]> sigrok.org Git - libsigrok.git/blob - src/hwdriver.c
Add SR_T_MQLIST.
[libsigrok.git] / src / hwdriver.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <sys/types.h>
23 #include <dirent.h>
24 #include <string.h>
25 #include <glib.h>
26 #include "config.h" /* Needed for HAVE_LIBUSB_1_0 and others. */
27 #include <libsigrok/libsigrok.h>
28 #include "libsigrok-internal.h"
29
30 /** @cond PRIVATE */
31 #define LOG_PREFIX "hwdriver"
32 /** @endcond */
33
34 /**
35  * @file
36  *
37  * Hardware driver handling in libsigrok.
38  */
39
40 /**
41  * @defgroup grp_driver Hardware drivers
42  *
43  * Hardware driver handling in libsigrok.
44  *
45  * @{
46  */
47
48 /* Same key order/grouping as in enum sr_configkey (libsigrok.h). */
49 static struct sr_key_info sr_key_info_config[] = {
50         /* Device classes */
51         {SR_CONF_LOGIC_ANALYZER, SR_T_STRING, NULL, "Logic analyzer", NULL},
52         {SR_CONF_OSCILLOSCOPE, SR_T_STRING, NULL, "Oscilloscope", NULL},
53         {SR_CONF_MULTIMETER, SR_T_STRING, NULL, "Multimeter", NULL},
54         {SR_CONF_DEMO_DEV, SR_T_STRING, NULL, "Demo device", NULL},
55         {SR_CONF_SOUNDLEVELMETER, SR_T_STRING, NULL, "Sound level meter", NULL},
56         {SR_CONF_THERMOMETER, SR_T_STRING, NULL, "Thermometer", NULL},
57         {SR_CONF_HYGROMETER, SR_T_STRING, NULL, "Hygrometer", NULL},
58         {SR_CONF_ENERGYMETER, SR_T_STRING, NULL, "Energy meter", NULL},
59         {SR_CONF_DEMODULATOR, SR_T_STRING, NULL, "Demodulator", NULL},
60         {SR_CONF_POWER_SUPPLY, SR_T_STRING, NULL, "Power supply", NULL},
61         {SR_CONF_LCRMETER, SR_T_STRING, NULL, "LCR meter", NULL},
62
63         /* Driver scan options */
64         {SR_CONF_CONN, SR_T_STRING, "conn",
65                 "Connection", NULL},
66         {SR_CONF_SERIALCOMM, SR_T_STRING, "serialcomm",
67                 "Serial communication", NULL},
68         {SR_CONF_MODBUSADDR, SR_T_UINT64, "modbusaddr",
69                 "Modbus slave address", NULL},
70
71         /* Device (or channel group) configuration */
72         {SR_CONF_SAMPLERATE, SR_T_UINT64, "samplerate",
73                 "Sample rate", NULL},
74         {SR_CONF_CAPTURE_RATIO, SR_T_UINT64, "captureratio",
75                 "Pre-trigger capture ratio", NULL},
76         {SR_CONF_PATTERN_MODE, SR_T_STRING, "pattern",
77                 "Pattern", NULL},
78         {SR_CONF_RLE, SR_T_BOOL, "rle",
79                 "Run length encoding", NULL},
80         {SR_CONF_TRIGGER_SLOPE, SR_T_STRING, "triggerslope",
81                 "Trigger slope", NULL},
82         {SR_CONF_AVERAGING, SR_T_BOOL, "averaging",
83                 "Averaging", NULL},
84         {SR_CONF_AVG_SAMPLES, SR_T_UINT64, "avg_samples",
85                 "Number of samples to average over", NULL},
86         {SR_CONF_TRIGGER_SOURCE, SR_T_STRING, "triggersource",
87                 "Trigger source", NULL},
88         {SR_CONF_HORIZ_TRIGGERPOS, SR_T_FLOAT, "horiz_triggerpos",
89                 "Horizontal trigger position", NULL},
90         {SR_CONF_BUFFERSIZE, SR_T_UINT64, "buffersize",
91                 "Buffer size", NULL},
92         {SR_CONF_TIMEBASE, SR_T_RATIONAL_PERIOD, "timebase",
93                 "Time base", NULL},
94         {SR_CONF_FILTER, SR_T_BOOL, "filter",
95                 "Filter", NULL},
96         {SR_CONF_VDIV, SR_T_RATIONAL_VOLT, "vdiv",
97                 "Volts/div", NULL},
98         {SR_CONF_COUPLING, SR_T_STRING, "coupling",
99                 "Coupling", NULL},
100         {SR_CONF_TRIGGER_MATCH, SR_T_INT32, "triggermatch",
101                 "Trigger matches", NULL},
102         {SR_CONF_SAMPLE_INTERVAL, SR_T_UINT64, "sample_interval",
103                 "Sample interval", NULL},
104         {SR_CONF_NUM_HDIV, SR_T_INT32, "num_hdiv",
105                 "Number of horizontal divisions", NULL},
106         {SR_CONF_NUM_VDIV, SR_T_INT32, "num_vdiv",
107                 "Number of vertical divisions", NULL},
108         {SR_CONF_SPL_WEIGHT_FREQ, SR_T_STRING, "spl_weight_freq",
