FOR EVENT'
73 self.net_event = 'NONE'
74 self.net_command = -1
75 # Transport layer variables
76 self.trn_state = 'WAIT FOR EVENT'
77 self.trn_event = 'NONE'
78
79 self.data_sample = -1
80 self.cur_data_bit = 0
81 self.databyte = 0
82 self.startsample = -1
83
84 def start(self, metadata):
85 self.samplerate = metadata['samplerate']
86 self.out_proto = self.add(srd.OUTPUT_PROTO, 'onewire')
87 self.out_ann = self.add(srd.OUTPUT_ANN, 'onewire')
88
89 # The width of the 1-Wire time base (30us) in number of samples.
90 # TODO: optimize this value
91 self.time_base = float(self.samplerate) / float(0.000030)
92
93 def report(self):
94 pass
95
96 def get_data_sample(self, owr):
97 # Skip samples until we're in the middle of the start bit.
98 if not self.reached_data_sample():
99 return
100
101 self.data_sample = owr
102
103 self.cur_data_bit = 0
104 self.databyte = 0
105 self.startsample = -1
106
107 self.state = 'GET DATA BITS'
108
109 self.put(self.cycle_start, self.samplenum, self.out_proto,
110 ['STARTBIT', self.startbit])
111 self.put(self.cycle_start, self.samplenum, self.out_ann,
112 [ANN_ASCII, ['Start bit', 'Start', 'S']])
113
114 def get_data_bits(self, owr):
115 # Skip samples until we're in the middle of the desired data bit.
116 if not self.reached_bit(self.cur_data_bit + 1):
117 return
118
119 # Save the sample number where the data byte starts.
120 if self.startsample == -1:
121 self.startsample = self.samplenum
122
123 # Get the next data bit in LSB-first or MSB-first fashion.
124 if self.options['bit_order'] == 'lsb-first':
125 self.databyte >>= 1
126 self.databyte |= \
127 (owr << (self.options['num_data_bits'] - 1))
128 elif self.options['bit_order'] == 'msb-first':
129 self.databyte <<= 1
130 self.databyte |= (owr << 0)
131 else:
132 raise Exception('Invalid bit order value: %s',
133 self.options['bit_order'])
134
135 # Return here, unless we already received all data bits.
136 # TODO? Off-by-one?
137 if self.cur_data_bit < self.options['num_data_bits'] - 1:
138 self.cur_data_bit += 1
139 return
140
141 self.state = 'GET PARITY BIT'
142
143 self.put(self.startsample, self.samplenum - 1, self.out_proto,
144 ['DATA', self.databyte])
145
146 self.putx([ANN_ASCII, [chr(self.databyte)]])
147 self.putx([ANN_DEC, [str(self.databyte)]])
148 self.putx([ANN_HEX, [hex(self.databyte),
149 hex(self.databyte)[2:]]])
150 self.putx([ANN_OCT, [oct(self.databyte),
151 oct(self.databyte)[2:]]])
152 self.putx([ANN_BITS, [bin(self.databyte),
153 bin(self.databyte)[2:]]])
154
155 def decode(self, ss, es, data):
156 for (self.samplenum, owr) in data:
157
158 # First sample: Save OWR value.
159 if self.oldbit == None:
160 self.oldbit = owr
161 continue
162
163 # Data link layer
164 if self.lnk_state == 'WAIT FOR FALLING EDGE':
165 # The start of a cycle is a falling edge.
166 if (old_owr == 1 and owr == 0):
167 # Save the sample number where the start bit begins.
168 self.lnk_start = self.samplenum
169 # Go to waiting for sample time
170 self.lnk_state = 'WAIT FOR SAMPLE'
171 elif self.lnk_state == 'WAIT FOR SAMPLE':
172 # Data should be sample one 'time unit' after a falling edge
173 if (self.samplenum == self.lnk_start + self.time_base):
174 self.lnk_bit = owr & 0x1
175 self.lnk_cnt = self.lnk_cnt + 1
176 self.lnk_byte = (self.lnk_byte << 1) & self.lnk_bit
177 self.lnk_state = 'WAIT FOR RISING EDGE'
178 elif self.lnk_state == 'WAIT FOR RISING EDGE':
179 # The end of a cycle is a rising edge.
180 if (old_owr == 0 and owr == 1):
181 # Data bit cycle length should be between 2*T and
182 if (self.samplenum < self.lnk_start + 2*self.time_base):
183 if (self.lnk_cnt == 8)
184 self.put(self.startsample, self.samplenum - 1, self.out_proto, ['BYTE', self.lnk_byte])
185 self.lnk_cnt = 0
186 if (self.samplenum == self.lnk_start + 8*self.time_base):
187 self.put(self.startsample, self.samplenum - 1, self.out_proto, ['RESET'])
188
189 # Go to waiting for sample time
190 self.lnk_state = 'WAIT FOR SAMPLE'
191
192 elif self.state_lnk == 'GET DATA BITS' : self.get_data_bits(owr)
193 else : raise Exception('Invalid state: %d' % self.state)
194
195 # Save current RX/TX values for the next round.
196 self.oldbit = owr
197