]> sigrok.org Git - libsigrok.git/blob - src/lcr/es51919.c
serial: use timeout API in stream detect, obsoletes bitrate param
[libsigrok.git] / src / lcr / es51919.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2014 Janne Huttunen <jahuttun@gmail.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include <stdint.h>
22 #include <string.h>
23 #include <math.h>
24 #include <glib.h>
25 #include <libsigrok/libsigrok.h>
26 #include "libsigrok-internal.h"
27
28 #define LOG_PREFIX "es51919"
29
30 #ifdef HAVE_SERIAL_COMM
31
32 struct dev_buffer {
33         /** Total size of the buffer. */
34         size_t size;
35         /** Amount of data currently in the buffer. */
36         size_t len;
37         /** Offset where the data starts in the buffer. */
38         size_t offset;
39         /** Space for the data. */
40         uint8_t data[];
41 };
42
43 static struct dev_buffer *dev_buffer_new(size_t size)
44 {
45         struct dev_buffer *dbuf;
46
47         dbuf = g_malloc0(sizeof(struct dev_buffer) + size);
48         dbuf->size = size;
49         dbuf->len = 0;
50         dbuf->offset = 0;
51
52         return dbuf;
53 }
54
55 static void dev_buffer_destroy(struct dev_buffer *dbuf)
56 {
57         g_free(dbuf);
58 }
59
60 static int dev_buffer_fill_serial(struct dev_buffer *dbuf,
61                                   struct sr_dev_inst *sdi)
62 {
63         struct sr_serial_dev_inst *serial;
64         int len;
65
66         serial = sdi->conn;
67
68         /* If we already have data, move it to the beginning of the buffer. */
69         if (dbuf->len > 0 && dbuf->offset > 0)
70                 memmove(dbuf->data, dbuf->data + dbuf->offset, dbuf->len);
71
72         dbuf->offset = 0;
73
74         len = dbuf->size - dbuf->len;
75         len = serial_read_nonblocking(serial, dbuf->data + dbuf->len, len);
76         if (len < 0) {
77                 sr_err("Serial port read error: %d.", len);
78                 return len;
79         }
80
81         dbuf->len += len;
82
83         return SR_OK;
84 }
85
86 static uint8_t *dev_buffer_packet_find(struct dev_buffer *dbuf,
87                                 gboolean (*packet_valid)(const uint8_t *),
88                                 size_t packet_size)
89 {
90         size_t offset;
91
92         while (dbuf->len >= packet_size) {
93                 if (packet_valid(dbuf->data + dbuf->offset)) {
94                         offset = dbuf->offset;
95                         dbuf->offset += packet_size;
96                         dbuf->len -= packet_size;
97                         return dbuf->data + offset;
98                 }
99                 dbuf->offset++;
100                 dbuf->len--;
101         }
102
103         return NULL;
104 }
105
106 struct dev_limit_counter {
107         /** The current number of received samples/frames/etc. */
108         uint64_t count;
109         /** The limit (in number of samples/frames/etc.). */
110         uint64_t limit;
111 };
112
113 static void dev_limit_counter_start(struct dev_limit_counter *cnt)
114 {
115         cnt->count = 0;
116 }
117
118 static void dev_limit_counter_inc(struct dev_limit_counter *cnt)
119 {
120         cnt->count++;
121 }
122
123 static void dev_limit_counter_limit_set(struct dev_limit_counter *cnt,
124                                         uint64_t limit)
125 {
126         cnt->limit = limit;
127 }
128
129 static gboolean dev_limit_counter_limit_reached(struct dev_limit_counter *cnt)
130 {
131         if (cnt->limit && cnt->count >= cnt->limit) {
132                 sr_info("Requested counter limit reached.");
133                 return TRUE;
134         }
135
136         return FALSE;
137 }
138
139 struct dev_time_counter {
140         /** The starting time of current sampling run. */
141         int64_t starttime;
142         /** The time limit (in milliseconds). */
143         uint64_t limit;
144 };
145
146 static void dev_time_counter_start(struct dev_time_counter *cnt)
