]> sigrok.org Git - sigrok-firmware-fx2lafw.git/blame - sainsmart_dds120.c
scopes: Use RENUMERATE_UNCOND() for all devices.
[sigrok-firmware-fx2lafw.git] / sainsmart_dds120.c
CommitLineData
ce1d0a86
BL
1/*
2 * This file is part of the sigrok-firmware-fx2lafw project.
3 *
4 * Copyright (C) 2009 Ubixum, Inc.
5 * Copyright (C) 2015 Jochen Hoenicke
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
040a6eae 18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
ce1d0a86
BL
19 */
20
21#include <fx2macros.h>
22#include <fx2ints.h>
23#include <autovector.h>
24#include <delay.h>
25#include <setupdat.h>
26
be6d306d
UH
27#define SET_ANALOG_MODE() PA7 = 1
28
e583c3fc
UH
29/* Toggle the 1kHz calibration pin, only accurate up to ca. 8MHz. */
30/* Note: There's no PE2 as IOE is not bit-addressable (see TRM 15.2). */
31#define TOGGLE_CALIBRATION_PIN() IOE = IOE ^ 0x04
32
65b34f7e
UH
33#define LED_CLEAR() NOP
34#define LED_GREEN() NOP
35#define LED_RED() NOP
36
ce1d0a86
BL
37/* Change to support as many interfaces as you need. */
38static BYTE altiface = 0;
39
65b34f7e
UH
40static volatile WORD ledcounter = 0;
41
ce1d0a86
BL
42static volatile __bit dosud = FALSE;
43static volatile __bit dosuspend = FALSE;
44
45extern __code BYTE highspd_dscr;
46extern __code BYTE fullspd_dscr;
47
48void resume_isr(void) __interrupt RESUME_ISR
49{
50 CLEAR_RESUME();
51}
52
53void sudav_isr(void) __interrupt SUDAV_ISR
54{
55 dosud = TRUE;
56 CLEAR_SUDAV();
57}
58
59void usbreset_isr(void) __interrupt USBRESET_ISR
60{
61 handle_hispeed(FALSE);
62 CLEAR_USBRESET();
63}
64
65void hispeed_isr(void) __interrupt HISPEED_ISR
66{
67 handle_hispeed(TRUE);
68 CLEAR_HISPEED();
69}
70
71void suspend_isr(void) __interrupt SUSPEND_ISR
72{
73 dosuspend = TRUE;
74 CLEAR_SUSPEND();
75}
76
77void timer2_isr(void) __interrupt TF2_ISR
78{
e583c3fc
UH
79 TOGGLE_CALIBRATION_PIN();
80
65b34f7e
UH
81 if (ledcounter && (--ledcounter == 0))
82 LED_CLEAR();
83
ce1d0a86
BL
84 TF2 = 0;
85}
86
87/**
3968bbfb
UH
88 * The gain stage is 2 stage approach. -6dB and -20dB on the first stage
89 * (attentuator). The second stage is then doing the gain by 3 different
90 * resistor values switched into the feedback loop.
