]> sigrok.org Git - libsigrok.git/blob - src/hardware/zeroplus-logic-cube/api.c
output/csv: use intermediate time_t var, silence compiler warning
[libsigrok.git] / src / hardware / zeroplus-logic-cube / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include "protocol.h"
21
22 #define VENDOR_NAME                     "ZEROPLUS"
23 #define USB_INTERFACE                   0
24 #define USB_CONFIGURATION               1
25 #define NUM_TRIGGER_STAGES              4
26 #define PACKET_SIZE                     2048    /* ?? */
27
28 //#define ZP_EXPERIMENTAL
29
30 struct zp_model {
31         uint16_t vid;
32         uint16_t pid;
33         char *model_name;
34         unsigned int channels;
35         unsigned int sample_depth;      /* In Ksamples/channel */
36         unsigned int max_sampling_freq;
37 };
38
39 /*
40  * Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the
41  * same 128K sample depth.
42  */
43 static const struct zp_model zeroplus_models[] = {
44         {0x0c12, 0x7002, "LAP-16128U",    16, 128,  200},
45         {0x0c12, 0x7009, "LAP-C(16064)",  16, 64,   100},
46         {0x0c12, 0x700a, "LAP-C(16128)",  16, 128,  200},
47         {0x0c12, 0x700b, "LAP-C(32128)",  32, 128,  200},
48         {0x0c12, 0x700c, "LAP-C(321000)", 32, 1024, 200},
49         {0x0c12, 0x700d, "LAP-C(322000)", 32, 2048, 200},
50         {0x0c12, 0x700e, "LAP-C(16032)",  16, 32,   100},
51         {0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200},
52         {0x0c12, 0x7100, "AKIP-9101", 16, 256, 200},
53         { 0, 0, 0, 0, 0, 0 }
54 };
55
56 static const uint32_t devopts[] = {
57         SR_CONF_LOGIC_ANALYZER,
58         SR_CONF_LIMIT_SAMPLES | SR_CONF_SET | SR_CONF_LIST,
59         SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
60         SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
61         SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
62         SR_CONF_VOLTAGE_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
63 };
64
65 static const int32_t trigger_matches[] = {
66         SR_TRIGGER_ZERO,
67         SR_TRIGGER_ONE,
68 };
69
70 /*
71  * ZEROPLUS LAP-C (16032) numbers the 16 channels A0-A7 and B0-B7.
72  * We currently ignore other untested/unsupported devices here.
73  */
74 static const char *channel_names[] = {
75         "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",
76         "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",
77         "C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7",
78         "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
79         NULL,
80 };
81
82 SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info;
83 static struct sr_dev_driver *di = &zeroplus_logic_cube_driver_info;
84
85 /*
86  * The hardware supports more samplerates than these, but these are the
87  * options hardcoded into the vendor's Windows GUI.
88  */
89
90 static const uint64_t samplerates_100[] = {
91         SR_HZ(100),
92         SR_HZ(500),
93         SR_KHZ(1),
94         SR_KHZ(5),
95         SR_KHZ(25),
96         SR_KHZ(50),
97         SR_KHZ(100),
98         SR_KHZ(200),
99         SR_KHZ(400),
100         SR_KHZ(800),
101         SR_MHZ(1),
102         SR_MHZ(10),
103         SR_MHZ(25),
104         SR_MHZ(50),
105         SR_MHZ(80),
106         SR_MHZ(100),
107 };
108
109 const uint64_t samplerates_200[] = {
110         SR_HZ(100),
111         SR_HZ(500),
112         SR_KHZ(1),
113         SR_KHZ(5),
114         SR_KHZ(25),
115         SR_KHZ(50),
116         SR_KHZ(100),
117         SR_KHZ(200),
118         SR_KHZ(400),
119         SR_KHZ(800),
120         SR_MHZ(1),
121         SR_MHZ(10),
122         SR_MHZ(25),
123         SR_MHZ(50),
124         SR_MHZ(80),
125         SR_MHZ(100),
126         SR_MHZ(150),
127         SR_MHZ(200),
128 };
129
130 static int dev_close(struct sr_dev_inst *sdi);
131
132 SR_PRIV int zp_set_samplerate(struct dev_context *devc, uint64_t samplerate)
133 {
134         int i;
135
136         for (i = 0; ARRAY_SIZE(samplerates_200); i++)
137                 if (samplerate == samplerates_200[i])
138                         break;
139
140         if (i == ARRAY_SIZE(samplerates_200) || samplerate > devc->max_samplerate) {
141                 sr_err("Unsupported samplerate: %" PRIu64 "Hz.", samplerate);
142                 return SR_ERR_ARG;
143         }
144
145         sr_info("Setting samplerate to %" PRIu64 "Hz.", samplerate);
146
147         if (samplerate >= SR_MHZ(1))
148                 analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
149         else if (samplerate >= SR_KHZ(1))
150                 analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
151         else
152                 analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