147 {
148         cnt->starttime = g_get_monotonic_time();
149 }
150
151 static void dev_time_limit_set(struct dev_time_counter *cnt, uint64_t limit)
152 {
153         cnt->limit = limit;
154 }
155
156 static gboolean dev_time_limit_reached(struct dev_time_counter *cnt)
157 {
158         int64_t time;
159
160         if (cnt->limit) {
161                 time = (g_get_monotonic_time() - cnt->starttime) / 1000;
162                 if (time > (int64_t)cnt->limit) {
163                         sr_info("Requested time limit reached.");
164                         return TRUE;
165                 }
166         }
167
168         return FALSE;
169 }
170
171 static void serial_conf_get(GSList *options, const char *def_serialcomm,
172                             const char **conn, const char **serialcomm)
173 {
174         struct sr_config *src;
175         GSList *l;
176
177         *conn = *serialcomm = NULL;
178         for (l = options; l; l = l->next) {
179                 src = l->data;
180                 switch (src->key) {
181                 case SR_CONF_CONN:
182                         *conn = g_variant_get_string(src->data, NULL);
183                         break;
184                 case SR_CONF_SERIALCOMM:
185                         *serialcomm = g_variant_get_string(src->data, NULL);
186                         break;
187                 }
188         }
189
190         if (*serialcomm == NULL)
191                 *serialcomm = def_serialcomm;
192 }
193
194 static struct sr_serial_dev_inst *serial_dev_new(GSList *options,
195                                                  const char *def_serialcomm)
196
197 {
198         const char *conn, *serialcomm;
199
200         serial_conf_get(options, def_serialcomm, &conn, &serialcomm);
201
202         if (!conn)
203                 return NULL;
204
205         return sr_serial_dev_inst_new(conn, serialcomm);
206 }
207
208 static int serial_stream_check_buf(struct sr_serial_dev_inst *serial,
209                                    uint8_t *buf, size_t buflen,
210                                    size_t packet_size,
211                                    packet_valid_callback is_valid,
212                                    uint64_t timeout_ms)
213 {
214         size_t len, dropped;
215         int ret;
216
217         if ((ret = serial_open(serial, SERIAL_RDWR)) != SR_OK)
218                 return ret;
219
220         serial_flush(serial);
221
222         len = buflen;
223         ret = serial_stream_detect(serial, buf, &len, packet_size,
224                                    is_valid, timeout_ms);
225
226         serial_close(serial);
227
228         if (ret != SR_OK)
229                 return ret;
230
231         /*
232          * If we dropped more than two packets worth of data, something is
233          * wrong. We shouldn't quit however, since the dropped bytes might be
234          * just zeroes at the beginning of the stream. Those can occur as a
235          * combination of the nonstandard cable that ships with some devices
236          * and the serial port or USB to serial adapter.
237          */
238         dropped = len - packet_size;
239         if (dropped > 2 * packet_size)
240                 sr_warn("Had to drop too much data.");
241
242         return SR_OK;
243 }
244
245 static int serial_stream_check(struct sr_serial_dev_inst *serial,
246                                size_t packet_size,
247                                packet_valid_callback is_valid,
248                                uint64_t timeout_ms)
249 {
250         uint8_t buf[128];
251
252         return serial_stream_check_buf(serial, buf, sizeof(buf), packet_size,
253                                        is_valid, timeout_ms);
254 }
255
256 /*
257  * Cyrustek ES51919 LCR chipset host protocol.
258  *
259  * Public official documentation does not contain the protocol
260  * description, so this is all based on reverse engineering.