109                 "Sound pressure level frequency weighting", NULL},
110         {SR_CONF_SPL_WEIGHT_TIME, SR_T_STRING, "spl_weight_time",
111                 "Sound pressure level time weighting", NULL},
112         {SR_CONF_SPL_MEASUREMENT_RANGE, SR_T_UINT64_RANGE, "spl_meas_range",
113                 "Sound pressure level measurement range", NULL},
114         {SR_CONF_HOLD_MAX, SR_T_BOOL, "hold_max",
115                 "Hold max", NULL},
116         {SR_CONF_HOLD_MIN, SR_T_BOOL, "hold_min",
117                 "Hold min", NULL},
118         {SR_CONF_VOLTAGE_THRESHOLD, SR_T_DOUBLE_RANGE, "voltage_threshold",
119                 "Voltage threshold", NULL },
120         {SR_CONF_EXTERNAL_CLOCK, SR_T_BOOL, "external_clock",
121                 "External clock mode", NULL},
122         {SR_CONF_SWAP, SR_T_BOOL, "swap",
123                 "Swap channel order", NULL},
124         {SR_CONF_CENTER_FREQUENCY, SR_T_UINT64, "center_frequency",
125                 "Center frequency", NULL},
126         {SR_CONF_NUM_LOGIC_CHANNELS, SR_T_INT32, "logic_channels",
127                 "Number of logic channels", NULL},
128         {SR_CONF_NUM_ANALOG_CHANNELS, SR_T_INT32, "analog_channels",
129                 "Number of analog channels", NULL},
130         {SR_CONF_VOLTAGE, SR_T_FLOAT, "voltage",
131                 "Current voltage", NULL},
132         {SR_CONF_VOLTAGE_TARGET, SR_T_FLOAT, "voltage_target",
133                 "Voltage target", NULL},
134         {SR_CONF_CURRENT, SR_T_FLOAT, "current",
135                 "Current current", NULL},
136         {SR_CONF_CURRENT_LIMIT, SR_T_FLOAT, "current_limit",
137                 "Current limit", NULL},
138         {SR_CONF_ENABLED, SR_T_BOOL, "enabled",
139                 "Channel enabled", NULL},
140         {SR_CONF_CHANNEL_CONFIG, SR_T_STRING, "channel_config",
141                 "Channel modes", NULL},
142         {SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED, SR_T_BOOL, "ovp_enabled",
143                 "Over-voltage protection enabled", NULL},
144         {SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE, SR_T_BOOL, "ovp_active",
145                 "Over-voltage protection active", NULL},
146         {SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD, SR_T_FLOAT, "ovp_threshold",
147                 "Over-voltage protection threshold", NULL},
148         {SR_CONF_OVER_CURRENT_PROTECTION_ENABLED, SR_T_BOOL, "ocp_enabled",
149                 "Over-current protection enabled", NULL},
150         {SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE, SR_T_BOOL, "ocp_active",
151                 "Over-current protection active", NULL},
152         {SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD, SR_T_FLOAT, "ocp_threshold",
153                 "Over-current protection threshold", NULL},
154         {SR_CONF_CLOCK_EDGE, SR_T_STRING, "clock_edge",
155                 "Clock edge", NULL},
156         {SR_CONF_AMPLITUDE, SR_T_FLOAT, "amplitude",
157                 "Amplitude", NULL},
158         {SR_CONF_REGULATION, SR_T_STRING, "regulation",
159                 "Channel regulation", NULL},
160         {SR_CONF_OVER_TEMPERATURE_PROTECTION, SR_T_BOOL, "otp",
161                 "Over-temperature protection", NULL},
162         {SR_CONF_OUTPUT_FREQUENCY, SR_T_FLOAT, "output_frequency",
163                 "Output frequency", NULL},
164         {SR_CONF_OUTPUT_FREQUENCY_TARGET, SR_T_FLOAT, "output_frequency_target",
165                 "Output frequency target", NULL},
166         {SR_CONF_MEASURED_QUANTITY, SR_T_STRING, "measured_quantity",
167                 "Measured quantity", NULL},
168         {SR_CONF_MEASURED_2ND_QUANTITY, SR_T_STRING, "measured_2nd_quantity",
169                 "Measured secondary quantity", NULL},
170         {SR_CONF_EQUIV_CIRCUIT_MODEL, SR_T_STRING, "equiv_circuit_model",
171                 "Equivalent circuit model", NULL},
172         {SR_CONF_OVER_TEMPERATURE_PROTECTION_ACTIVE, SR_T_BOOL, "otp_active",
