]> sigrok.org Git - libsigrokdecode.git/blame - decoders/rgb_led_ws281x/pd.py
rgb_led_ws281x: default to RGB[W] annotation text order
[libsigrokdecode.git] / decoders / rgb_led_ws281x / pd.py
CommitLineData
66fc6e7c
UH
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2016 Vladimir Ermakov <vooon341@gmail.com>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 3 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
4539e9ca 17## along with this program; if not, see <http://www.gnu.org/licenses/>.
66fc6e7c
UH
18##
19
6300d97e
GS
20# Implementor's notes on the wire format:
21# - World Semi vendor, (Adafruit copy of the) datasheet
22# https://cdn-shop.adafruit.com/datasheets/WS2812.pdf
23# - reset pulse is 50us (or more) of low pin level
24# - 24bits per WS281x item, 3x 8bits, MSB first, GRB sequence,
25# cascaded WS281x items, all "excess bits" are passed through
26# - bit time starts with high period, continues with low period,
27# high to low periods' ratio determines bit value, datasheet
28# mentions 0.35us/0.8us for value 0, 0.7us/0.6us for value 1
29# (huge 150ns tolerances, un-even 0/1 value length, hmm)
30# - experience suggests the timing "is variable", rough estimation
31# often is good enough, microcontroller firmware got away with
32# four quanta per bit time, or even with three quanta (30%/60%),
33# Adafruit learn article suggests 1.2us total and 0.4/0.8 or
34# 0.8/0.4 high/low parts, four quanta are easier to handle when
35# the bit stream is sent via SPI to avoid MCU bit banging and its
36# inaccurate timing (when interrupts are used in the firmware)
37# - RGBW datasheet (Adafruit copy) for SK6812
38# https://cdn-shop.adafruit.com/product-files/2757/p2757_SK6812RGBW_REV01.pdf
39# also 1.2us total, shared across 0.3/0.9 for 0, 0.6/0.6 for 1,
40# 80us reset pulse, R8/G8/B8/W8 format per 32bits
41# - WS2815, RGB LED, uses GRB wire format, 280us RESET pulse width
42# - more vendors and models available and in popular use,
43# suggests "one third" or "two thirds" ratio would be most robust,
44# sample "a little before" the bit half? reset pulse width may need
45# to become an option? matrices and/or fast refresh environments
46# may want to experiment with back to back pixel streams
47
66fc6e7c 48import sigrokdecode as srd
6d1cde1d 49from common.srdhelper import bitpack_msb
66fc6e7c
UH
50
51class SamplerateError(Exception):
52 pass
53
17b2579a
GS
54class DecoderError(Exception):
55 pass
56
3378f524
GS
57(
58 ANN_BIT, ANN_RESET, ANN_RGB,
59 ANN_COMP_R, ANN_COMP_G, ANN_COMP_B, ANN_COMP_W,
60) = range(7)
0e3c3498 61
66fc6e7c 62class Decoder(srd.Decoder):
7a85bbbe 63 api_version = 3
66fc6e7c
UH
64 id = 'rgb_led_ws281x'
65 name = 'RGB LED (WS281x)'
66 longname = 'RGB LED string decoder (WS281x)'
67 desc = 'RGB LED string protocol (WS281x).'