261  *
262  * Packet structure (17 bytes):
263  *
264  * 0x00: header1 ?? (0x00)
265  * 0x01: header2 ?? (0x0d)
266  *
267  * 0x02: flags
268  *         bit 0 = hold enabled
269  *         bit 1 = reference shown (in delta mode)
270  *         bit 2 = delta mode
271  *         bit 3 = calibration mode
272  *         bit 4 = sorting mode
273  *         bit 5 = LCR mode
274  *         bit 6 = auto mode
275  *         bit 7 = parallel measurement (vs. serial)
276  *
277  * 0x03: config
278  *         bit 0-4 = ??? (0x10)
279  *         bit 5-7 = test frequency
280  *                     0 = 100 Hz
281  *                     1 = 120 Hz
282  *                     2 = 1 kHz
283  *                     3 = 10 kHz
284  *                     4 = 100 kHz
285  *                     5 = 0 Hz (DC)
286  *
287  * 0x04: tolerance (sorting mode)
288  *         0 = not set
289  *         3 = +-0.25%
290  *         4 = +-0.5%
291  *         5 = +-1%
292  *         6 = +-2%
293  *         7 = +-5%
294  *         8 = +-10%
295  *         9 = +-20%
296  *        10 = -20+80%
297  *
298  * 0x05-0x09: primary measurement
299  *   0x05: measured quantity
300  *           1 = inductance
301  *           2 = capacitance
302  *           3 = resistance
303  *           4 = DC resistance
304  *   0x06: measurement MSB  (0x4e20 = 20000 = outside limits)
305  *   0x07: measurement LSB
306  *   0x08: measurement info
307  *           bit 0-2 = decimal point multiplier (10^-val)
308  *           bit 3-7 = unit
309  *                       0 = no unit
310  *                       1 = Ohm
311  *                       2 = kOhm
312  *                       3 = MOhm
313  *                       5 = uH
314  *                       6 = mH
315  *                       7 = H
316  *                       8 = kH
317  *                       9 = pF
318  *                       10 = nF
319  *                       11 = uF
320  *                       12 = mF
321  *                       13 = %
322  *                       14 = degree
323  *   0x09: measurement status
324  *           bit 0-3 = status
325  *                       0 = normal (measurement shown)
326  *                       1 = blank (nothing shown)
327  *                       2 = lines ("----")
328  *                       3 = outside limits ("OL")
329  *                       7 = pass ("PASS")
330  *                       8 = fail ("FAIL")
331  *                       9 = open ("OPEn")
332  *                      10 = shorted ("Srt")
333  *           bit 4-6 = ??? (maybe part of same field with 0-3)
334  *           bit 7   = ??? (some independent flag)
335  *
336  * 0x0a-0x0e: secondary measurement
337  *   0x0a: measured quantity
338  *           0 = none
339  *           1 = dissipation factor
340  *           2 = quality factor
341  *           3 = parallel AC resistance / ESR
342  *           4 = phase angle
343  *   0x0b-0x0e: like primary measurement
344  *
345  * 0x0f: footer1 (0x0d) ?
346  * 0x10: footer2 (0x0a) ?
347  */
348
349 #define PACKET_SIZE 17
350
351 static const double frequencies[] = {
352         100, 120, 1000, 10000, 100000, 0,
353 };
354
355 enum { MODEL_NONE, MODEL_PAR, MODEL_SER, MODEL_AUTO, };
356
357 static const char *const models[] = {
358         "NONE", "PARALLEL", "SERIES", "AUTO",
359 };
360
361 struct dev_context {
362         struct dev_limit_counter frame_count;
363
364         struct dev_time_counter time_count;
365
366         struct dev_buffer *buf;
367
368         /** The frequency of the test signal (index to frequencies[]). */
369         unsigned int freq;
370
371         /** Equivalent circuit model (index to models[]). */
372         unsigned int model;
373 };
374
375 static const uint8_t *pkt_to_buf(const uint8_t *pkt, int is_secondary)
376 {
377         return is_secondary ? pkt + 10 : pkt + 5;
378 }
379
380 static int parse_mq(const uint8_t *pkt, int is_secondary, int is_parallel)
381 {
382         const uint8_t *buf;
383
384         buf = pkt_to_buf(pkt, is_secondary);
385
386         switch (is_secondary << 8 | buf[0]) {
387         case 0x001:
388                 return is_parallel ?
389                         SR_MQ_PARALLEL_INDUCTANCE : SR_MQ_SERIES_INDUCTANCE;
390         case 0x002:
391                 return is_parallel ?