153
154         devc->cur_samplerate = samplerate;
155
156         return SR_OK;
157 }
158
159 static int init(struct sr_context *sr_ctx)
160 {
161         return std_init(sr_ctx, di, LOG_PREFIX);
162 }
163
164 static GSList *scan(GSList *options)
165 {
166         struct sr_dev_inst *sdi;
167         struct sr_channel *ch;
168         struct drv_context *drvc;
169         struct dev_context *devc;
170         const struct zp_model *prof;
171         struct libusb_device_descriptor des;
172         struct libusb_device_handle *hdl;
173         libusb_device **devlist;
174         GSList *devices;
175         int ret, i, j;
176         char serial_num[64], connection_id[64];
177
178         (void)options;
179
180         drvc = di->priv;
181
182         devices = NULL;
183
184         /* Find all ZEROPLUS analyzers and add them to device list. */
185         libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); /* TODO: Errors. */
186
187         for (i = 0; devlist[i]; i++) {
188                 ret = libusb_get_device_descriptor(devlist[i], &des);
189                 if (ret != 0) {
190                         sr_err("Failed to get device descriptor: %s.",
191                                libusb_error_name(ret));
192                         continue;
193                 }
194
195                 if ((ret = libusb_open(devlist[i], &hdl)) < 0)
196                         continue;
197
198                 if (des.iSerialNumber == 0) {
199                         serial_num[0] = '\0';
200                 } else if ((ret = libusb_get_string_descriptor_ascii(hdl,
201                                 des.iSerialNumber, (unsigned char *) serial_num,
202                                 sizeof(serial_num))) < 0) {
203                         sr_warn("Failed to get serial number string descriptor: %s.",
204                                 libusb_error_name(ret));
205                         continue;
206                 }
207
208                 libusb_close(hdl);
209
210                 usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
211
212                 prof = NULL;
213                 for (j = 0; j < zeroplus_models[j].vid; j++) {
214                         if (des.idVendor == zeroplus_models[j].vid &&
215                                 des.idProduct == zeroplus_models[j].pid) {
216                                 prof = &zeroplus_models[j];
217                         }
218                 }
219                 /* Skip if the device was not found. */
220                 if (!prof)
221                         continue;
222                 sr_info("Found ZEROPLUS %s.", prof->model_name);
223
224                 /* Register the device with libsigrok. */
225                 if (!(sdi = sr_dev_inst_new(SR_ST_INACTIVE,
226                                 VENDOR_NAME, prof->model_name, NULL))) {
227                         sr_err("%s: sr_dev_inst_new failed", __func__);
228                         return NULL;
229                 }
230                 sdi->driver = di;
231                 sdi->serial_num = g_strdup(serial_num);
232                 sdi->connection_id = g_strdup(connection_id);
233
234                 /* Allocate memory for our private driver context. */
235                 if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) {
236                         sr_err("Device context malloc failed.");
237                         return NULL;
238                 }
239
240                 sdi->priv = devc;
241                 devc->prof = prof;
242                 devc->num_channels = prof->channels;
243 #ifdef ZP_EXPERIMENTAL
244                 devc->max_sample_depth = 128 * 1024;
245                 devc->max_samplerate = 200;
246 #else
247                 devc->max_sample_depth = prof->sample_depth * 1024;
248                 devc->max_samplerate = prof->max_sampling_freq;
249 #endif
250                 devc->max_samplerate *= SR_MHZ(1);
251                 devc->memory_size = MEMORY_SIZE_8K;
252                 // memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES);
253
254                 /* Fill in channellist according to this device's profile. */
255                 for (j = 0; j < devc->num_channels; j++) {
256                         if (!(ch = sr_channel_new(j, SR_CHANNEL_LOGIC, TRUE,
257                                         channel_names[j])))
258                                 return NULL;
259                         sdi->channels = g_slist_append(sdi->channels, ch);
260                 }
261
262                 devices = g_slist_append(devices, sdi);
263                 drvc->instances = g_slist_append(drvc->instances, sdi);
264                 sdi->inst_type = SR_INST_USB;
265                 sdi->conn = sr_usb_dev_inst_new(