91 *
ce1d0a86
BL
92 * #Channel 0:
93 * PC1=1; PC2=0; PC3= 0 -> Gain x0.1 = -20dB
94 * PC1=1; PC2=0; PC3= 1 -> Gain x0.2 = -14dB
95 * PC1=1; PC2=1; PC3= 0 -> Gain x0.4 = -8dB
96 * PC1=0; PC2=0; PC3= 0 -> Gain x0.5 = -6dB
97 * PC1=0; PC2=0; PC3= 1 -> Gain x1 = 0dB
98 * PC1=0; PC2=1; PC3= 0 -> Gain x2 = +6dB
3968bbfb 99 *
ce1d0a86
BL
100 * #Channel 1:
101 * PE1=1; PC4=0; PC5= 0 -> Gain x0.1 = -20dB
102 * PE1=1; PC4=0; PC5= 1 -> Gain x0.2 = -14dB
103 * PE1=1; PC4=1; PC5= 0 -> Gain x0.4 = -8dB
104 * PE1=0; PC4=0; PC5= 0 -> Gain x0.5 = -6dB
105 * PE1=0; PC4=0; PC5= 1 -> Gain x1 = 0dB
106 * PE1=0; PC4=1; PC5= 0 -> Gain x2 = +6dB
107 */
108static BOOL set_voltage(BYTE channel, BYTE val)
109{
110 BYTE bits_C, bit_E, mask_C, mask_E;
111
112 if (channel == 0) {
113 mask_C = 0x0E;
114 mask_E = 0x00;
115 bit_E = 0;
116 switch (val) {
117 case 1:
118 bits_C = 0x02;
119 break;
120 case 2:
121 bits_C = 0x06;
122 break;
123 case 5:
124 bits_C = 0x00;
125 break;
126 case 10:
127 bits_C = 0x04;
128 break;
129 case 20:
130 bits_C = 0x08;
131 break;
132 default:
133 return FALSE;
134 }
135 } else if (channel == 1) {
136 mask_C = 0x30;
137 mask_E = 0x02;
138 switch (val) {
139 case 1:
140 bits_C = 0x00;
141 bit_E = 0x02;
142 break;
143 case 2:
144 bits_C = 0x10;
145 bit_E = 0x02;
146 break;
147 case 5:
148 bits_C = 0x00;
149 bit_E = 0x00;
150 break;
151 case 10:
152 bits_C = 0x10;
153 bit_E = 0x00;
154 break;
155 case 20:
156 bits_C = 0x20;
157 bit_E = 0x00;
158 break;
159 default:
160 return FALSE;
161 }
162 } else {
163 return FALSE;
164 }
165 IOC = (IOC & ~mask_C) | (bits_C & mask_C);
166 IOE = (IOE & ~mask_E) | (bit_E & mask_E);
167
168 return TRUE;
169}
170
75ad0fa5
BL
171/**
172 * Each LSB in the nibble of the byte controls the coupling per channel.
173 *
174 * Setting PE3 disables AC coupling capacitor on CH0.
175 * Setting PE0 disables AC coupling capacitor on CH1.
176 */
177static void set_coupling(BYTE coupling_cfg)
178{
179 if (coupling_cfg & 0x01)
180 IOE |= 0x08;
181 else
182 IOE &= ~0x08;
183
184 if (coupling_cfg & 0x10)
185 IOE |= 0x01;
186 else
187 IOE &= ~0x01;
188}
189
ce1d0a86
BL
190static BOOL set_numchannels(BYTE numchannels)
191{
192 if (numchannels == 1 || numchannels == 2) {
193 BYTE fifocfg = 7 + numchannels;
194 EP2FIFOCFG = fifocfg;
195 EP6FIFOCFG = fifocfg;
196 return TRUE;
197 }
198
199 return FALSE;
200}
201
202static void clear_fifo(void)
203{
204 GPIFABORT = 0xff;
205 SYNCDELAY3;
206 FIFORESET = 0x80;
207 SYNCDELAY3;
208 FIFORESET = 0x82;
209 SYNCDELAY3;
210 FIFORESET = 0x86;
211 SYNCDELAY3;
212 FIFORESET = 0;
213}
214
215static void stop_sampling(void)
216{
217 GPIFABORT = 0xff;
218 SYNCDELAY3;
219 INPKTEND = (altiface == 0) ? 6 : 2;
220}
221
222static void start_sampling(void)