392                         SR_MQ_PARALLEL_CAPACITANCE : SR_MQ_SERIES_CAPACITANCE;
393         case 0x003:
394         case 0x103:
395                 return is_parallel ?
396                         SR_MQ_PARALLEL_RESISTANCE : SR_MQ_SERIES_RESISTANCE;
397         case 0x004:
398                 return SR_MQ_RESISTANCE;
399         case 0x100:
400                 return SR_MQ_DIFFERENCE;
401         case 0x101:
402                 return SR_MQ_DISSIPATION_FACTOR;
403         case 0x102:
404                 return SR_MQ_QUALITY_FACTOR;
405         case 0x104:
406                 return SR_MQ_PHASE_ANGLE;
407         }
408
409         sr_err("Unknown quantity 0x%03x.", is_secondary << 8 | buf[0]);
410
411         return 0;
412 }
413
414 static float parse_value(const uint8_t *buf, int *digits)
415 {
416         static const int exponents[] = {0, -1, -2, -3, -4, -5, -6, -7};
417         int exponent;
418         int16_t val;
419
420         exponent = exponents[buf[3] & 7];
421         *digits = -exponent;
422         val = (buf[1] << 8) | buf[2];
423         return (float)val * powf(10, exponent);
424 }
425
426 static void parse_measurement(const uint8_t *pkt, float *floatval,
427                               struct sr_datafeed_analog *analog,
428                               int is_secondary)
429 {
430         static const struct {
431                 int unit;
432                 int exponent;
433         } units[] = {
434                 { SR_UNIT_UNITLESS,   0 }, /* no unit */
435                 { SR_UNIT_OHM,        0 }, /* Ohm */
436                 { SR_UNIT_OHM,        3 }, /* kOhm */
437                 { SR_UNIT_OHM,        6 }, /* MOhm */
438                 { -1,                 0 }, /* ??? */
439                 { SR_UNIT_HENRY,     -6 }, /* uH */
440                 { SR_UNIT_HENRY,     -3 }, /* mH */
441                 { SR_UNIT_HENRY,      0 }, /* H */
442                 { SR_UNIT_HENRY,      3 }, /* kH */
443                 { SR_UNIT_FARAD,    -12 }, /* pF */
444                 { SR_UNIT_FARAD,     -9 }, /* nF */
445                 { SR_UNIT_FARAD,     -6 }, /* uF */
446                 { SR_UNIT_FARAD,     -3 }, /* mF */
447                 { SR_UNIT_PERCENTAGE, 0 }, /* % */
448                 { SR_UNIT_DEGREE,     0 }, /* degree */
449         };
450         const uint8_t *buf;
451         int digits, exponent;
452         int state;
453
454         buf = pkt_to_buf(pkt, is_secondary);
455
456         analog->meaning->mq = 0;
457         analog->meaning->mqflags = 0;
458
459         state = buf[4] & 0xf;
460
461         if (state != 0 && state != 3)
462                 return;
463
464         if (pkt[2] & 0x18) {
465                 /* Calibration and Sorting modes not supported. */
466                 return;
467         }
468
469         if (!is_secondary) {
470                 if (pkt[2] & 0x01)
471                         analog->meaning->mqflags |= SR_MQFLAG_HOLD;
472                 if (pkt[2] & 0x02)
473                         analog->meaning->mqflags |= SR_MQFLAG_REFERENCE;
474         } else {
475                 if (pkt[2] & 0x04)
476                         analog->meaning->mqflags |= SR_MQFLAG_RELATIVE;
477         }
478
479         if ((analog->meaning->mq = parse_mq(pkt, is_secondary, pkt[2] & 0x80)) == 0)
480                 return;
481
482         if ((buf[3] >> 3) >= ARRAY_SIZE(units)) {
483                 sr_err("Unknown unit %u.", buf[3] >> 3);
484                 analog->meaning->mq = 0;
485                 return;
486         }
487
488         analog->meaning->unit = units[buf[3] >> 3].unit;
489
490         exponent = units[buf[3] >> 3].exponent;
491         *floatval = parse_value(buf, &digits);
492         *floatval *= (state == 0) ? powf(10, exponent) : INFINITY;
493         analog->encoding->digits = digits - exponent;
494         analog->spec->spec_digits = digits - exponent;
495 }
496