173                 "Over-temperature protection active", NULL},
174
175         /* Special stuff */
176         {SR_CONF_SCAN_OPTIONS, SR_T_STRING, "scan_options",
177                 "Scan options", NULL},
178         {SR_CONF_DEVICE_OPTIONS, SR_T_STRING, "device_options",
179                 "Device options", NULL},
180         {SR_CONF_SESSIONFILE, SR_T_STRING, "sessionfile",
181                 "Session file", NULL},
182         {SR_CONF_CAPTUREFILE, SR_T_STRING, "capturefile",
183                 "Capture file", NULL},
184         {SR_CONF_CAPTURE_UNITSIZE, SR_T_UINT64, "capture_unitsize",
185                 "Capture unitsize", NULL},
186         {SR_CONF_POWER_OFF, SR_T_BOOL, "power_off",
187                 "Power off", NULL},
188         {SR_CONF_DATA_SOURCE, SR_T_STRING, "data_source",
189                 "Data source", NULL},
190         {SR_CONF_PROBE_FACTOR, SR_T_UINT64, "probe_factor",
191                 "Probe factor", NULL},
192
193         /* Acquisition modes, sample limiting */
194         {SR_CONF_LIMIT_MSEC, SR_T_UINT64, "limit_time",
195                 "Time limit", NULL},
196         {SR_CONF_LIMIT_SAMPLES, SR_T_UINT64, "limit_samples",
197                 "Sample limit", NULL},
198         {SR_CONF_LIMIT_FRAMES, SR_T_UINT64, "limit_frames",
199                 "Frame limit", NULL},
200         {SR_CONF_CONTINUOUS, SR_T_UINT64, "continuous",
201                 "Continuous sampling", NULL},
202         {SR_CONF_DATALOG, SR_T_BOOL, "datalog",
203                 "Datalog", NULL},
204         {SR_CONF_DEVICE_MODE, SR_T_STRING, "device_mode",
205                 "Device mode", NULL},
206         {SR_CONF_TEST_MODE, SR_T_STRING, "test_mode",
207                 "Test mode", NULL},
208
209         {0, 0, NULL, NULL, NULL},
210 };
211
212 static struct sr_key_info sr_key_info_mq[] = {
213         {SR_MQ_VOLTAGE, 0, "voltage", "Voltage", NULL},
214         {SR_MQ_CURRENT, 0, "current", "Current", NULL},
215         {SR_MQ_RESISTANCE, 0, "resistance", "Resistance", NULL},
216         {SR_MQ_CAPACITANCE, 0, "capacitance", "Capacitance", NULL},
217         {SR_MQ_TEMPERATURE, 0, "temperature", "Temperature", NULL},
218         {SR_MQ_FREQUENCY, 0, "frequency", "Frequency", NULL},
219         {SR_MQ_DUTY_CYCLE, 0, "duty_cycle", "Duty cycle", NULL},
220         {SR_MQ_CONTINUITY, 0, "continuity", "Continuity", NULL},
221         {SR_MQ_PULSE_WIDTH, 0, "pulse_width", "Pulse width", NULL},
222         {SR_MQ_CONDUCTANCE, 0, "conductance", "Conductance", NULL},
223         {SR_MQ_POWER, 0, "power", "Power", NULL},
224         {SR_MQ_GAIN, 0, "gain", "Gain", NULL},
225         {SR_MQ_SOUND_PRESSURE_LEVEL, 0, "spl", "Sound pressure level", NULL},
226         {SR_MQ_CARBON_MONOXIDE, 0, "co", "Carbon monoxide", NULL},
227         {SR_MQ_RELATIVE_HUMIDITY, 0, "rh", "Relative humidity", NULL},
228         {SR_MQ_TIME, 0, "time", "Time", NULL},
229         {SR_MQ_WIND_SPEED, 0, "wind_speed", "Wind speed", NULL},
230         {SR_MQ_PRESSURE, 0, "pressure", "Pressure", NULL},
231         {SR_MQ_PARALLEL_INDUCTANCE, 0, "parallel_inductance", "Parallel inductance", NULL},
232         {SR_MQ_PARALLEL_CAPACITANCE, 0, "parallel_capacitance", "Parallel capacitance", NULL},
233         {SR_MQ_PARALLEL_RESISTANCE, 0, "parallel_resistance", "Parallel resistance", NULL},
234         {SR_MQ_SERIES_INDUCTANCE, 0, "series_inductance", "Series inductance", NULL},
235         {SR_MQ_SERIES_CAPACITANCE, 0, "series_capacitance", "Series capacitance", NULL},
236         {SR_MQ_SERIES_RESISTANCE, 0, "series_resistance", "Series resistance", NULL},
237         {SR_MQ_DISSIPATION_FACTOR, 0, "dissipation_factor", "Dissipation factor", NULL},
238         {SR_MQ_QUALITY_FACTOR, 0, "quality_factor", "Quality factor", NULL},
239         {SR_MQ_PHASE_ANGLE, 0, "phase_angle", "Phase angle", NULL},
240         {SR_MQ_DIFFERENCE, 0, "difference", "Difference", NULL},
241         {SR_MQ_COUNT, 0, "count", "Count", NULL},
