]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/uart/pd.py
uart: Use T for stop bit, P for parity bit.
[libsigrokdecode.git] / decoders / uart / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2011-2013 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21# UART protocol decoder
22
23import sigrokdecode as srd
24
25# Used for differentiating between the two data directions.
26RX = 0
27TX = 1
28
29# Annotation feed formats
30ANN_ASCII = 0
31ANN_DEC = 1
32ANN_HEX = 2
33ANN_OCT = 3
34ANN_BITS = 4
35
36# Given a parity type to check (odd, even, zero, one), the value of the
37# parity bit, the value of the data, and the length of the data (5-9 bits,
38# usually 8 bits) return True if the parity is correct, False otherwise.
39# 'none' is _not_ allowed as value for 'parity_type'.
40def parity_ok(parity_type, parity_bit, data, num_data_bits):
41
42 # Handle easy cases first (parity bit is always 1 or 0).
43 if parity_type == 'zero':
44 return parity_bit == 0
45 elif parity_type == 'one':
46 return parity_bit == 1
47
48 # Count number of 1 (high) bits in the data (and the parity bit itself!).
49 ones = bin(data).count('1') + parity_bit
50
51 # Check for odd/even parity.
52 if parity_type == 'odd':
53 return (ones % 2) == 1
54 elif parity_type == 'even':
55 return (ones % 2) == 0
56 else:
57 raise Exception('Invalid parity type: %d' % parity_type)
58
59class Decoder(srd.Decoder):
60 api_version = 1
61 id = 'uart'
62 name = 'UART'
63 longname = 'Universal Asynchronous Receiver/Transmitter'
64 desc = 'Asynchronous, serial bus.'
65 license = 'gplv2+'
66 inputs = ['logic']
67 outputs = ['uart']
68 probes = [
69 # Allow specifying only one of the signals, e.g. if only one data
70 # direction exists (or is relevant).
71 {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
72 {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
73 ]
74 optional_probes = []
75 options = {
76 'baudrate': ['Baud rate', 115200],
77 'num_data_bits': ['Data bits', 8], # Valid: 5-9.
78 'parity_type': ['Parity type', 'none'],
79 'parity_check': ['Check parity?', 'yes'], # TODO: Bool supported?
80 'num_stop_bits': ['Stop bit(s)', '1'], # String! 0, 0.5, 1, 1.5.
81 'bit_order': ['Bit order', 'lsb-first'],
82 # TODO: Options to invert the signal(s).
83 }
84 annotations = [
85 ['ASCII', 'Data bytes as ASCII characters'],
86 ['Decimal', 'Databytes as decimal, integer values'],
87 ['Hex', 'Data bytes in hex format'],
88 ['Octal', 'Data bytes as octal numbers'],
89 ['Bits', 'Data bytes in bit notation (sequence of 0/1 digits)'],
90 ]
91
92 def putx(self, rxtx, data):
93 s, halfbit = self.startsample[rxtx], int(self.bit_width / 2)
94 self.put(s - halfbit, self.samplenum + halfbit, self.out_ann, data)
95
96 def putg(self, data):
97 s, halfbit = self.samplenum, int(self.bit_width / 2)
98 self.put(s - halfbit, s + halfbit, self.out_ann, data)
99
100 def putp(self, data):
101 s, halfbit = self.samplenum, int(self.bit_width / 2)
102 self.put(s - halfbit, s + halfbit, self.out_proto, data)
103
104 def __init__(self, **kwargs):
105 self.samplenum = 0
106 self.frame_start = [-1, -1]
107 self.startbit = [-1, -1]
108 self.cur_data_bit = [0, 0]
109 self.databyte = [0, 0]
110 self.paritybit = [-1, -1]
111 self.stopbit1 = [-1, -1]
112 self.startsample = [-1, -1]
113 self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
114 self.oldbit = [1, 1]
115 self.oldpins = [1, 1]
116
117 def start(self, metadata):
118 self.samplerate = metadata['samplerate']
119 self.out_proto = self.add(srd.OUTPUT_PROTO, 'uart')
120 self.out_ann = self.add(srd.OUTPUT_ANN, 'uart')
121
122 # The width of one UART bit in number of samples.
123 self.bit_width = \
124 float(self.samplerate) / float(self.options['baudrate'])
125
126 def report(self):
127 pass
128
129 # Return true if we reached the middle of the desired bit, false otherwise.
130 def reached_bit(self, rxtx, bitnum):
131 # bitpos is the samplenumber which is in the middle of the
132 # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
133 # (if used) or the first stop bit, and so on).
134 bitpos = self.frame_start[rxtx] + (self.bit_width / 2.0)
135 bitpos += bitnum * self.bit_width
136 if self.samplenum >= bitpos:
137 return True
138 return False
139
140 def reached_bit_last(self, rxtx, bitnum):
141 bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width)
142 if self.samplenum >= bitpos:
143 return True
144 return False
145
146 def wait_for_start_bit(self, rxtx, old_signal, signal):
147 # The start bit is always 0 (low). As the idle UART (and the stop bit)
148 # level is 1 (high), the beginning of a start bit is a falling edge.
149 if not (old_signal == 1 and signal == 0):
150 return
151
152 # Save the sample number where the start bit begins.
153 self.frame_start[rxtx] = self.samplenum
154
155 self.state[rxtx] = 'GET START BIT'
156
157 def get_start_bit(self, rxtx, signal):
158 # Skip samples until we're in the middle of the start bit.