266                         libusb_get_bus_number(devlist[i]),
267                         libusb_get_device_address(devlist[i]), NULL);
268         }
269         libusb_free_device_list(devlist, 1);
270
271         return devices;
272 }
273
274 static GSList *dev_list(void)
275 {
276         return ((struct drv_context *)(di->priv))->instances;
277 }
278
279 static int dev_open(struct sr_dev_inst *sdi)
280 {
281         struct dev_context *devc;
282         struct drv_context *drvc;
283         struct sr_usb_dev_inst *usb;
284         libusb_device **devlist, *dev;
285         int device_count, ret, i;
286         char connection_id[64];
287
288         drvc = di->priv;
289         usb = sdi->conn;
290
291         if (!(devc = sdi->priv)) {
292                 sr_err("%s: sdi->priv was NULL", __func__);
293                 return SR_ERR_ARG;
294         }
295
296         device_count = libusb_get_device_list(drvc->sr_ctx->libusb_ctx,
297                                               &devlist);
298         if (device_count < 0) {
299                 sr_err("Failed to retrieve device list.");
300                 return SR_ERR;
301         }
302
303         dev = NULL;
304         for (i = 0; i < device_count; i++) {
305                 usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
306                 if (!strcmp(sdi->connection_id, connection_id)) {
307                         dev = devlist[i];
308                         break;
309                 }
310         }
311         if (!dev) {
312                 sr_err("Device on %d.%d (logical) / %s (physical) disappeared!",
313                        usb->bus, usb->address, sdi->connection_id);
314                 return SR_ERR;
315         }
316
317         if (!(ret = libusb_open(dev, &(usb->devhdl)))) {
318                 sdi->status = SR_ST_ACTIVE;
319                 sr_info("Opened device on %d.%d (logical) / %s (physical) interface %d.",
320                         usb->bus, usb->address, sdi->connection_id, USB_INTERFACE);
321         } else {
322                 sr_err("Failed to open device: %s.", libusb_error_name(ret));
323                 return SR_ERR;
324         }
325
326         ret = libusb_set_configuration(usb->devhdl, USB_CONFIGURATION);
327         if (ret < 0) {
328                 sr_err("Unable to set USB configuration %d: %s.",
329                        USB_CONFIGURATION, libusb_error_name(ret));
330                 return SR_ERR;
331         }
332
333         ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
334         if (ret != 0) {
335                 sr_err("Unable to claim interface: %s.",
336                        libusb_error_name(ret));
337                 return SR_ERR;
338         }
339
340         /* Set default configuration after power on. */
341         if (analyzer_read_status(usb->devhdl) == 0)
342                 analyzer_configure(usb->devhdl);
343
344         analyzer_reset(usb->devhdl);
345         analyzer_initialize(usb->devhdl);
346
347         //analyzer_set_memory_size(MEMORY_SIZE_512K);
348         // analyzer_set_freq(g_freq, g_freq_scale);
349         analyzer_set_trigger_count(1);
350         // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
351         // * get_memory_size(g_memory_size)) / 100) >> 2);
352
353 #if 0
354         if (g_double_mode == 1)
355                 analyzer_set_compression(COMPRESSION_DOUBLE);
356         else if (g_compression == 1)
357                 analyzer_set_compression(COMPRESSION_ENABLE);
358         else
359 #endif
360         analyzer_set_compression(COMPRESSION_NONE);
361
362         if (devc->cur_samplerate == 0) {
363                 /* Samplerate hasn't been set. Default to 1MHz. */
364                 analyzer_set_freq(1, FREQ_SCALE_MHZ);
365                 devc->cur_samplerate = SR_MHZ(1);
366         }
367
368         if (devc->cur_threshold == 0)
369                 set_voltage_threshold(devc, 1.5);
370
371         return SR_OK;
372 }
373
374 static int dev_close(struct sr_dev_inst *sdi)
375 {
376         struct sr_usb_dev_inst *usb;
377
378         usb = sdi->conn;
379
380         if (!usb->devhdl)
381                 return SR_ERR;
382
383         sr_info("Closing device on %d.%d (logical) / %s (physical) interface %d.",
384                 usb->bus, usb->address, sdi->connection_id, USB_INTERFACE);
385         libusb_release_interface(usb->devhdl, USB_INTERFACE);
386         libusb_reset_device(usb->devhdl);
387         libusb_close(usb->devhdl);
388         usb->devhdl = NULL;
389         sdi->status = SR_ST_INACTIVE;
390
391         return SR_OK;
392 }
393
394 static int cleanup(void)
395 {
396         return std_dev_clear(di, NULL);
397 }
398
399 static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