242         {SR_MQ_POWER_FACTOR, 0, "power_factor", "Power factor", NULL},
243         {SR_MQ_APPARENT_POWER, 0, "apparent_power", "Apparent power", NULL},
244         ALL_ZERO
245 };
246
247 static struct sr_key_info sr_key_info_mqflag[] = {
248         {SR_MQFLAG_AC, 0, "ac", "AC", NULL},
249         {SR_MQFLAG_DC, 0, "dc", "DC", NULL},
250         {SR_MQFLAG_RMS, 0, "rms", "RMS", NULL},
251         {SR_MQFLAG_DIODE, 0, "diode", "Diode", NULL},
252         {SR_MQFLAG_HOLD, 0, "hold", "Hold", NULL},
253         {SR_MQFLAG_MAX, 0, "max", "Max", NULL},
254         {SR_MQFLAG_MIN, 0, "min", "Min", NULL},
255         {SR_MQFLAG_AUTORANGE, 0, "auto_range", "Auto range", NULL},
256         {SR_MQFLAG_RELATIVE, 0, "relative", "Relative", NULL},
257         {SR_MQFLAG_SPL_FREQ_WEIGHT_A, 0, "spl_freq_weight_a",
258                 "Frequency weighted (A)", NULL},
259         {SR_MQFLAG_SPL_FREQ_WEIGHT_C, 0, "spl_freq_weight_c",
260                 "Frequency weighted (C)", NULL},
261         {SR_MQFLAG_SPL_FREQ_WEIGHT_Z, 0, "spl_freq_weight_z",
262                 "Frequency weighted (Z)", NULL},
263         {SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, 0, "spl_freq_weight_flat",
264                 "Frequency weighted (flat)", NULL},
265         {SR_MQFLAG_SPL_TIME_WEIGHT_S, 0, "spl_time_weight_s",
266                 "Time weighted (S)", NULL},
267         {SR_MQFLAG_SPL_TIME_WEIGHT_F, 0, "spl_time_weight_f",
268                 "Time weighted (F)", NULL},
269         {SR_MQFLAG_SPL_LAT, 0, "spl_time_average", "Time-averaged (LEQ)", NULL},
270         {SR_MQFLAG_SPL_PCT_OVER_ALARM, 0, "spl_pct_over_alarm",
271                 "Percentage over alarm", NULL},
272         {SR_MQFLAG_DURATION, 0, "duration", "Duration", NULL},
273         {SR_MQFLAG_AVG, 0, "average", "Average", NULL},
274         {SR_MQFLAG_REFERENCE, 0, "reference", "Reference", NULL},
275         ALL_ZERO
276 };
277
278 SR_PRIV const GVariantType *sr_variant_type_get(int datatype)
279 {
280         switch (datatype) {
281         case SR_T_INT32:
282                 return G_VARIANT_TYPE_INT32;
283         case SR_T_UINT64:
284                 return G_VARIANT_TYPE_UINT64;
285         case SR_T_STRING:
286                 return G_VARIANT_TYPE_STRING;
287         case SR_T_BOOL:
288                 return G_VARIANT_TYPE_BOOLEAN;
289         case SR_T_FLOAT:
290                 return G_VARIANT_TYPE_DOUBLE;
291         case SR_T_RATIONAL_PERIOD:
292         case SR_T_RATIONAL_VOLT:
293         case SR_T_UINT64_RANGE:
294         case SR_T_DOUBLE_RANGE:
295                 return G_VARIANT_TYPE_TUPLE;
296         case SR_T_KEYVALUE:
297                 return G_VARIANT_TYPE_DICTIONARY;
298         case SR_T_MQLIST:
299                 return G_VARIANT_TYPE_ARRAY;
300         default:
301                 return NULL;
302         }
303 }
304
305 SR_PRIV int sr_variant_type_check(uint32_t key, GVariant *value)
306 {
307         const struct sr_key_info *info;
308         const GVariantType *type, *expected;
309         char *expected_string, *type_string;
310
311         info = sr_key_info_get(SR_KEY_CONFIG, key);
312         if (!info)
313                 return SR_OK;
314
315         expected = sr_variant_type_get(info->datatype);
316         type = g_variant_get_type(value);
317         if (!g_variant_type_equal(type, expected)
318                         && !g_variant_type_is_subtype_of(type, expected)) {
319                 expected_string = g_variant_type_dup_string(expected);
320                 type_string = g_variant_type_dup_string(type);
321                 sr_err("Wrong variant type for key '%s': expected '%s', got '%s'",
322                         info->name, expected_string, type_string);
323                 g_free(expected_string);
324                 g_free(type_string);
325                 return SR_ERR_ARG;
326         }
327
328         return SR_OK;
329 }
330
331 /**
332  * Return the list of supported hardware drivers.
