]> sigrok.org Git - libsigrokdecode.git/blame - decoders/dcf77/pd.py
dcf77: Use proper annotations for DCF77 components.
[libsigrokdecode.git] / decoders / dcf77 / pd.py
CommitLineData
2b0915c1 1##
50bd5d25 2## This file is part of the libsigrokdecode project.
2b0915c1 3##
09bca511 4## Copyright (C) 2012-2013 Uwe Hermann <uwe@hermann-uwe.de>
2b0915c1
UH
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
2b0915c1 21# DCF77 protocol decoder
2b0915c1
UH
22
23import sigrokdecode as srd
24import calendar
25
2b0915c1
UH
26# Return the specified BCD number (max. 8 bits) as integer.
27def bcd2int(b):
28 return (b & 0x0f) + ((b >> 4) * 10)
29
30class Decoder(srd.Decoder):
a2c2afd9 31 api_version = 1
2b0915c1
UH
32 id = 'dcf77'
33 name = 'DCF77'
3d3da57d 34 longname = 'DCF77 time protocol'
a465436e 35 desc = 'European longwave time signal (77.5kHz carrier signal).'
2b0915c1
UH
36 license = 'gplv2+'
37 inputs = ['logic']
38 outputs = ['dcf77']
39 probes = [
40 {'id': 'data', 'name': 'DATA', 'desc': 'DATA line'},
41 ]
b77614bc 42 optional_probes = [
fcd8c14d 43 {'id': 'pon', 'name': 'PON', 'desc': 'Power on'},
decde15e 44 ]
2b0915c1
UH
45 options = {}
46 annotations = [
8a18c4e7
UH
47 ['start_of_minute', 'Start of minute'],
48 ['special_bits', 'Special bits (civil warnings, weather forecast)'],
49 ['call_bit', 'Call bit'],
50 ['summer_time', 'Summer time announcement'],
51 ['cest', 'CEST bit'],
52 ['cet', 'CET bit'],
53 ['leap_second', 'Leap second bit'],
54 ['start_of_time', 'Start of encoded time'],
55 ['minute', 'Minute'],
56 ['minute_parity', 'Minute parity bit'],
57 ['hour', 'Hour'],
58 ['hour_parity', 'Hour parity bit'],
59 ['day', 'Day of month'],
60 ['day_of_week', 'Day of week'],
61 ['month', 'Month'],
62 ['year', 'Year'],
63 ['date_parity', 'Date parity bit'],
64 ['raw_bits', 'Raw bits'],
65 ['unknown_bits', 'Unknown bits'],
66 ['warnings', 'Human-readable warnings'],
2b0915c1
UH
67 ]
68
69 def __init__(self, **kwargs):
2b716038 70 self.state = 'WAIT FOR RISING EDGE'
2fcd7c22 71 self.oldpins = None
2b0915c1 72 self.oldval = None
fcd8c14d 73 self.oldpon = None
2b0915c1
UH
74 self.samplenum = 0
75 self.bit_start = 0
76 self.bit_start_old = 0
09bca511 77 self.bit_end = 0
2b0915c1
UH
78 self.bitcount = 0 # Counter for the DCF77 bits (0..58)
79 self.dcf77_bitnumber_is_known = 0
80
81 def start(self, metadata):
82 self.samplerate = metadata['samplerate']
83 # self.out_proto = self.add(srd.OUTPUT_PROTO, 'dcf77')
84 self.out_ann = self.add(srd.OUTPUT_ANN, 'dcf77')
85
86 def report(self):
87 pass
88
09bca511
UH
89 def putx(self, data):
90 self.put(self.bit_start, self.bit_end, self.out_ann, data)
91
2b0915c1
UH
92 # TODO: Which range to use? Only the 100ms/200ms or full second?
93 def handle_dcf77_bit(self, bit):
94 c = self.bitcount
2b0915c1
UH
95
96 # Create one annotation for each DCF77 bit (containing the 0/1 value).
97 # Use 'Unknown DCF77 bit x: val' if we're not sure yet which of the
98 # 0..58 bits it is (because we haven't seen a 'new minute' marker yet).
99 # Otherwise, use 'DCF77 bit x: val'.
100 s = '' if self.dcf77_bitnumber_is_known else 'Unknown '
8a18c4e7 101 self.putx([18, ['%sDCF77 bit %d: %d' % (s, c, bit)]])
2b0915c1
UH
102
103 # If we're not sure yet which of the 0..58 DCF77 bits we have, return.
104 # We don't want to decode bogus data.
105 if not self.dcf77_bitnumber_is_known:
106 return
107
108 # Output specific "decoded" annotations for the respective DCF77 bits.
109 if c == 0:
110 # Start of minute: DCF bit 0.