400                 const struct sr_channel_group *cg)
401 {
402         struct dev_context *devc;
403
404         (void)cg;
405
406         switch (key) {
407         case SR_CONF_SAMPLERATE:
408                 if (sdi) {
409                         devc = sdi->priv;
410                         *data = g_variant_new_uint64(devc->cur_samplerate);
411                         sr_spew("Returning samplerate: %" PRIu64 "Hz.",
412                                 devc->cur_samplerate);
413                 } else
414                         return SR_ERR_ARG;
415                 break;
416         case SR_CONF_CAPTURE_RATIO:
417                 if (sdi) {
418                         devc = sdi->priv;
419                         *data = g_variant_new_uint64(devc->capture_ratio);
420                 } else
421                         return SR_ERR_ARG;
422                 break;
423         case SR_CONF_VOLTAGE_THRESHOLD:
424                 if (sdi) {
425                         GVariant *range[2];
426                         devc = sdi->priv;
427                         range[0] = g_variant_new_double(devc->cur_threshold);
428                         range[1] = g_variant_new_double(devc->cur_threshold);
429                         *data = g_variant_new_tuple(range, 2);
430                 } else
431                         return SR_ERR_ARG;
432                 break;
433         default:
434                 return SR_ERR_NA;
435         }
436
437         return SR_OK;
438 }
439
440 static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
441                 const struct sr_channel_group *cg)
442 {
443         struct dev_context *devc;
444         gdouble low, high;
445
446         (void)cg;
447
448         if (sdi->status != SR_ST_ACTIVE)
449                 return SR_ERR_DEV_CLOSED;
450
451         if (!(devc = sdi->priv)) {
452                 sr_err("%s: sdi->priv was NULL", __func__);
453                 return SR_ERR_ARG;
454         }
455
456         switch (key) {
457         case SR_CONF_SAMPLERATE:
458                 return zp_set_samplerate(devc, g_variant_get_uint64(data));
459         case SR_CONF_LIMIT_SAMPLES:
460                 return set_limit_samples(devc, g_variant_get_uint64(data));
461         case SR_CONF_CAPTURE_RATIO:
462                 return set_capture_ratio(devc, g_variant_get_uint64(data));
463         case SR_CONF_VOLTAGE_THRESHOLD:
464                 g_variant_get(data, "(dd)", &low, &high);
465                 return set_voltage_threshold(devc, (low + high) / 2.0);
466         default:
467                 return SR_ERR_NA;
468         }
469
470         return SR_OK;
471 }
472
473 static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
474                 const struct sr_channel_group *cg)
475 {
476         struct dev_context *devc;
477         GVariant *gvar, *grange[2];
478         GVariantBuilder gvb;
479         double v;
480         GVariant *range[2];
481
482         (void)cg;
483
484         switch (key) {
485         case SR_CONF_DEVICE_OPTIONS:
486                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
487                                 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
488                 break;
489         case SR_CONF_SAMPLERATE:
490                 devc = sdi->priv;
491                 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
492                 if (devc->prof->max_sampling_freq == 100) {
493                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
494                                         samplerates_100, ARRAY_SIZE(samplerates_100),
495                                         sizeof(uint64_t));
496                 } else if (devc->prof->max_sampling_freq == 200) {
497                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
498                                         samplerates_200, ARRAY_SIZE(samplerates_200),
499                                         sizeof(uint64_t));
500                 } else {
501                         sr_err("Internal error: Unknown max. samplerate: %d.",
502                                devc->prof->max_sampling_freq);
503                         return SR_ERR_ARG;
504                 }
505                 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
506                 *data = g_variant_builder_end(&gvb);
507                 break;
508         case SR_CONF_TRIGGER_MATCH:
509                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
510                                 trigger_matches, ARRAY_SIZE(trigger_matches),
511                                 sizeof(int32_t));
512                 break;
513         case SR_CONF_VOLTAGE_THRESHOLD:
514                 g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