497 static unsigned int parse_freq(const uint8_t *pkt)
498 {
499         unsigned int freq;
500
501         freq = pkt[3] >> 5;
502
503         if (freq >= ARRAY_SIZE(frequencies)) {
504                 sr_err("Unknown frequency %u.", freq);
505                 freq = ARRAY_SIZE(frequencies) - 1;
506         }
507
508         return freq;
509 }
510
511 static unsigned int parse_model(const uint8_t *pkt)
512 {
513         if (pkt[2] & 0x40)
514                 return MODEL_AUTO;
515         else if (parse_mq(pkt, 0, 0) == SR_MQ_RESISTANCE)
516                 return MODEL_NONE;
517         else if (pkt[2] & 0x80)
518                 return MODEL_PAR;
519         else
520                 return MODEL_SER;
521 }
522
523 static gboolean packet_valid(const uint8_t *pkt)
524 {
525         /*
526          * If the first two bytes of the packet are indeed a constant
527          * header, they should be checked too. Since we don't know it
528          * for sure, we'll just check the last two for now since they
529          * seem to be constant just like in the other Cyrustek chipset
530          * protocols.
531          */
532         if (pkt[15] == 0xd && pkt[16] == 0xa)
533                 return TRUE;
534
535         return FALSE;
536 }
537
538 static int send_freq_update(struct sr_dev_inst *sdi, unsigned int freq)
539 {
540         return sr_session_send_meta(sdi, SR_CONF_OUTPUT_FREQUENCY,
541                                 g_variant_new_double(frequencies[freq]));
542 }
543
544 static int send_model_update(struct sr_dev_inst *sdi, unsigned int model)
545 {
546         return sr_session_send_meta(sdi, SR_CONF_EQUIV_CIRCUIT_MODEL,
547                                 g_variant_new_string(models[model]));
548 }
549
550 static void handle_packet(struct sr_dev_inst *sdi, const uint8_t *pkt)
551 {
552         struct sr_datafeed_packet packet;
553         struct sr_datafeed_analog analog;
554         struct sr_analog_encoding encoding;
555         struct sr_analog_meaning meaning;
556         struct sr_analog_spec spec;
557         struct dev_context *devc;
558         unsigned int val;
559         float floatval;
560         gboolean frame;
561         struct sr_channel *channel;
562
563         devc = sdi->priv;
564
565         val = parse_freq(pkt);
566         if (val != devc->freq) {
567                 if (send_freq_update(sdi, val) == SR_OK)
568                         devc->freq = val;
569                 else
570                         return;
571         }
572
573         val = parse_model(pkt);
574         if (val != devc->model) {
575                 if (send_model_update(sdi, val) == SR_OK)
576                         devc->model = val;
577                 else
578                         return;
579         }
580
581         frame = FALSE;
582
583         /* Note: digits/spec_digits will be overridden later. */
584         sr_analog_init(&analog, &encoding, &meaning, &spec, 0);
585
586         analog.num_samples = 1;
587         analog.data = &floatval;
588
589         channel = sdi->channels->data;
590         analog.meaning->channels = g_slist_append(NULL, channel);
591
592         parse_measurement(pkt, &floatval, &analog, 0);
593         if (analog.meaning->mq != 0 && channel->enabled) {
594                 if (!frame) {
595                         packet.type = SR_DF_FRAME_BEGIN;
596                         sr_session_send(sdi, &packet);
597                         frame = TRUE;
598                 }
599
600                 packet.type = SR_DF_ANALOG;
601                 packet.payload = &analog;
602
603                 sr_session_send(sdi, &packet);
604         }
605
606         g_slist_free(analog.meaning->channels);
607
608         channel = sdi->channels->next->data;
609         analog.meaning->channels = g_slist_append(NULL, channel);
610
611         parse_measurement(pkt, &floatval, &analog, 1);
612         if (analog.meaning->mq != 0 && channel->enabled) {