111 if bit == 0:
09bca511 112 self.putx([0, ['Start of minute (always 0)']])
2b0915c1 113 else:
8a18c4e7 114 self.putx([19, ['Start of minute != 0']])
2b0915c1
UH
115 elif c in range(1, 14 + 1):
116 # Special bits (civil warnings, weather forecast): DCF77 bits 1-14.
117 if c == 1:
118 self.tmp = bit
119 else:
120 self.tmp |= (bit << (c - 1))
121 if c == 14:
8a18c4e7 122 self.putx([1, ['Special bits: %s' % bin(self.tmp)]])
2b0915c1
UH
123 elif c == 15:
124 s = '' if (bit == 1) else 'not '
8a18c4e7 125 self.putx([2, ['Call bit is %sset' % s]])
2b0915c1
UH
126 # TODO: Previously this bit indicated use of the backup antenna.
127 elif c == 16:
128 s = '' if (bit == 1) else 'not '
8a18c4e7 129 self.putx([3, ['Summer time announcement %sactive' % s]])
2b0915c1
UH
130 elif c == 17:
131 s = '' if (bit == 1) else 'not '
8a18c4e7 132 self.putx([4, ['CEST is %sin effect' % s]])
2b0915c1
UH
133 elif c == 18:
134 s = '' if (bit == 1) else 'not '
8a18c4e7 135 self.putx([5, ['CET is %sin effect' % s]])
2b0915c1
UH
136 elif c == 19:
137 s = '' if (bit == 1) else 'not '
8a18c4e7 138 self.putx([6, ['Leap second announcement %sactive' % s]])
2b0915c1
UH
139 elif c == 20:
140 # Start of encoded time: DCF bit 20.
141 if bit == 1:
8a18c4e7 142 self.putx([7, ['Start of encoded time (always 1)']])
2b0915c1 143 else:
8a18c4e7 144 self.putx([19, ['ERROR: Start of encoded time != 1']])
2b0915c1
UH
145 elif c in range(21, 27 + 1):
146 # Minutes (0-59): DCF77 bits 21-27 (BCD format).
147 if c == 21:
148 self.tmp = bit
149 else:
150 self.tmp |= (bit << (c - 21))
151 if c == 27:
8a18c4e7 152 self.putx([8, ['Minutes: %d' % bcd2int(self.tmp)]])
2b0915c1
UH
153 elif c == 28:
154 # Even parity over minute bits (21-28): DCF77 bit 28.
155 self.tmp |= (bit << (c - 21))
156 parity = bin(self.tmp).count('1')
157 s = 'OK' if ((parity % 2) == 0) else 'INVALID!'
8a18c4e7 158 self.putx([9, ['Minute parity: %s' % s]])
2b0915c1
UH
159 elif c in range(29, 34 + 1):
160 # Hours (0-23): DCF77 bits 29-34 (BCD format).
161 if c == 29:
162 self.tmp = bit
163 else:
164 self.tmp |= (bit << (c - 29))
165 if c == 34:
8a18c4e7 166 self.putx([10, ['Hours: %d' % bcd2int(self.tmp)]])
2b0915c1
UH
167 elif c == 35:
168 # Even parity over hour bits (29-35): DCF77 bit 35.
169 self.tmp |= (bit << (c - 29))
170 parity = bin(self.tmp).count('1')
171 s = 'OK' if ((parity % 2) == 0) else 'INVALID!'
8a18c4e7 172 self.putx([11, ['Hour parity: %s' % s]])
2b0915c1
UH
173 elif c in range(36, 41 + 1):
174 # Day of month (1-31): DCF77 bits 36-41 (BCD format).
175 if c == 36:
176 self.tmp = bit
177 else:
178 self.tmp |= (bit << (c - 36))
179 if c == 41:
8a18c4e7 180 self.putx([12, ['Day: %d' % bcd2int(self.tmp)]])
2b0915c1
UH
181 elif c in range(42, 44 + 1):
182 # Day of week (1-7): DCF77 bits 42-44 (BCD format).
183 # A value of 1 means Monday, 7 means Sunday.
184 if c == 42:
185 self.tmp = bit
186 else:
187 self.tmp |= (bit << (c - 42))
188 if c == 44:
189 d = bcd2int(self.tmp)
190 dn = calendar.day_name[d - 1] # day_name[0] == Monday
8a18c4e7 191 self.putx([13, ['Day of week: %d (%s)' % (d, dn)]])
2b0915c1
UH
192 elif c in range(45, 49 + 1):
193 # Month (1-12): DCF77 bits 45-49 (BCD format).
194 if c == 45:
195 self.tmp = bit
196 else:
197 self.tmp |= (bit << (c - 45))
198 if c == 49:
199 m = bcd2int(self.tmp)
200 mn = calendar.month_name[m] # month_name[1] == January
8a18c4e7 201 self.putx([14, ['Month: %d (%s)' % (m, mn)]])
2b0915c1
UH
202 elif c in range(50, 57 + 1):
203 # Year (0-99): DCF77 bits 50-57 (BCD format).
