]> sigrok.org Git - libsigrokdecode.git/blame - decoders/jtag_stm32/jtag_stm32.py
srd: JTAG/STM32: Decode IDCODE[31:0] parts.
[libsigrokdecode.git] / decoders / jtag_stm32 / jtag_stm32.py
CommitLineData
66a8517e
UH
1##
2## This file is part of the sigrok project.
3##
4## Copyright (C) 2012 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21# ST STM32 JTAG protocol decoder
22
23import sigrokdecode as srd
24
25# JTAG debug port data registers (in IR[3:0]) and their sizes (in bits)
457acc28
UH
26# Note: The ARM DAP-DP is not IEEE 1149.1 (JTAG) compliant (as per ARM docs),
27# as it does not implement the EXTEST, SAMPLE, and PRELOAD instructions.
28# Instead, BYPASS is decoded for any of these instructions.
66a8517e
UH
29ir = {
30 '1111': ['BYPASS', 1], # Bypass register
31 '1110': ['IDCODE', 32], # ID code register
32 '1010': ['DPACC', 35], # Debug port access register
33 '1011': ['APACC', 35], # Access port access register
e9656a0c 34 '1000': ['ABORT', 35], # Abort register # TODO: 32 bits? Datasheet typo?
66a8517e
UH
35}
36
37# ARM Cortex-M3 r1p1-01rel0 ID code
38cm3_idcode = 0x3ba00477
39
40# JTAG ID code in the STM32F10xxx BSC (boundary scan) TAP
41jtag_idcode = {
42 0x06412041: 'Low-density device, rev. A',
43 0x06410041: 'Medium-density device, rev. A',
44 0x16410041: 'Medium-density device, rev. B/Z/Y',
45 0x06414041: 'High-density device, rev. A/Z/Y',
46 0x06430041: 'XL-density device, rev. A',
47 0x06418041: 'Connectivity-line device, rev. A/Z',
48}
49
50# ACK[2:0] in the DPACC/APACC registers
51ack_val = {
52 '000': 'Reserved',
53 '001': 'WAIT',
54 '010': 'OK/FAULT',
55 '011': 'Reserved',
56 '100': 'Reserved',
57 '101': 'Reserved',
58 '110': 'Reserved',
59 '111': 'Reserved',
60}
61
62# 32bit debug port registers (addressed via A[3:2])
63reg = {
64 '00': 'Reserved', # Must be kept at reset value
65 '01': 'DP CTRL/STAT',
66 '10': 'DP SELECT',
67 '11': 'DP RDBUFF',
68}
69
e9656a0c
UH
70# TODO: All start/end sample values in self.put() calls are bogus.
71
457acc28
UH
72# Bits[31:28]: Version (here: 0x3)
73# JTAG-DP: 0x3, SW-DP: 0x2
74# Bits[27:12]: Part number (here: 0xba00)
75# JTAG-DP: 0xba00, SW-DP: 0xba10
76# Bits[11:1]: JEDEC (JEP-106) manufacturer ID (here: 0x23b)
77# Bits[11:8]: Continuation code ('ARM Limited': 0x04)
78# Bits[7:1]: Identity code ('ARM Limited': 0x3b)
79# Bits[0:0]: Reserved (here: 0x1)
80def decode_device_id_code(bits):
81 id_hex = '0x%x' % int('0b' + bits, 2)
82 ver = '0x%x' % int('0b' + bits[-32:-28], 2)
83 part = '0x%x' % int('0b' + bits[-28:-12], 2)
84 manuf = '0x%x' % int('0b' + bits[-12:-1], 2)
85 res = '0x%x' % int('0b' + bits[-1], 2)
86 return (id_hex, ver, part, manuf, res)
87
66a8517e
UH
88class Decoder(srd.Decoder):
89 api_version = 1
90 id = 'jtag_stm32'
91 name = 'JTAG / STM32'
92 longname = 'Joint Test Action Group / ST STM32'
93 desc = 'ST STM32-specific JTAG protocol.'
94 license = 'gplv2+'
95 inputs = ['jtag']
96 outputs = ['jtag_stm32']
97 probes = []
98 optional_probes = []
99 options = {}
100 annotations = [
e9656a0c 101 ['Text', 'Human-readable text'],
66a8517e
UH
102 ]
103
104 def __init__(self, **kwargs):
105 self.state = 'IDLE'
e9656a0c 106 # self.state = 'BYPASS'
66a8517e
UH
107
108 def start(self, metadata):
109 # self.out_proto = self.add(srd.OUTPUT_PROTO, 'jtag_stm32')
110 self.out_ann = self.add(srd.OUTPUT_ANN, 'jtag_stm32')
111
112 def report(self):
113 pass
114
115 def handle_reg_bypass(self, bits):
116 # TODO
e9656a0c 117 self.put(self.ss, self.es, self.out_ann, [0, ['BYPASS: ' + bits]])
66a8517e
UH
118
119 def handle_reg_idcode(self, bits):
120 # TODO
e9656a0c 121 self.put(self.ss, self.es, self.out_ann,
457acc28
UH
122 [0, ['IDCODE: %s (ver=%s, part=%s, manuf=%s, res=%s)' % \
123 decode_device_id_code(bits)]])
66a8517e
UH
124
125 # When transferring data IN:
126 # Bits[34:3] = DATA[31:0]: 32bit data to transfer (write request)
127 # Bits[2:1] = A[3:2]: 2-bit address of a debug port register
128 # Bits[0:0] = RnW: Read request (1) or write request (0)
129 # When transferring data OUT:
130 # Bits[34:3] = DATA[31:0]: 32bit data which is read (read request)
131 # Bits[2:0] = ACK[2:0]: 3-bit acknowledge
132 def handle_reg_dpacc(self, bits):
e9656a0c
UH
133 self.put(self.ss, self.es, self.out_ann, [0, ['DPACC: ' + bits]])
134
135 # TODO: When to use Data IN / Data OUT?