333  *
334  * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
335  *
336  * @retval NULL The ctx argument was NULL, or there are no supported drivers.
337  * @retval Other Pointer to the NULL-terminated list of hardware drivers.
338  *               The user should NOT g_free() this list, sr_exit() will do that.
339  *
340  * @since 0.4.0
341  */
342 SR_API struct sr_dev_driver **sr_driver_list(const struct sr_context *ctx)
343 {
344         if (!ctx)
345                 return NULL;
346
347         return ctx->driver_list;
348 }
349
350 /**
351  * Initialize a hardware driver.
352  *
353  * This usually involves memory allocations and variable initializations
354  * within the driver, but _not_ scanning for attached devices.
355  * The API call sr_driver_scan() is used for that.
356  *
357  * @param ctx A libsigrok context object allocated by a previous call to
358  *            sr_init(). Must not be NULL.
359  * @param driver The driver to initialize. This must be a pointer to one of
360  *               the entries returned by sr_driver_list(). Must not be NULL.
361  *
362  * @retval SR_OK Success
363  * @retval SR_ERR_ARG Invalid parameter(s).
364  * @retval SR_ERR_BUG Internal errors.
365  * @retval other Another negative error code upon other errors.
366  *
367  * @since 0.2.0
368  */
369 SR_API int sr_driver_init(struct sr_context *ctx, struct sr_dev_driver *driver)
370 {
371         int ret;
372
373         if (!ctx) {
374                 sr_err("Invalid libsigrok context, can't initialize.");
375                 return SR_ERR_ARG;
376         }
377
378         if (!driver) {
379                 sr_err("Invalid driver, can't initialize.");
380                 return SR_ERR_ARG;
381         }
382
383         sr_spew("Initializing driver '%s'.", driver->name);
384         if ((ret = driver->init(driver, ctx)) < 0)
385                 sr_err("Failed to initialize the driver: %d.", ret);
386
387         return ret;
388 }
389
390 static int check_options(struct sr_dev_driver *driver, GSList *options,
391                 uint32_t optlist_key, struct sr_dev_inst *sdi,
392                 struct sr_channel_group *cg)
393 {
394         struct sr_config *src;
395         const struct sr_key_info *srci;
396         GVariant *gvar_opts;
397         GSList *l;
398         const uint32_t *opts;
399         gsize num_opts, i;
400         int ret;
401
402         if (sr_config_list(driver, sdi, cg, optlist_key, &gvar_opts) != SR_OK) {
403                 /* Driver publishes no options for this optlist. */
404                 return SR_ERR;
405         }
406
407         ret = SR_OK;
408         opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
409         for (l = options; l; l = l->next) {
410                 src = l->data;
411                 for (i = 0; i < num_opts; i++) {
412                         if (opts[i] == src->key)
413                                 break;
414                 }
415                 if (i == num_opts) {
416                         if (!(srci = sr_key_info_get(SR_KEY_CONFIG, src->key)))
417                                 /* Shouldn't happen. */
418                                 sr_err("Invalid option %d.", src->key);
419                         else
420                                 sr_err("Invalid option '%s'.", srci->id);
421                         ret = SR_ERR_ARG;
422                         break;
423                 }
424                 if (sr_variant_type_check(src->key, src->data) != SR_OK) {
425                         ret = SR_ERR_ARG;
426                         break;
427                 }
428         }
429         g_variant_unref(gvar_opts);
430
431         return ret;
432 }
433
434 /**
435  * Tell a hardware driver to scan for devices.
436  *
437  * In addition to the detection, the devices that are found are also
438  * initialized automatically. On some devices, this involves a firmware upload,
439  * or other such measures.