204 if c == 50:
205 self.tmp = bit
206 else:
207 self.tmp |= (bit << (c - 50))
208 if c == 57:
8a18c4e7 209 self.putx([15, ['Year: %d' % bcd2int(self.tmp)]])
2b0915c1
UH
210 elif c == 58:
211 # Even parity over date bits (36-58): DCF77 bit 58.
212 self.tmp |= (bit << (c - 50))
213 parity = bin(self.tmp).count('1')
214 s = 'OK' if ((parity % 2) == 0) else 'INVALID!'
8a18c4e7 215 self.putx([16, ['Date parity: %s' % s]])
2b0915c1
UH
216 else:
217 raise Exception('Invalid DCF77 bit: %d' % c)
218
219 def decode(self, ss, es, data):
2fcd7c22
UH
220 for (self.samplenum, pins) in data:
221
222 # Ignore identical samples early on (for performance reasons).
223 if self.oldpins == pins:
224 continue
225 self.oldpins, (val, pon) = pins, pins
fcd8c14d
UH
226
227 # Always remember the old PON state.
228 if self.oldpon != pon:
229 self.oldpon = pon
230
231 # Warn if PON goes low.
232 if self.oldpon == 1 and pon == 0:
233 self.pon_ss = self.samplenum
234 self.put(self.samplenum, self.samplenum, self.out_ann,
235 [1, ['Warning: PON goes low, DCF77 reception '
236 'no longer possible']])
237 elif self.oldpon == 0 and pon == 1:
238 self.put(self.samplenum, self.samplenum, self.out_ann,
239 [0, ['PON goes high, DCF77 reception now possible']])
240 self.put(self.pon_ss, self.samplenum, self.out_ann,
241 [1, ['Warning: PON low, DCF77 reception disabled']])
242
243 # Ignore samples where PON == 0, they can't contain DCF77 signals.
244 if pon == 0:
245 continue
2b0915c1 246
2b716038 247 if self.state == 'WAIT FOR RISING EDGE':
2b0915c1
UH
248 # Wait until the next rising edge occurs.
249 if not (self.oldval == 0 and val == 1):
250 self.oldval = val
251 continue
252
253 # Save the sample number where the DCF77 bit begins.
254 self.bit_start = self.samplenum
255
256 # Calculate the length (in ms) between two rising edges.
257 len_edges = self.bit_start - self.bit_start_old
258 len_edges_ms = int((len_edges / self.samplerate) * 1000)
259
260 # The time between two rising edges is usually around 1000ms.
261 # For DCF77 bit 59, there is no rising edge at all, i.e. the
262 # time between DCF77 bit 59 and DCF77 bit 0 (of the next
263 # minute) is around 2000ms. Thus, if we see an edge with a
264 # 2000ms distance to the last one, this edge marks the
265 # beginning of a new minute (and DCF77 bit 0 of that minute).
266 if len_edges_ms in range(1600, 2400 + 1):
2b0915c1
UH
267 self.bitcount = 0
268 self.bit_start_old = self.bit_start
269 self.dcf77_bitnumber_is_known = 1
2b0915c1
UH
270
271 self.bit_start_old = self.bit_start
abbc1285 272 self.state = 'GET BIT'
2b0915c1 273
abbc1285 274 elif self.state == 'GET BIT':
2b0915c1
UH
275 # Wait until the next falling edge occurs.
276 if not (self.oldval == 1 and val == 0):
277 self.oldval = val
278 continue
279
09bca511
UH
280 # Save the sample number where the DCF77 bit ends.
281 self.bit_end = self.samplenum
282
2b0915c1
UH
283 # Calculate the length (in ms) of the current high period.
284 len_high = self.samplenum - self.bit_start
285 len_high_ms = int((len_high / self.samplerate) * 1000)
286
287 # If the high signal was 100ms long, that encodes a 0 bit.
288 # If it was 200ms long, that encodes a 1 bit.
289 if len_high_ms in range(40, 160 + 1):
290 bit = 0
291 elif len_high_ms in range(161, 260 + 1):
292 bit = 1
293 else:
294 bit = -1 # TODO: Error?
295
abbc1285 296 # There's no bit 59, make sure none is decoded.
2b0915c1
UH
297 if bit in (0, 1) and self.bitcount in range(0, 58 + 1):
298 self.handle_dcf77_bit(bit)
299 self.bitcount += 1
300
2b716038 301 self.state = 'WAIT FOR RISING EDGE'
2b0915c1
UH
302
303 else:
0eeeb544 304 raise Exception('Invalid state: %s' % self.state)
2b0915c1
UH
305
306 self.oldval = val
307