515                 for (v = -6.0; v <= 6.0; v += 0.1) {
516                         range[0] = g_variant_new_double(v);
517                         range[1] = g_variant_new_double(v);
518                         gvar = g_variant_new_tuple(range, 2);
519                         g_variant_builder_add_value(&gvb, gvar);
520                 }
521                 *data = g_variant_builder_end(&gvb);
522                 break;
523         case SR_CONF_LIMIT_SAMPLES:
524                 if (!sdi)
525                         return SR_ERR_ARG;
526                 devc = sdi->priv;
527                 grange[0] = g_variant_new_uint64(0);
528                 grange[1] = g_variant_new_uint64(devc->max_sample_depth);
529                 *data = g_variant_new_tuple(grange, 2);
530                 break;
531         default:
532                 return SR_ERR_NA;
533         }
534
535         return SR_OK;
536 }
537
538 static int dev_acquisition_start(const struct sr_dev_inst *sdi,
539                 void *cb_data)
540 {
541         struct dev_context *devc;
542         struct sr_usb_dev_inst *usb;
543         struct sr_datafeed_packet packet;
544         struct sr_datafeed_logic logic;
545         unsigned int samples_read;
546         int res;
547         unsigned int packet_num, n;
548         unsigned char *buf;
549         unsigned int status;
550         unsigned int stop_address;
551         unsigned int now_address;
552         unsigned int trigger_address;
553         unsigned int trigger_offset;
554         unsigned int triggerbar;
555         unsigned int ramsize_trigger;
556         unsigned int memory_size;
557         unsigned int valid_samples;
558         unsigned int discard;
559         int trigger_now;
560
561         if (sdi->status != SR_ST_ACTIVE)
562                 return SR_ERR_DEV_CLOSED;
563
564         if (!(devc = sdi->priv)) {
565                 sr_err("%s: sdi->priv was NULL", __func__);
566                 return SR_ERR_ARG;
567         }
568
569         if (analyzer_add_triggers(sdi) != SR_OK) {
570                 sr_err("Failed to configure triggers.");
571                 return SR_ERR;
572         }
573
574         usb = sdi->conn;
575
576         set_triggerbar(devc);
577
578         /* Push configured settings to device. */
579         analyzer_configure(usb->devhdl);
580
581         analyzer_start(usb->devhdl);
582         sr_info("Waiting for data.");
583         analyzer_wait_data(usb->devhdl);
584
585         status = analyzer_read_status(usb->devhdl);
586         stop_address = analyzer_get_stop_address(usb->devhdl);
587         now_address = analyzer_get_now_address(usb->devhdl);
588         trigger_address = analyzer_get_trigger_address(usb->devhdl);
589
590         triggerbar = analyzer_get_triggerbar_address();
591         ramsize_trigger = analyzer_get_ramsize_trigger_address();
592
593         n = get_memory_size(devc->memory_size);
594         memory_size = n / 4;
595
596         sr_info("Status = 0x%x.", status);
597         sr_info("Stop address       = 0x%x.", stop_address);
598         sr_info("Now address        = 0x%x.", now_address);
599         sr_info("Trigger address    = 0x%x.", trigger_address);
600         sr_info("Triggerbar address = 0x%x.", triggerbar);
601         sr_info("Ramsize trigger    = 0x%x.", ramsize_trigger);
602         sr_info("Memory size        = 0x%x.", memory_size);
603
604         /* Send header packet to the session bus. */
605         std_session_send_df_header(cb_data, LOG_PREFIX);
606
607         /* Check for empty capture */
608         if ((status & STATUS_READY) && !stop_address) {
609                 packet.type = SR_DF_END;
610                 sr_session_send(cb_data, &packet);
611                 return SR_OK;
612         }
613
614         if (!(buf = g_try_malloc(PACKET_SIZE))) {
615                 sr_err("Packet buffer malloc failed.");
616                 return SR_ERR_MALLOC;
617         }
618
619         /* Check if the trigger is in the samples we are throwing away */
620         trigger_now = now_address == trigger_address ||
621                 ((now_address + 1) % memory_size) == trigger_address;
622
623         /*
624          * STATUS_READY doesn't clear until now_address advances past
625          * addr 0, but for our logic, clear it in that case
626          */
627         if (!now_address)
628                 status &= ~STATUS_READY;
629
630         analyzer_read_start(usb->devhdl);
631
632         /* Calculate how much data to discard */
633         discard = 0;
634         if (status & STATUS_READY) {
635                 /*
636                  * We haven't wrapped around, we need to throw away data from
637                  * our current position to the end of the buffer.