440  *
441  * The order in which the system is scanned for devices is not specified. The
442  * caller should not assume or rely on any specific order.
443  *
444  * Before calling sr_driver_scan(), the user must have previously initialized
445  * the driver by calling sr_driver_init().
446  *
447  * @param driver The driver that should scan. This must be a pointer to one of
448  *               the entries returned by sr_driver_list(). Must not be NULL.
449  * @param options A list of 'struct sr_hwopt' options to pass to the driver's
450  *                scanner. Can be NULL/empty.
451  *
452  * @return A GSList * of 'struct sr_dev_inst', or NULL if no devices were
453  *         found (or errors were encountered). This list must be freed by the
454  *         caller using g_slist_free(), but without freeing the data pointed
455  *         to in the list.
456  *
457  * @since 0.2.0
458  */
459 SR_API GSList *sr_driver_scan(struct sr_dev_driver *driver, GSList *options)
460 {
461         GSList *l;
462
463         if (!driver) {
464                 sr_err("Invalid driver, can't scan for devices.");
465                 return NULL;
466         }
467
468         if (!driver->context) {
469                 sr_err("Driver not initialized, can't scan for devices.");
470                 return NULL;
471         }
472
473         if (options) {
474                 if (check_options(driver, options, SR_CONF_SCAN_OPTIONS, NULL, NULL) != SR_OK)
475                         return NULL;
476         }
477
478         l = driver->scan(driver, options);
479
480         sr_spew("Scan of '%s' found %d devices.", driver->name,
481                 g_slist_length(l));
482
483         return l;
484 }
485
486 /**
487  * Call driver cleanup function for all drivers.
488  *
489  * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
490  *
491  * @private
492  */
493 SR_PRIV void sr_hw_cleanup_all(const struct sr_context *ctx)
494 {
495         int i;
496         struct sr_dev_driver **drivers;
497
498         if (!ctx)
499                 return;
500
501         drivers = sr_driver_list(ctx);
502         for (i = 0; drivers[i]; i++) {
503                 if (drivers[i]->cleanup)
504                         drivers[i]->cleanup(drivers[i]);
505                 drivers[i]->context = NULL;
506         }
507 }
508
509 /** Allocate struct sr_config.
510  *  A floating reference can be passed in for data.
511  *  @private
512  */
513 SR_PRIV struct sr_config *sr_config_new(uint32_t key, GVariant *data)
514 {
515         struct sr_config *src;
516
517         src = g_malloc0(sizeof(struct sr_config));
518         src->key = key;
519         src->data = g_variant_ref_sink(data);
520
521         return src;
522 }
523
524 /** Free struct sr_config.
525  *  @private
526  */
527 SR_PRIV void sr_config_free(struct sr_config *src)
528 {
529
530         if (!src || !src->data) {
531                 sr_err("%s: invalid data!", __func__);
532                 return;
533         }
534
535         g_variant_unref(src->data);
536         g_free(src);
537
538 }
539
540 static void log_key(const struct sr_dev_inst *sdi,
541         const struct sr_channel_group *cg, uint32_t key, int op, GVariant *data)
542 {
543         const char *opstr;
544         const struct sr_key_info *srci;
545
546         /* Don't log SR_CONF_DEVICE_OPTIONS, it's verbose and not too useful. */
547         if (key == SR_CONF_DEVICE_OPTIONS)
548                 return;
549
550         opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
551         srci = sr_key_info_get(SR_KEY_CONFIG, key);
552
553         sr_spew("sr_config_%s(): key %d (%s) sdi %p cg %s -> %s", opstr, key,
554                 srci ? srci->id : "NULL", sdi, cg ? cg->name : "NULL",
555                 data ? g_variant_print(data, TRUE) : "NULL");
556 }
557
558 static int check_key(const struct sr_dev_driver *driver,
559                 const struct sr_dev_inst *sdi, const struct sr_channel_group *cg,
560                 uint32_t key, int op, GVariant *data)
561 {
562         const struct sr_key_info *srci;
563         gsize num_opts, i;
564         GVariant *gvar_opts;
565         const uint32_t *opts;
566         uint32_t pub_opt;
567         char *suffix, *opstr;
568
569         if (sdi && cg)
570                 suffix = " for this device and channel group";
571         else if (sdi)
572                 suffix = " for this device";
573         else
574                 suffix = "";
575
576         if (!(srci = sr_key_info_get(SR_KEY_CONFIG, key))) {
577                 sr_err("Invalid key %d.", key);
578                 return SR_ERR_ARG;
579         }
580         opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
581
582         switch (key) {
583         case SR_CONF_LIMIT_MSEC:
584         case SR_CONF_LIMIT_SAMPLES:
585         case SR_CONF_SAMPLERATE:
586                 /* Setting any of these to 0 is not useful. */
587                 if (op != SR_CONF_SET || !data)
588                         break;
589                 if (g_variant_get_uint64(data) == 0) {
590                         sr_err("Cannot set '%s' to 0.", srci->id);
591                         return SR_ERR_ARG;
592                 }
593                 break;
594         }
595
596         if (sr_config_list(driver, sdi, cg, SR_CONF_DEVICE_OPTIONS, &gvar_opts) != SR_OK) {
597                 /* Driver publishes no options. */
598                 sr_err("No options available%s.", srci->id, suffix);
599                 return SR_ERR_ARG;
600         }
601         opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
602         pub_opt = 0;
603         for (i = 0; i < num_opts; i++) {
604                 if ((opts[i] & SR_CONF_MASK) == key) {
605                         pub_opt = opts[i];
606                         break;
607                 }
608         }
609         g_variant_unref(gvar_opts);
610         if (!pub_opt) {
611                 sr_err("Option '%s' not available%s.", srci->id, suffix);
612                 return SR_ERR_ARG;
613         }
614
615         if (!(pub_opt & op)) {
616                 sr_err("Option '%s' not available to %s%s.", srci->id, opstr, suffix);
617                 return SR_ERR_ARG;
618         }
619
620         return SR_OK;
621 }
622
623 /**
624  * Query value of a configuration key at the given driver or device instance.