68 license = 'gplv3+'
69 inputs = ['logic']
6cbba91f 70 outputs = []
2787cf2a 71 tags = ['Display', 'IC']
66fc6e7c
UH
72 channels = (
73 {'id': 'din', 'name': 'DIN', 'desc': 'DIN data line'},
74 )
75 annotations = (
76 ('bit', 'Bit'),
77 ('reset', 'RESET'),
78 ('rgb', 'RGB'),
3378f524
GS
79 ('r', 'R'),
80 ('g', 'G'),
81 ('b', 'B'),
82 ('w', 'W'),
66fc6e7c
UH
83 )
84 annotation_rows = (
0e3c3498 85 ('bits', 'Bits', (ANN_BIT, ANN_RESET,)),
3378f524 86 ('rgb-comps', 'RGB components', (ANN_COMP_R, ANN_COMP_G, ANN_COMP_B, ANN_COMP_W,)),
0e3c3498 87 ('rgb-vals', 'RGB values', (ANN_RGB,)),
66fc6e7c 88 )
47ff9910 89 options = (
17b2579a
GS
90 {'id': 'wireorder', 'desc': 'colour components order (wire)',
91 'default': 'GRB',
92 'values': ('BGR', 'BRG', 'GBR', 'GRB', 'RBG', 'RGB', 'RWBG', 'RGBW')},
93 {'id': 'textorder', 'desc': 'components output order (text)',
e6962b3f 94 'default': 'RGB[W]', 'values': ('wire', 'RGB[W]', 'RGB', 'RGBW', 'RGWB')},
47ff9910 95 )
66fc6e7c 96
92b7b49f 97 def __init__(self):
10aeb8ea
GS
98 self.reset()
99
100 def reset(self):
66fc6e7c 101 self.samplerate = None
66fc6e7c 102 self.bits = []
66fc6e7c
UH
103
104 def start(self):
105 self.out_ann = self.register(srd.OUTPUT_ANN)
106
107 def metadata(self, key, value):
108 if key == srd.SRD_CONF_SAMPLERATE:
109 self.samplerate = value
110
192a9e78
GS
111 def putg(self, ss, es, cls, text):
112 self.put(ss, es, self.out_ann, [cls, text])
113
6d1cde1d
GS
114 def handle_bits(self):
115 if len(self.bits) < self.need_bits:
116 return
6d1cde1d 117 ss_packet, es_packet = self.bits[0][1], self.bits[-1][2]
17b2579a
GS
118 r, g, b, w = 0, 0, 0, None
119 comps = []
120 for i, c in enumerate(self.wireformat):
121 first_idx, after_idx = 8 * i, 8 * i + 8
122 comp_bits = self.bits[first_idx:after_idx]
123 comp_ss, comp_es = comp_bits[0][1], comp_bits[-1][2]
124 comp_value = bitpack_msb(comp_bits, 0)
3378f524
GS
125 comp_text = '{:02x}'.format(comp_value)
126 comp_ann = {
127 'r': ANN_COMP_R, 'g': ANN_COMP_G,
128 'b': ANN_COMP_B, 'w': ANN_COMP_W,
129 }.get(c.lower(), None)
130 comp_item = (comp_ss, comp_es, comp_ann, comp_value, comp_text)
17b2579a
GS
131 comps.append(comp_item)
132 if c.lower() == 'r':
133 r = comp_value
134 elif c.lower() == 'g':
135 g = comp_value
136 elif c.lower() == 'b':
137 b = comp_value
138 elif c.lower() == 'w':
139 w = comp_value
140 wt = '' if w is None else '{:02x}'.format(w)
141 if self.textformat == 'wire':
3378f524 142 rgb_text = '#' + ''.join([c[-1] for c in comps])
17b2579a
GS
143 else:
144 rgb_text = self.textformat.format(r = r, g = g, b = b, w = w, wt = wt)
3378f524
GS
145 for ss_comp, es_comp, cls_comp, value_comp, text_comp in comps:
146 self.putg(ss_comp, es_comp, cls_comp, [text_comp])
17b2579a
GS
147 if rgb_text:
148 self.putg(ss_packet, es_packet, ANN_RGB, [rgb_text])
6d1cde1d
GS
149 self.bits.clear()
150
151 def handle_bit(self, ss, es, value, ann_late = False):
152 if not ann_late:
153 text = ['{:d}'.format(value)]
154 self.putg(ss, es, ANN_BIT, text)
155 item = (value, ss, es)
156 self.bits.append(item)
157 self.handle_bits()
158 if ann_late:
159 text = ['{:d}'.format(value)]
160 self.putg(ss, es, ANN_BIT, text)
66fc6e7c 161
7a85bbbe 162 def decode(self):
66fc6e7c
UH
163 if not self.samplerate:
164 raise SamplerateError('Cannot decode without samplerate.')
17b2579a
GS
165
166 # Preprocess options here, to simplify logic which executes
167 # much later in loops while settings have the same values.
168 wireorder = self.options['wireorder'].lower()
169 self.wireformat = [c for c in wireorder if c in 'rgbw']
170 self.need_bits = len(self.wireformat) * 8
171 textorder = self.options['textorder'].lower()
172 if textorder == 'wire':
173 self.textformat = 'wire'
174 elif textorder == 'rgb[w]':
175 self.textformat = '#{r:02x}{g:02x}{b:02x}{wt:s}'
176 else:
177 self.textformat = {
178 # "Obvious" permutations of R/G/B.