66a8517e
UH
136
137 # Data IN
e9656a0c
UH
138 data, a, rnw = bits[:-3], bits[-3:-1], bits[-1]
139 data_hex = '0x%x' % int('0b' + data, 2)
66a8517e 140 r = 'Read request' if (rnw == '1') else 'Write request'
e9656a0c 141 s = 'DATA: %s, A: %s, RnW: %s' % (data_hex, reg[a], r)
66a8517e
UH
142 self.put(self.ss, self.es, self.out_ann, [0, [s]])
143
144 # Data OUT
e9656a0c
UH
145 data, ack = bits[:-3], bits[-3:]
146 data_hex = '0x%x' % int('0b' + data, 2)
147 ack_meaning = ack_val[ack]
148 s = 'DATA: %s, ACK: %s' % (data_hex, ack_meaning)
149 self.put(self.ss, self.es, self.out_ann, [0, [s]])
66a8517e 150
e9656a0c
UH
151 # When transferring data IN:
152 # Bits[34:3] = DATA[31:0]: 32bit data to shift in (write request)
153 # Bits[2:1] = A[3:2]: 2-bit address (sub-address AP register)
154 # Bits[0:0] = RnW: Read request (1) or write request (0)
155 # When transferring data OUT:
156 # Bits[34:3] = DATA[31:0]: 32bit data which is read (read request)
157 # Bits[2:0] = ACK[2:0]: 3-bit acknowledge
66a8517e 158 def handle_reg_apacc(self, bits):
e9656a0c
UH
159 self.put(self.ss, self.es, self.out_ann, [0, ['APACC: ' + bits]])
160
161 # TODO: When to use Data IN / Data OUT?
162
163 # Data IN
164 data, a, rnw = bits[:-3], bits[-3:-1], bits[-1]
165 data_hex = '0x%x' % int('0b' + data, 2)
166 r = 'Read request' if (rnw == '1') else 'Write request'
167 s = 'DATA: %s, A: %s, RnW: %s' % (data_hex, reg[a], r)
168 self.put(self.ss, self.es, self.out_ann, [0, [s]])
169
170 # Data OUT
171 data, ack = bits[:-3], bits[-3:]
172 data_hex = '0x%x' % int('0b' + data, 2)
173 ack_meaning = ack_val[ack]
174 s = 'DATA: %s, ACK: %s' % (data_hex, ack_meaning)
175 self.put(self.ss, self.es, self.out_ann, [0, [s]])
66a8517e
UH
176
177 def handle_reg_abort(self, bits):
178 # Bits[31:1]: reserved. Bit[0]: DAPABORT.
179 a = '' if (bits[0] == '1') else 'No '
180 s = 'DAPABORT = %s: %sDAP abort generated' % (bits[0], a)
181 self.put(self.ss, self.es, self.out_ann, [0, [s]])
182
e9656a0c 183 # Warn if DAPABORT[31:1] contains non-zero bits.
66a8517e 184 if (bits[:-1] != ('0' * 31)):
e9656a0c
UH
185 self.put(self.ss, self.es, self.out_ann,
186 [0, ['WARNING: DAPABORT[31:1] reserved!']])
187
188 def handle_reg_unknown(self, bits):
189 self.put(self.ss, self.es, self.out_ann,
190 [0, ['Unknown instruction: ' % bits]]) # TODO
66a8517e
UH
191
192 def decode(self, ss, es, data):
193 # Assumption: The right-most char in the 'val' bitstring is the LSB.
194 cmd, val = data
195
196 self.ss, self.es = ss, es
197
e9656a0c 198 # self.put(self.ss, self.es, self.out_ann, [0, [cmd + ' / ' + val]])
66a8517e
UH
199
200 # State machine
e9656a0c
UH
201 if self.state == 'IDLE':
202 # Wait until a new instruction is shifted into the IR register.
203 if cmd != 'IR TDI':
204 return
205 # Switch to the state named after the instruction, or 'UNKNOWN'.
206 self.state = ir.get(val[-4:], ['UNKNOWN', 0])[0]
207 self.put(self.ss, self.es, self.out_ann, [0, ['IR: ' + self.state]])
208 elif self.state in ('BYPASS'):
209 # In these states we're interested in incoming bits (TDI).
210 if cmd != 'DR TDI':
211 return
212 handle_reg = getattr(self, 'handle_reg_%s' % self.state.lower())
213 handle_reg(val)
214 self.state = 'IDLE'
215 elif self.state in ('IDCODE', 'DPACC', 'APACC', 'ABORT', 'UNKNOWN'):
216 # In these states we're interested in outgoing bits (TDO).
457acc28
UH
217 if cmd != 'DR TDO':
218 # if cmd not in ('DR TDI', 'DR TDO'):
e9656a0c
UH
219 return
220 handle_reg = getattr(self, 'handle_reg_%s' % self.state.lower())
221 handle_reg(val)
222 self.state = 'IDLE'
223 else:
224 raise Exception('Invalid state: %s' % self.state)
66a8517e 225