625  *
626  * @param[in] driver The sr_dev_driver struct to query.
627  * @param[in] sdi (optional) If the key is specific to a device, this must
628  *            contain a pointer to the struct sr_dev_inst to be checked.
629  *            Otherwise it must be NULL.
630  * @param[in] cg The channel group on the device for which to list the
631  *                    values, or NULL.
632  * @param[in] key The configuration key (SR_CONF_*).
633  * @param[in,out] data Pointer to a GVariant where the value will be stored.
634  *             Must not be NULL. The caller is given ownership of the GVariant
635  *             and must thus decrease the refcount after use. However if
636  *             this function returns an error code, the field should be
637  *             considered unused, and should not be unreferenced.
638  *
639  * @retval SR_OK Success.
640  * @retval SR_ERR Error.
641  * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
642  *          interpreted as an error by the caller; merely as an indication
643  *          that it's not applicable.
644  *
645  * @since 0.3.0
646  */
647 SR_API int sr_config_get(const struct sr_dev_driver *driver,
648                 const struct sr_dev_inst *sdi,
649                 const struct sr_channel_group *cg,
650                 uint32_t key, GVariant **data)
651 {
652         int ret;
653
654         if (!driver || !data)
655                 return SR_ERR;
656
657         if (!driver->config_get)
658                 return SR_ERR_ARG;
659
660         if (check_key(driver, sdi, cg, key, SR_CONF_GET, NULL) != SR_OK)
661                 return SR_ERR_ARG;
662
663         if ((ret = driver->config_get(key, data, sdi, cg)) == SR_OK) {
664                 log_key(sdi, cg, key, SR_CONF_GET, *data);
665                 /* Got a floating reference from the driver. Sink it here,
666                  * caller will need to unref when done with it. */
667                 g_variant_ref_sink(*data);
668         }
669
670         return ret;
671 }
672
673 /**
674  * Set value of a configuration key in a device instance.
675  *
676  * @param[in] sdi The device instance.
677  * @param[in] cg The channel group on the device for which to list the
678  *                    values, or NULL.
679  * @param[in] key The configuration key (SR_CONF_*).
680  * @param data The new value for the key, as a GVariant with GVariantType
681  *        appropriate to that key. A floating reference can be passed
682  *        in; its refcount will be sunk and unreferenced after use.
683  *
684  * @retval SR_OK Success.
685  * @retval SR_ERR Error.
686  * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
687  *          interpreted as an error by the caller; merely as an indication
688  *          that it's not applicable.
689  *
690  * @since 0.3.0
691  */
692 SR_API int sr_config_set(const struct sr_dev_inst *sdi,
693                 const struct sr_channel_group *cg,
694                 uint32_t key, GVariant *data)
695 {
696         int ret;
697
698         g_variant_ref_sink(data);
699
700         if (!sdi || !sdi->driver || !data)
701                 ret = SR_ERR;
702         else if (!sdi->driver->config_set)
703                 ret = SR_ERR_ARG;
704         else if (check_key(sdi->driver, sdi, cg, key, SR_CONF_SET, data) != SR_OK)
705                 return SR_ERR_ARG;
706         else if ((ret = sr_variant_type_check(key, data)) == SR_OK) {
707                 log_key(sdi, cg, key, SR_CONF_SET, data);
708                 ret = sdi->driver->config_set(key, data, sdi, cg);
709         }
710
711         g_variant_unref(data);
712
713         return ret;
714 }
715
716 /**
717  * Apply configuration settings to the device hardware.