179 'bgr': '#{b:02x}{g:02x}{r:02x}',
180 'brg': '#{b:02x}{r:02x}{g:02x}',
181 'gbr': '#{g:02x}{b:02x}{r:02x}',
182 'grb': '#{g:02x}{r:02x}{b:02x}',
183 'rbg': '#{r:02x}{b:02x}{g:02x}',
184 'rgb': '#{r:02x}{g:02x}{b:02x}',
185 # RGB plus White. Only one of them useful?
186 'rgbw': '#{r:02x}{g:02x}{b:02x}{w:02x}',
187 # Weird RGBW permutation for compatibility to test case.
188 # Neither used RGBW nor the 'wire' order. Obsolete now?
189 'rgwb': '#{r:02x}{g:02x}{w:02x}{b:02x}',
190 }.get(textorder, None)
191 if self.textformat is None:
192 raise DecoderError('Unsupported text output format.')
66fc6e7c 193
5e8090d7
GS
194 # Either check for edges which communicate bit values, or for
195 # long periods of idle level which represent a reset pulse.
196 # Track the left-most, right-most, and inner edge positions of
197 # a bit. The positive period's width determines the bit's value.
198 # Initially synchronize to the input stream by searching for a
199 # low period, which preceeds a data bit or starts a reset pulse.
200 # Don't annotate the very first reset pulse, but process it. We
201 # may not see the right-most edge of a data bit when reset is
202 # adjacent to that bit time.
203 cond_bit_starts = {0: 'r'}
204 cond_inbit_edge = {0: 'f'}
205 samples_625ns = int(self.samplerate * 625e-9)
206 samples_50us = round(self.samplerate * 50e-6)
207 cond_reset_pulse = {'skip': samples_50us + 1}
208 conds = [cond_bit_starts, cond_inbit_edge, cond_reset_pulse]
209 ss_bit, inv_bit, es_bit = None, None, None
210 pin, = self.wait({0: 'l'})
211 inv_bit = self.samplenum
212 check_reset = False
7a85bbbe 213 while True:
5e8090d7
GS
214 pin, = self.wait(conds)
215
216 # Check RESET condition. Manufacturers may disagree on the
217 # minimal pulse width. 50us are recommended in datasheets,
218 # experiments suggest the limit is around 10us.
219 # When the RESET pulse is adjacent to the low phase of the
220 # last bit time, we have no appropriate condition for the
221 # bit time's end location. That's why this BIT's annotation
222 # is shorter (only spans the high phase), and the RESET
223 # annotation immediately follows (spans from the falling edge
224 # to the end of the minimum RESET pulse width).
225 if check_reset and self.matched[2]:
226 es_bit = inv_bit
227 ss_rst, es_rst = inv_bit, self.samplenum
228
229 if ss_bit and inv_bit and es_bit:
230 # Decode last bit value. Use the last processed bit's
231 # width for comparison when available. Fallback to an
232 # arbitrary threshold otherwise (which can result in
233 # false detection of value 1 for those captures where
234 # high and low pulses are of similar width).
235 duty = inv_bit - ss_bit
236 thres = samples_625ns
237 if self.bits:
238 period = self.bits[-1][2] - self.bits[-1][1]
239 thres = period * 0.5
240 bit_value = 1 if duty >= thres else 0
241 self.handle_bit(ss_bit, inv_bit, bit_value, True)
242
243 if ss_rst and es_rst:
244 text = ['RESET', 'RST', 'R']
245 self.putg(ss_rst, es_rst, ANN_RESET, text)
246 check_reset = False
7a85bbbe 247
6d1cde1d 248 self.bits.clear()
5e8090d7
GS
249 ss_bit, inv_bit, es_bit = None, None, None
250
251 # Rising edge starts a bit time. Falling edge ends its high
252 # period. Get the previous bit's duty cycle and thus its
253 # bit value when the next bit starts.
254 if self.matched[0]: # and pin:
255 check_reset = False
256 if ss_bit and inv_bit:
257 # Got a previous bit? Handle it.
258 es_bit = self.samplenum
259 period = es_bit - ss_bit
260 duty = inv_bit - ss_bit
66fc6e7c 261 # Ideal duty for T0H: 33%, T1H: 66%.
5e8090d7
GS
262 bit_value = 1 if (duty / period) > 0.5 else 0
263 self.handle_bit(ss_bit, es_bit, bit_value)
264 ss_bit, inv_bit, es_bit = self.samplenum, None, None
265 if self.matched[1]: # and not pin:
266 check_reset = True
267 inv_bit = self.samplenum