]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/pwm/pd.py
license: remove FSF postal address from boiler plate license text
[libsigrokdecode.git] / decoders / pwm / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2014 Torsten Duwe <duwe@suse.de>
5## Copyright (C) 2014 Sebastien Bourdelin <sebastien.bourdelin@savoirfairelinux.com>
6##
7## This program is free software; you can redistribute it and/or modify
8## it under the terms of the GNU General Public License as published by
9## the Free Software Foundation; either version 2 of the License, or
10## (at your option) any later version.
11##
12## This program is distributed in the hope that it will be useful,
13## but WITHOUT ANY WARRANTY; without even the implied warranty of
14## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15## GNU General Public License for more details.
16##
17## You should have received a copy of the GNU General Public License
18## along with this program; if not, see <http://www.gnu.org/licenses/>.
19##
20
21import sigrokdecode as srd
22
23class Decoder(srd.Decoder):
24 api_version = 2
25 id = 'pwm'
26 name = 'PWM'
27 longname = 'Pulse-width modulation'
28 desc = 'Analog level encoded in duty cycle percentage.'
29 license = 'gplv2+'
30 inputs = ['logic']
31 outputs = ['pwm']
32 channels = (
33 {'id': 'data', 'name': 'Data', 'desc': 'Data line'},
34 )
35 options = (
36 {'id': 'polarity', 'desc': 'Polarity', 'default': 'active-high',
37 'values': ('active-low', 'active-high')},
38 )
39 annotations = (
40 ('duty-cycle', 'Duty cycle'),
41 ('period', 'Period'),
42 )
43 annotation_rows = (
44 ('duty-cycle', 'Duty cycle', (0,)),
45 ('period', 'Period', (1,)),
46 )
47 binary = (
48 ('raw', 'RAW file'),
49 )
50
51 def __init__(self):
52 self.ss_block = self.es_block = None
53 self.first_transition = True
54 self.first_samplenum = None
55 self.start_samplenum = None
56 self.end_samplenum = None
57 self.oldpin = None
58 self.num_cycles = 0
59 self.average = 0
60
61 def metadata(self, key, value):
62 if key == srd.SRD_CONF_SAMPLERATE:
63 self.samplerate = value
64
65 def start(self):
66 self.startedge = 0 if self.options['polarity'] == 'active-low' else 1
67 self.out_ann = self.register(srd.OUTPUT_ANN)
68 self.out_binary = self.register(srd.OUTPUT_BINARY)
69 self.out_average = \
70 self.register(srd.OUTPUT_META,
71 meta=(float, 'Average', 'PWM base (cycle) frequency'))
72
73 def putx(self, data):
74 self.put(self.ss_block, self.es_block, self.out_ann, data)
75
76 def putp(self, period_t):
77 # Adjust granularity.
78 if period_t == 0 or period_t >= 1:
79 period_s = '%.1f s' % (period_t)
80 elif period_t <= 1e-12:
81 period_s = '%.1f fs' % (period_t * 1e15)
82 elif period_t <= 1e-9:
83 period_s = '%.1f ps' % (period_t * 1e12)
84 elif period_t <= 1e-6:
85 period_s = '%.1f ns' % (period_t * 1e9)
86 elif period_t <= 1e-3:
87 period_s = '%.1f μs' % (period_t * 1e6)
88 else:
89 period_s = '%.1f ms' % (period_t * 1e3)
90
91 self.put(self.ss_block, self.es_block, self.out_ann, [1, [period_s]])
92
93 def putb(self, data):
94 self.put(self.num_cycles, self.num_cycles, self.out_binary, data)
95
96 def decode(self, ss, es, data):
97
98 for (self.samplenum, pins) in data:
99 # Ignore identical samples early on (for performance reasons).
100 if self.oldpin == pins[0]:
101 continue
102
103 # Initialize self.oldpins with the first sample value.
104 if self.oldpin is None:
105 self.oldpin = pins[0]
106 continue
107
108 if self.first_transition:
109 # First rising edge
110 if self.oldpin != self.startedge:
111 self.first_samplenum = self.samplenum
112 self.start_samplenum = self.samplenum
113 self.first_transition = False
114 else:
115 if self.oldpin != self.startedge:
116 # Rising edge
117 # We are on a full cycle we can calculate
118 # the period, the duty cycle and its ratio.
119 period = self.samplenum - self.start_samplenum
120 duty = self.end_samplenum - self.start_samplenum
121 ratio = float(duty / period)
122
123 # This interval starts at this edge.
124 self.ss_block = self.start_samplenum
125 # Store the new rising edge position and the ending
126 # edge interval.
127 self.start_samplenum = self.es_block = self.samplenum
128
129 # Report the duty cycle in percent.
130 percent = float(ratio * 100)
131 self.putx([0, ['%f%%' % percent]])
132
133 # Report the duty cycle in the binary output.
134 self.putb([0, bytes([int(ratio * 256)])])
135
136 # Report the period in units of time.
137 period_t = float(period / self.samplerate)
138 self.putp(period_t)
139
140 # Update and report the new duty cycle average.
141 self.num_cycles += 1
142 self.average += percent
143 self.put(self.first_samplenum, self.es_block, self.out_average,
144 float(self.average / self.num_cycles))
145 else:
146 # Falling edge
147 self.end_samplenum = self.ss_block = self.samplenum
148
149 self.oldpin = pins[0]