223{
224 int i;
225
be6d306d
UH
226 SET_ANALOG_MODE();
227
ce1d0a86
BL
228 clear_fifo();
229
230 for (i = 0; i < 1000; i++);
231
232 while (!(GPIFTRIG & 0x80))
233 ;
234
235 SYNCDELAY3;
236 GPIFTCB1 = 0x28;
237 SYNCDELAY3;
238 GPIFTCB0 = 0;
239 GPIFTRIG = (altiface == 0) ? 6 : 4;
240
65b34f7e
UH
241 /* Set green LED, don't clear LED afterwards (ledcounter = 0). */
242 LED_GREEN();
243 ledcounter = 0;
ce1d0a86
BL
244}
245
246static void select_interface(BYTE alt)
247{
248 const BYTE *pPacketSize = \
249 ((USBCS & bmHSM) ? &highspd_dscr : &fullspd_dscr)
250 + (9 + (16 * alt) + 9 + 4);
251
252 altiface = alt;
253
254 if (alt == 0) {
255 /* Bulk on EP6. */
256 EP2CFG = 0x00;
257 EP6CFG = 0xe0;
258 EP6GPIFFLGSEL = 1;
259 EP6AUTOINLENL = pPacketSize[0];
260 EP6AUTOINLENH = pPacketSize[1];
261 } else {
262 /* Iso on EP2. */
263 EP2CFG = 0xd8;
264 EP6CFG = 0x00;
265 EP2GPIFFLGSEL = 1;
266 EP2AUTOINLENL = pPacketSize[0];
267 EP2AUTOINLENH = pPacketSize[1] & 0x7;
268 EP2ISOINPKTS = (pPacketSize[1] >> 3) + 1;
269 }
270}
271
272static const struct samplerate_info {
273 BYTE rate;
274 BYTE wait0;
275 BYTE wait1;
276 BYTE opc0;
277 BYTE opc1;
278 BYTE out0;
279 BYTE ifcfg;
280} samplerates[] = {
281 { 48, 0x80, 0, 3, 0, 0x00, 0xea },
282 { 30, 0x80, 0, 3, 0, 0x00, 0xaa },
283 { 24, 1, 0, 2, 1, 0x40, 0xea },
284 { 16, 1, 1, 2, 0, 0x40, 0xea },
33c275bb 285 { 15, 1, 0, 2, 1, 0x40, 0xaa },
ce1d0a86 286 { 12, 2, 1, 2, 0, 0x40, 0xea },
33c275bb 287 { 11, 1, 1, 2, 0, 0x40, 0xaa },
ce1d0a86 288 { 8, 3, 2, 2, 0, 0x40, 0xea },
33c275bb
BL
289 { 6, 2, 2, 2, 0, 0x40, 0xaa },
290 { 5, 3, 2, 2, 0, 0x40, 0xaa },
ce1d0a86 291 { 4, 6, 5, 2, 0, 0x40, 0xea },
33c275bb 292 { 3, 5, 4, 2, 0, 0x40, 0xaa },
ce1d0a86
BL
293 { 2, 12, 11, 2, 0, 0x40, 0xea },
294 { 1, 24, 23, 2, 0, 0x40, 0xea },
295 { 50, 48, 47, 2, 0, 0x40, 0xea },
296 { 20, 120, 119, 2, 0, 0x40, 0xea },
297 { 10, 240, 239, 2, 0, 0x40, 0xea },
298};
299
300static BOOL set_samplerate(BYTE rate)
301{
302 BYTE i = 0;
303
304 while (samplerates[i].rate != rate) {
305 i++;
306 if (i == sizeof(samplerates) / sizeof(samplerates[0]))
307 return FALSE;
308 }
309
310 IFCONFIG = samplerates[i].ifcfg;
311
312 AUTOPTRSETUP = 7;
24373950 313 AUTOPTRH2 = 0xE4; /* 0xE400: GPIF waveform descriptor 0. */
ce1d0a86
BL
314 AUTOPTRL2 = 0x00;
315
316 /*
317 * The program for low-speed, e.g. 1 MHz, is:
3968bbfb
UH
318 * wait 24, CTLx=0, FIFO
319 * wait 23, CTLx=1
320 * jump 0, CTLx=1
ce1d0a86
BL
321 *
322 * The program for 24 MHz is:
3968bbfb
UH
323 * wait 1, CTLx=0, FIFO
324 * jump 0, CTLx=1
ce1d0a86
BL
325 *
326 * The program for 30/48 MHz is:
3968bbfb
UH
327 * jump 0, CTLx=Z, FIFO, LOOP
328 *
329 * (CTLx is device-dependent, could be e.g. CTL0 or CTL2.)