638                  * Additionally, the first two samples captured are always
639                  * bogus.
640                  */
641                 discard += memory_size - now_address + 2;
642                 now_address = 2;
643         }
644
645         /* If we have more samples than we need, discard them */
646         valid_samples = (stop_address - now_address) % memory_size;
647         if (valid_samples > ramsize_trigger + triggerbar) {
648                 discard += valid_samples - (ramsize_trigger + triggerbar);
649                 now_address += valid_samples - (ramsize_trigger + triggerbar);
650         }
651
652         sr_info("Need to discard %d samples.", discard);
653
654         /* Calculate how far in the trigger is */
655         if (trigger_now)
656                 trigger_offset = 0;
657         else
658                 trigger_offset = (trigger_address - now_address) % memory_size;
659
660         /* Recalculate the number of samples available */
661         valid_samples = (stop_address - now_address) % memory_size;
662
663         /* Send the incoming transfer to the session bus. */
664         samples_read = 0;
665         for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) {
666                 unsigned int len;
667                 unsigned int buf_offset;
668
669                 res = analyzer_read_data(usb->devhdl, buf, PACKET_SIZE);
670                 sr_info("Tried to read %d bytes, actually read %d bytes.",
671                         PACKET_SIZE, res);
672
673                 if (discard >= PACKET_SIZE / 4) {
674                         discard -= PACKET_SIZE / 4;
675                         continue;
676                 }
677
678                 len = PACKET_SIZE - discard * 4;
679                 buf_offset = discard * 4;
680                 discard = 0;
681
682                 /* Check if we've read all the samples */
683                 if (samples_read + len / 4 >= valid_samples)
684                         len = (valid_samples - samples_read) * 4;
685                 if (!len)
686                         break;
687
688                 if (samples_read < trigger_offset &&
689                     samples_read + len / 4 > trigger_offset) {
690                         /* Send out samples remaining before trigger */
691                         packet.type = SR_DF_LOGIC;
692                         packet.payload = &logic;
693                         logic.length = (trigger_offset - samples_read) * 4;
694                         logic.unitsize = 4;
695                         logic.data = buf + buf_offset;
696                         sr_session_send(cb_data, &packet);
697                         len -= logic.length;
698                         samples_read += logic.length / 4;
699                         buf_offset += logic.length;
700                 }
701
702                 if (samples_read == trigger_offset) {
703                         /* Send out trigger */
704                         packet.type = SR_DF_TRIGGER;
705                         packet.payload = NULL;
706                         sr_session_send(cb_data, &packet);
707                 }
708
709                 /* Send out data (or data after trigger) */
710                 packet.type = SR_DF_LOGIC;
711                 packet.payload = &logic;
712                 logic.length = len;
713                 logic.unitsize = 4;
714                 logic.data = buf + buf_offset;
715                 sr_session_send(cb_data, &packet);
716                 samples_read += len / 4;
717         }
718         analyzer_read_stop(usb->devhdl);
719         g_free(buf);
720
721         packet.type = SR_DF_END;
722         sr_session_send(cb_data, &packet);
723
724         return SR_OK;
725 }
726
727 /* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
728 static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
729 {
730         struct dev_context *devc;
731         struct sr_usb_dev_inst *usb;
732         struct sr_datafeed_packet packet;
733
734         packet.type = SR_DF_END;
735         sr_session_send(cb_data, &packet);
736
737         if (!(devc = sdi->priv)) {
738                 sr_err("%s: sdi->priv was NULL", __func__);
739                 return SR_ERR_BUG;
740         }
741
742         usb = sdi->conn;
743         analyzer_reset(usb->devhdl);
744         /* TODO: Need to cancel and free any queued up transfers. */
745
746         return SR_OK;
747 }
748
749 SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info = {
750         .name = "zeroplus-logic-cube",
751         .longname = "ZEROPLUS Logic Cube LAP-C series",
752         .api_version = 1,
753         .init = init,
754         .cleanup = cleanup,
755         .scan = scan,
756         .dev_list = dev_list,
757         .dev_clear = NULL,
758         .config_get = config_get,
759         .config_set = config_set,
760         .config_list = config_list,
761         .dev_open = dev_open,
762         .dev_close = dev_close,
763         .dev_acquisition_start = dev_acquisition_start,
764         .dev_acquisition_stop = dev_acquisition_stop,
765         .priv = NULL,
766 };