718  *
719  * @param sdi The device instance.
720  *
721  * @return SR_OK upon success or SR_ERR in case of error.
722  *
723  * @since 0.3.0
724  */
725 SR_API int sr_config_commit(const struct sr_dev_inst *sdi)
726 {
727         int ret;
728
729         if (!sdi || !sdi->driver)
730                 ret = SR_ERR;
731         else if (!sdi->driver->config_commit)
732                 ret = SR_OK;
733         else
734                 ret = sdi->driver->config_commit(sdi);
735
736         return ret;
737 }
738
739 /**
740  * List all possible values for a configuration key.
741  *
742  * @param[in] driver The sr_dev_driver struct to query.
743  * @param[in] sdi (optional) If the key is specific to a device, this must
744  *            contain a pointer to the struct sr_dev_inst to be checked.
745  * @param[in] cg The channel group on the device for which to list the
746  *                    values, or NULL.
747  * @param[in] key The configuration key (SR_CONF_*).
748  * @param[in,out] data A pointer to a GVariant where the list will be stored.
749  *             The caller is given ownership of the GVariant and must thus
750  *             unref the GVariant after use. However if this function
751  *             returns an error code, the field should be considered
752  *             unused, and should not be unreferenced.
753  *
754  * @retval SR_OK Success.
755  * @retval SR_ERR Error.
756  * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
757  *          interpreted as an error by the caller; merely as an indication
758  *          that it's not applicable.
759  *
760  * @since 0.3.0
761  */
762 SR_API int sr_config_list(const struct sr_dev_driver *driver,
763                 const struct sr_dev_inst *sdi,
764                 const struct sr_channel_group *cg,
765                 uint32_t key, GVariant **data)
766 {
767         int ret;
768
769         if (!driver || !data)
770                 return SR_ERR;
771         else if (!driver->config_list)
772                 return SR_ERR_ARG;
773         else if (key != SR_CONF_SCAN_OPTIONS && key != SR_CONF_DEVICE_OPTIONS) {
774                 if (check_key(driver, sdi, cg, key, SR_CONF_LIST, NULL) != SR_OK)
775                         return SR_ERR_ARG;
776         }
777         if ((ret = driver->config_list(key, data, sdi, cg)) == SR_OK) {
778                 log_key(sdi, cg, key, SR_CONF_LIST, *data);
779                 g_variant_ref_sink(*data);
780         }
781
782         return ret;
783 }
784
785 static struct sr_key_info *get_keytable(int keytype)
786 {
787         struct sr_key_info *table;
788
789         switch (keytype) {
790         case SR_KEY_CONFIG:
791                 table = sr_key_info_config;
792                 break;
793         case SR_KEY_MQ:
794                 table = sr_key_info_mq;
795                 break;
796         case SR_KEY_MQFLAGS:
797                 table = sr_key_info_mqflag;
798                 break;
799         default:
800                 sr_err("Invalid keytype %d", keytype);
801                 return NULL;
802         }
803
804         return table;
805 }
806
807 /**
808  * Get information about a key, by key.
809  *
810  * @param[in] keytype The namespace the key is in.
811  * @param[in] key The key to find.
812  *
813  * @return A pointer to a struct sr_key_info, or NULL if the key
814  *         was not found.
815  *
816  * @since 0.3.0
817  */
818 SR_API const struct sr_key_info *sr_key_info_get(int keytype, uint32_t key)
819 {
820         struct sr_key_info *table;
821         int i;
822
823         if (!(table = get_keytable(keytype)))
824                 return NULL;
825
826         for (i = 0; table[i].key; i++) {
827                 if (table[i].key == key)
828                         return &table[i];
829         }
830
831         return NULL;
832 }
833
834 /**
835  * Get information about a key, by name.
836  *
837  * @param[in] keytype The namespace the key is in.
838  * @param[in] keyid The key id string.
839  *
840  * @return A pointer to a struct sr_key_info, or NULL if the key
841  *         was not found.
842  *
843  * @since 0.2.0
844  */
845 SR_API const struct sr_key_info *sr_key_info_name_get(int keytype, const char *keyid)
846 {
847         struct sr_key_info *table;
848         int i;
849
850         if (!(table = get_keytable(keytype)))
851                 return NULL;
852
853         for (i = 0; table[i].key; i++) {
854                 if (!table[i].id)
855                         continue;
856                 if (!strcmp(table[i].id, keyid))
857                         return &table[i];
858         }
859
860         return NULL;
861 }
862
863 /** @} */