ce1d0a86
BL
330 */
331
24373950 332 /* LENGTH / BRANCH 0-7 */
ce1d0a86
BL
333 EXTAUTODAT2 = samplerates[i].wait0;
334 EXTAUTODAT2 = samplerates[i].wait1;
335 EXTAUTODAT2 = 1;
336 EXTAUTODAT2 = 0;
337 EXTAUTODAT2 = 0;
338 EXTAUTODAT2 = 0;
339 EXTAUTODAT2 = 0;
340 EXTAUTODAT2 = 0;
341
24373950 342 /* OPCODE 0-7 */
ce1d0a86
BL
343 EXTAUTODAT2 = samplerates[i].opc0;
344 EXTAUTODAT2 = samplerates[i].opc1;
24373950 345 EXTAUTODAT2 = 1; /* DATA=0 DP=1 */
ce1d0a86
BL
346 EXTAUTODAT2 = 0;
347 EXTAUTODAT2 = 0;
348 EXTAUTODAT2 = 0;
349 EXTAUTODAT2 = 0;
350 EXTAUTODAT2 = 0;
351
24373950 352 /* OUTPUT 0-7 */
ce1d0a86 353 EXTAUTODAT2 = samplerates[i].out0;
3968bbfb
UH
354 EXTAUTODAT2 = 0x44; /* OE2=1, CTL2=1 */
355 EXTAUTODAT2 = 0x44; /* OE2=1, CTL2=1 */
24373950
UH
356 EXTAUTODAT2 = 0;
357 EXTAUTODAT2 = 0;
358 EXTAUTODAT2 = 0;
359 EXTAUTODAT2 = 0;
360 EXTAUTODAT2 = 0;
ce1d0a86 361
24373950 362 /* LOGIC FUNCTION 0-7 */
ce1d0a86
BL
363 EXTAUTODAT2 = 0;
364 EXTAUTODAT2 = 0;
365 EXTAUTODAT2 = 0;
366 EXTAUTODAT2 = 0;
367 EXTAUTODAT2 = 0;
368 EXTAUTODAT2 = 0;
369 EXTAUTODAT2 = 0;
370 EXTAUTODAT2 = 0;
371
372 for (i = 0; i < 96; i++)
373 EXTAUTODAT2 = 0;
374
375 return TRUE;
376}
377
a425fae9
BL
378static BOOL set_calibration_pulse(BYTE fs)
379{
380 switch (fs) {
381 case 0: // 100Hz
382 RCAP2L = -10000 & 0xff;
386296a7 383 RCAP2H = (-10000 & 0xff00) >> 8;
a425fae9
BL
384 return TRUE;
385 case 1: // 1kHz
386 RCAP2L = -1000 & 0xff;
386296a7 387 RCAP2H = (-1000 & 0xff00) >> 8;
a425fae9
BL
388 return TRUE;
389 case 10: // 1kHz
386296a7 390 RCAP2L = (BYTE)(-100 & 0xff);
a425fae9
BL
391 RCAP2H = 0xff;
392 return TRUE;
393 case 50: // 50kHz
386296a7 394 RCAP2L = (BYTE)(-20 & 0xff);
a425fae9
BL
395 RCAP2H = 0xff;
396 return TRUE;
397 default:
398 return FALSE;
399 }
400}
401
ce1d0a86
BL
402/* Set *alt_ifc to the current alt interface for ifc. */
403BOOL handle_get_interface(BYTE ifc, BYTE *alt_ifc)
404{
405 (void)ifc;
406
407 *alt_ifc = altiface;
408
409 return TRUE;
410}
411
412/*
413 * Return TRUE if you set the interface requested.
414 *
415 * Note: This function should reconfigure and reset the endpoints
416 * according to the interface descriptors you provided.