613                 if (!frame) {
614                         packet.type = SR_DF_FRAME_BEGIN;
615                         sr_session_send(sdi, &packet);
616                         frame = TRUE;
617                 }
618
619                 packet.type = SR_DF_ANALOG;
620                 packet.payload = &analog;
621
622                 sr_session_send(sdi, &packet);
623         }
624
625         g_slist_free(analog.meaning->channels);
626
627         if (frame) {
628                 packet.type = SR_DF_FRAME_END;
629                 sr_session_send(sdi, &packet);
630                 dev_limit_counter_inc(&devc->frame_count);
631         }
632 }
633
634 static int handle_new_data(struct sr_dev_inst *sdi)
635 {
636         struct dev_context *devc;
637         uint8_t *pkt;
638         int ret;
639
640         devc = sdi->priv;
641
642         ret = dev_buffer_fill_serial(devc->buf, sdi);
643         if (ret < 0)
644                 return ret;
645
646         while ((pkt = dev_buffer_packet_find(devc->buf, packet_valid,
647                                              PACKET_SIZE)))
648                 handle_packet(sdi, pkt);
649
650         return SR_OK;
651 }
652
653 static int receive_data(int fd, int revents, void *cb_data)
654 {
655         struct sr_dev_inst *sdi;
656         struct dev_context *devc;
657
658         (void)fd;
659
660         if (!(sdi = cb_data))
661                 return TRUE;
662
663         if (!(devc = sdi->priv))
664                 return TRUE;
665
666         if (revents == G_IO_IN) {
667                 /* Serial data arrived. */
668                 handle_new_data(sdi);
669         }
670
671         if (dev_limit_counter_limit_reached(&devc->frame_count) ||
672             dev_time_limit_reached(&devc->time_count))
673                 sr_dev_acquisition_stop(sdi);
674
675         return TRUE;
676 }
677
678 static const char *const channel_names[] = { "P1", "P2" };
679
680 static int setup_channels(struct sr_dev_inst *sdi)
681 {
682         unsigned int i;
683
684         for (i = 0; i < ARRAY_SIZE(channel_names); i++)
685                 sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE, channel_names[i]);
686
687         return SR_OK;
688 }
689
690 SR_PRIV void es51919_serial_clean(void *priv)
691 {
692         struct dev_context *devc;
693
694         if (!(devc = priv))
695                 return;
696
697         dev_buffer_destroy(devc->buf);
698 }
699
700 SR_PRIV struct sr_dev_inst *es51919_serial_scan(GSList *options,
701                                                 const char *vendor,
702                                                 const char *model)
703 {
704         struct sr_serial_dev_inst *serial;
705         struct sr_dev_inst *sdi;
706         struct dev_context *devc;
707         int ret;
708
709         serial = NULL;
710         sdi = NULL;
711         devc = NULL;
712
713         if (!(serial = serial_dev_new(options, "9600/8n1/rts=1/dtr=1")))
714                 goto scan_cleanup;
715
716         ret = serial_stream_check(serial, PACKET_SIZE, packet_valid, 3000);
717         if (ret != SR_OK)
718                 goto scan_cleanup;
719
720         sr_info("Found device on port %s.", serial->port);
721
722         sdi = g_malloc0(sizeof(struct sr_dev_inst));
723         sdi->status = SR_ST_INACTIVE;
724         sdi->vendor = g_strdup(vendor);
725         sdi->model = g_strdup(model);
726         devc = g_malloc0(sizeof(struct dev_context));
727         devc->buf = dev_buffer_new(PACKET_SIZE * 8);
728         sdi->inst_type = SR_INST_SERIAL;
729         sdi->conn = serial;
730         sdi->priv = devc;
731
732         if (setup_channels(sdi) != SR_OK)
733                 goto scan_cleanup;
734
735         return sdi;
736
737 scan_cleanup:
738         es51919_serial_clean(devc);
739         sr_dev_inst_free(sdi);
740         sr_serial_dev_inst_free(serial);
741
742         return NULL;
743 }
744