159 if not self.reached_bit(rxtx, 0):
160 return
161
162 self.startbit[rxtx] = signal
163
164 # The startbit must be 0. If not, we report an error.
165 if self.startbit[rxtx] != 0:
166 self.putp(['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
167 # TODO: Abort? Ignore rest of the frame?
168
169 self.cur_data_bit[rxtx] = 0
170 self.databyte[rxtx] = 0
171 self.startsample[rxtx] = -1
172
173 self.state[rxtx] = 'GET DATA BITS'
174
175 self.putp(['STARTBIT', rxtx, self.startbit[rxtx]])
176 self.putg([ANN_ASCII, ['Start bit', 'Start', 'S']])
177
178 def get_data_bits(self, rxtx, signal):
179 # Skip samples until we're in the middle of the desired data bit.
180 if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1):
181 return
182
183 # Save the sample number of the middle of the first data bit.
184 if self.startsample[rxtx] == -1:
185 self.startsample[rxtx] = self.samplenum
186
187 # Get the next data bit in LSB-first or MSB-first fashion.
188 if self.options['bit_order'] == 'lsb-first':
189 self.databyte[rxtx] >>= 1
190 self.databyte[rxtx] |= \
191 (signal << (self.options['num_data_bits'] - 1))
192 elif self.options['bit_order'] == 'msb-first':
193 self.databyte[rxtx] <<= 1
194 self.databyte[rxtx] |= (signal << 0)
195 else:
196 raise Exception('Invalid bit order value: %s',
197 self.options['bit_order'])
198
199 # Return here, unless we already received all data bits.
200 if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1:
201 self.cur_data_bit[rxtx] += 1
202 return
203
204 self.state[rxtx] = 'GET PARITY BIT'
205
206 self.putp(['DATA', rxtx, self.databyte[rxtx]])
207
208 s = 'RX: ' if (rxtx == RX) else 'TX: '
209 b = self.databyte[rxtx]
210 self.putx(rxtx, [ANN_ASCII, [s + chr(b)]])
211 self.putx(rxtx, [ANN_DEC, [s + str(b)]])
212 self.putx(rxtx, [ANN_HEX, [s + hex(b)[2:]]])
213 self.putx(rxtx, [ANN_OCT, [s + oct(b)[2:]]])
214 self.putx(rxtx, [ANN_BITS, [s + bin(b)[2:]]])
215
216 def get_parity_bit(self, rxtx, signal):
217 # If no parity is used/configured, skip to the next state immediately.
218 if self.options['parity_type'] == 'none':
219 self.state[rxtx] = 'GET STOP BITS'
220 return
221
222 # Skip samples until we're in the middle of the parity bit.
223 if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1):
224 return
225
226 self.paritybit[rxtx] = signal
227
228 self.state[rxtx] = 'GET STOP BITS'
229
230 if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
231 self.databyte[rxtx], self.options['num_data_bits']):
232 self.putp(['PARITYBIT', rxtx, self.paritybit[rxtx]])
233 self.putg([ANN_ASCII, ['Parity bit', 'Parity', 'P']])
234 else:
235 # TODO: Return expected/actual parity values.
236 self.putp(['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
237 self.putg([ANN_ASCII, ['Parity error', 'Parity err', 'PE']])
238
239 # TODO: Currently only supports 1 stop bit.
240 def get_stop_bits(self, rxtx, signal):
241 # Skip samples until we're in the middle of the stop bit(s).
242 skip_parity = 0 if self.options['parity_type'] == 'none' else 1
243 b = self.options['num_data_bits'] + 1 + skip_parity
244 if not self.reached_bit(rxtx, b):
245 return
246
247 self.stopbit1[rxtx] = signal
248
249 # Stop bits must be 1. If not, we report an error.
250 if self.stopbit1[rxtx] != 1:
251 self.putp(['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
252 # TODO: Abort? Ignore the frame? Other?
253
254 self.state[rxtx] = 'WAIT FOR START BIT'
255
256 self.putp(['STOPBIT', rxtx, self.stopbit1[rxtx]])
257 self.putg([ANN_ASCII, ['Stop bit', 'Stop', 'T']])
258
259 def decode(self, ss, es, data):
260 # TODO: Either RX or TX could be omitted (optional probe).
261 for (self.samplenum, pins) in data:
262
263 # Note: Ignoring identical samples here for performance reasons
264 # is not possible for this PD, at least not in the current state.
265 # if self.oldpins == pins:
266 # continue
267 self.oldpins, (rx, tx) = pins, pins
268
269 # State machine.
270 for rxtx in (RX, TX):
271 signal = rx if (rxtx == RX) else tx
272
273 if self.state[rxtx] == 'WAIT FOR START BIT':
274 self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal)
275 elif self.state[rxtx] == 'GET START BIT':
276 self.get_start_bit(rxtx, signal)
277 elif self.state[rxtx] == 'GET DATA BITS':
278 self.get_data_bits(rxtx, signal)
279 elif self.state[rxtx] == 'GET PARITY BIT':
280 self.get_parity_bit(rxtx, signal)
281 elif self.state[rxtx] == 'GET STOP BITS':
282 self.get_stop_bits(rxtx, signal)
283 else:
284 raise Exception('Invalid state: %s' % self.state[rxtx])
285
286 # Save current RX/TX values for the next round.
287 self.oldbit[rxtx] = signal
288