417 */
418BOOL handle_set_interface(BYTE ifc,BYTE alt_ifc)
419{
420 if (ifc == 0)
421 select_interface(alt_ifc);
422
423 return TRUE;
424}
425
426BYTE handle_get_configuration(void)
427{
428 /* We only support configuration 0. */
429 return 0;
430}
431
432BOOL handle_set_configuration(BYTE cfg)
433{
434 /* We only support configuration 0. */
435 (void)cfg;
436
437 return TRUE;
438}
439
440BOOL handle_vendorcommand(BYTE cmd)
441{
442 stop_sampling();
443
65b34f7e
UH
444 /* Set red LED, clear after timeout. */
445 LED_RED();
446 ledcounter = 1000;
447
ce1d0a86 448 /* Clear EP0BCH/L for each valid command. */
a425fae9 449 if (cmd >= 0xe0 && cmd <= 0xe6) {
ce1d0a86
BL
450 EP0BCH = 0;
451 EP0BCL = 0;
452 while (EP0CS & bmEPBUSY);
453 }
454
455 switch (cmd) {
456 case 0xe0:
457 case 0xe1:
458 set_voltage(cmd - 0xe0, EP0BUF[0]);
459 return TRUE;
460 case 0xe2:
461 set_samplerate(EP0BUF[0]);
462 return TRUE;
463 case 0xe3:
464 if (EP0BUF[0] == 1)
465 start_sampling();
466 return TRUE;
467 case 0xe4:
468 set_numchannels(EP0BUF[0]);
469 return TRUE;
75ad0fa5
BL
470 case 0xe5:
471 set_coupling(EP0BUF[0]);
472 return TRUE;
a425fae9
BL
473 case 0xe6:
474 set_calibration_pulse(EP0BUF[0]);
475 return TRUE;
ce1d0a86
BL
476 }
477
478 return FALSE; /* Not handled by handlers. */
479}
480
481static void init(void)
482{
483 EP4CFG = 0;
484 EP8CFG = 0;
485
be6d306d
UH
486 SET_ANALOG_MODE();
487
ce1d0a86 488 /* In idle mode tristate all outputs. */
24373950
UH
489 GPIFIDLECTL = 0x00; /* Don't enable CTL0-5 outputs. */
490 GPIFCTLCFG = 0x80; /* TRICTL=1. CTL0-2: CMOS outputs, tri-statable. */
ce1d0a86
BL
491 GPIFWFSELECT = 0x00;
492 GPIFREADYSTAT = 0x00;
493
494 stop_sampling();
495
496 set_voltage(0, 1);
497 set_voltage(1, 1);
498 set_samplerate(1);
499 set_numchannels(2);
500 select_interface(0);
501}
502
503static void main(void)
504{
505 /* Save energy. */
506 SETCPUFREQ(CLK_12M);
507
508 init();
509
510 /* Set up interrupts. */
511 USE_USB_INTS();
512
513 ENABLE_SUDAV();
514 ENABLE_USBRESET();
515 ENABLE_HISPEED();
516 ENABLE_SUSPEND();
517 ENABLE_RESUME();
518
519 /* Global (8051) interrupt enable. */
520 EA = 1;
521
522 /* Init timer2. */
523 RCAP2L = -1000 & 0xff;
386296a7 524 RCAP2H = (-1000 & 0xff00) >> 8;
ce1d0a86
BL
525 T2CON = 0;
526 ET2 = 1;
527 TR2 = 1;
528
529 RENUMERATE_UNCOND();
530
4d971e01 531 PORTECFG = 0;
ce1d0a86
BL
532 PORTCCFG = 0;
533 PORTACFG = 0;
4d971e01 534 OEE = 0xff;
ce1d0a86 535 OEC = 0xff;
4d971e01 536 OEA = 0xff;
ce1d0a86 537
be6d306d 538 SET_ANALOG_MODE();
ce1d0a86
BL
539
540 while (TRUE) {
541 if (dosud) {
542 dosud = FALSE;
543 handle_setupdata();
544 }
545
546 if (dosuspend) {
547 dosuspend = FALSE;
548 do {
549 /* Make sure ext wakeups are cleared. */
3968bbfb 550 WAKEUPCS |= bmWU | bmWU2;
ce1d0a86
BL
551 SUSPEND = 1;
552 PCON |= 1;
553 __asm
554 nop
555 nop
556 nop
557 nop
558 nop
559 nop
560 nop
561 __endasm;
562 } while (!remote_wakeup_allowed && REMOTE_WAKEUP());
563
564 /* Resume (TRM 6.4). */
565 if (REMOTE_WAKEUP()) {
566 delay(5);
567 USBCS |= bmSIGRESUME;
568 delay(15);
569 USBCS &= ~bmSIGRESUME;
570 }
571 }
572 }
573}