745 SR_PRIV int es51919_serial_config_get(uint32_t key, GVariant **data,
746                                       const struct sr_dev_inst *sdi,
747                                       const struct sr_channel_group *cg)
748 {
749         struct dev_context *devc;
750
751         (void)cg;
752
753         devc = sdi->priv;
754
755         switch (key) {
756         case SR_CONF_OUTPUT_FREQUENCY:
757                 *data = g_variant_new_double(frequencies[devc->freq]);
758                 break;
759         case SR_CONF_EQUIV_CIRCUIT_MODEL:
760                 *data = g_variant_new_string(models[devc->model]);
761                 break;
762         default:
763                 return SR_ERR_NA;
764         }
765
766         return SR_OK;
767 }
768
769 SR_PRIV int es51919_serial_config_set(uint32_t key, GVariant *data,
770                                       const struct sr_dev_inst *sdi,
771                                       const struct sr_channel_group *cg)
772 {
773         struct dev_context *devc;
774         uint64_t val;
775
776         (void)cg;
777
778         if (!(devc = sdi->priv))
779                 return SR_ERR_BUG;
780
781         switch (key) {
782         case SR_CONF_LIMIT_MSEC:
783                 val = g_variant_get_uint64(data);
784                 dev_time_limit_set(&devc->time_count, val);
785                 sr_dbg("Setting time limit to %" PRIu64 ".", val);
786                 break;
787         case SR_CONF_LIMIT_FRAMES:
788                 val = g_variant_get_uint64(data);
789                 dev_limit_counter_limit_set(&devc->frame_count, val);
790                 sr_dbg("Setting frame limit to %" PRIu64 ".", val);
791                 break;
792         default:
793                 sr_spew("%s: Unsupported key %u", __func__, key);
794                 return SR_ERR_NA;
795         }
796
797         return SR_OK;
798 }
799
800 static const uint32_t scanopts[] = {
801         SR_CONF_CONN,
802         SR_CONF_SERIALCOMM,
803 };
804
805 static const uint32_t drvopts[] = {
806         SR_CONF_LCRMETER,
807 };
808
809 static const uint32_t devopts[] = {
810         SR_CONF_CONTINUOUS,
811         SR_CONF_LIMIT_FRAMES | SR_CONF_SET,
812         SR_CONF_LIMIT_MSEC | SR_CONF_SET,
813         SR_CONF_OUTPUT_FREQUENCY | SR_CONF_GET | SR_CONF_LIST,
814         SR_CONF_EQUIV_CIRCUIT_MODEL | SR_CONF_GET | SR_CONF_LIST,
815 };
816
817 SR_PRIV int es51919_serial_config_list(uint32_t key, GVariant **data,
818                                        const struct sr_dev_inst *sdi,
819                                        const struct sr_channel_group *cg)
820 {
821         switch (key) {
822         case SR_CONF_SCAN_OPTIONS:
823         case SR_CONF_DEVICE_OPTIONS:
824                 return STD_CONFIG_LIST(key, data, sdi, cg, scanopts, drvopts, devopts);
825         case SR_CONF_OUTPUT_FREQUENCY:
826                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_DOUBLE,
827                         ARRAY_AND_SIZE(frequencies), sizeof(double));
828                 break;
829         case SR_CONF_EQUIV_CIRCUIT_MODEL:
830                 *data = g_variant_new_strv(ARRAY_AND_SIZE(models));
831                 break;
832         default:
833                 return SR_ERR_NA;
834         }
835
836         return SR_OK;
837 }
838
839 SR_PRIV int es51919_serial_acquisition_start(const struct sr_dev_inst *sdi)
840 {
841         struct dev_context *devc;
842         struct sr_serial_dev_inst *serial;
843
844         if (!(devc = sdi->priv))
845                 return SR_ERR_BUG;
846
847         dev_limit_counter_start(&devc->frame_count);
848         dev_time_counter_start(&devc->time_count);
849
850         std_session_send_df_header(sdi);
851
852         serial = sdi->conn;
853         serial_source_add(sdi->session, serial, G_IO_IN, 50,
854                           receive_data, (void *)sdi);
855
856         return SR_OK;
857 }
858
859 #endif