]> sigrok.org Git - libsigrok.git/blob - hardware/zeroplus-logic-cube/api.c
4ff07830932799cce8b02d4073c3837377078cbd
[libsigrok.git] / hardware / zeroplus-logic-cube / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include "protocol.h"
21
22 #define VENDOR_NAME                     "ZEROPLUS"
23 #define USB_INTERFACE                   0
24 #define USB_CONFIGURATION               1
25 #define NUM_TRIGGER_STAGES              4
26 #define TRIGGER_TYPE                    "01"
27 #define PACKET_SIZE                     2048    /* ?? */
28
29 //#define ZP_EXPERIMENTAL
30
31 struct zp_model {
32         uint16_t vid;
33         uint16_t pid;
34         char *model_name;
35         unsigned int channels;
36         unsigned int sample_depth;      /* In Ksamples/channel */
37         unsigned int max_sampling_freq;
38 };
39
40 /*
41  * Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the
42  * same 128K sample depth.
43  */
44 static const struct zp_model zeroplus_models[] = {
45         {0x0c12, 0x7002, "LAP-16128U",    16, 128,  200},
46         {0x0c12, 0x7009, "LAP-C(16064)",  16, 64,   100},
47         {0x0c12, 0x700a, "LAP-C(16128)",  16, 128,  200},
48         {0x0c12, 0x700b, "LAP-C(32128)",  32, 128,  200},
49         {0x0c12, 0x700c, "LAP-C(321000)", 32, 1024, 200},
50         {0x0c12, 0x700d, "LAP-C(322000)", 32, 2048, 200},
51         {0x0c12, 0x700e, "LAP-C(16032)",  16, 32,   100},
52         {0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200},
53         { 0, 0, 0, 0, 0, 0 }
54 };
55
56 static const int32_t hwcaps[] = {
57         SR_CONF_LOGIC_ANALYZER,
58         SR_CONF_SAMPLERATE,
59         SR_CONF_CAPTURE_RATIO,
60         SR_CONF_VOLTAGE_THRESHOLD,
61         SR_CONF_LIMIT_SAMPLES,
62         SR_CONF_MAX_UNCOMPRESSED_SAMPLES,
63 };
64
65 /*
66  * ZEROPLUS LAP-C (16032) numbers the 16 probes A0-A7 and B0-B7.
67  * We currently ignore other untested/unsupported devices here.
68  */
69 static const char *probe_names[] = {
70         "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",
71         "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",
72         "C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7",
73         "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
74         NULL,
75 };
76
77 SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info;
78 static struct sr_dev_driver *di = &zeroplus_logic_cube_driver_info;
79
80 /*
81  * The hardware supports more samplerates than these, but these are the
82  * options hardcoded into the vendor's Windows GUI.
83  */
84
85 static const uint64_t samplerates_100[] = {
86         SR_HZ(100),
87         SR_HZ(500),
88         SR_KHZ(1),
89         SR_KHZ(5),
90         SR_KHZ(25),
91         SR_KHZ(50),
92         SR_KHZ(100),
93         SR_KHZ(200),
94         SR_KHZ(400),
95         SR_KHZ(800),
96         SR_MHZ(1),
97         SR_MHZ(10),
98         SR_MHZ(25),
99         SR_MHZ(50),
100         SR_MHZ(80),
101         SR_MHZ(100),
102 };
103
104 const uint64_t samplerates_200[] = {
105         SR_HZ(100),
106         SR_HZ(500),
107         SR_KHZ(1),
108         SR_KHZ(5),
109         SR_KHZ(25),
110         SR_KHZ(50),
111         SR_KHZ(100),
112         SR_KHZ(200),
113         SR_KHZ(400),
114         SR_KHZ(800),
115         SR_MHZ(1),
116         SR_MHZ(10),
117         SR_MHZ(25),
118         SR_MHZ(50),
119         SR_MHZ(80),
120         SR_MHZ(100),
121         SR_MHZ(150),
122         SR_MHZ(200),
123 };
124
125 static int dev_close(struct sr_dev_inst *sdi);
126
127 #if 0
128 static int configure_probes(const struct sr_dev_inst *sdi)
129 {
130         struct dev_context *devc;
131         const struct sr_probe *probe;
132         const GSList *l;
133         int probe_bit, stage, i;
134         char *tc;
135
136         /* Note: sdi and sdi->priv are non-NULL, the caller checked this. */
137         devc = sdi->priv;
138
139         devc->probe_mask = 0;
140         for (i = 0; i < NUM_TRIGGER_STAGES; i++) {
141                 devc->trigger_mask[i] = 0;
142                 devc->trigger_value[i] = 0;
143         }
144
145         stage = -1;
146         for (l = sdi->probes; l; l = l->next) {
147                 probe = (struct sr_probe *)l->data;
148                 if (probe->enabled == FALSE)
149                         continue;
150                 probe_bit = 1 << (probe->index);
151                 devc->probe_mask |= probe_bit;
152
153                 if (probe->trigger) {
154                         stage = 0;
155                         for (tc = probe->trigger; *tc; tc++) {
156                                 devc->trigger_mask[stage] |= probe_bit;
157                                 if (*tc == '1')
158                                         devc->trigger_value[stage] |= probe_bit;
159                                 stage++;
160                                 if (stage > NUM_TRIGGER_STAGES)
161                                         return SR_ERR;
162                         }
163                 }
164         }
165
166         return SR_OK;
167 }
168 #endif
169
170 static int configure_probes(const struct sr_dev_inst *sdi)
171 {
172         struct dev_context *devc;
173         const GSList *l;
174         const struct sr_probe *probe;
175         char *tc;
176         int type;
177
178         /* Note: sdi and sdi->priv are non-NULL, the caller checked this. */
179         devc = sdi->priv;
180
181         for (l = sdi->probes; l; l = l->next) {
182                 probe = (struct sr_probe *)l->data;
183                 if (probe->enabled == FALSE)
184                         continue;
185
186                 if ((tc = probe->trigger)) {
187                         switch (*tc) {
188                         case '1':
189                                 type = TRIGGER_HIGH;
190                                 break;
191                         case '0':
192                                 type = TRIGGER_LOW;
193                                 break;
194 #if 0
195                         case 'r':
196                                 type = TRIGGER_POSEDGE;
197                                 break;
198                         case 'f':
199                                 type = TRIGGER_NEGEDGE;
200                                 break;
201                         case 'c':
202                                 type = TRIGGER_ANYEDGE;
203                                 break;
204 #endif
205                         default:
206                                 return SR_ERR;
207                         }
208                         analyzer_add_trigger(probe->index, type);
209                         devc->trigger = 1;
210                 }
211         }
212
213         return SR_OK;
214 }
215
216 SR_PRIV int zp_set_samplerate(struct dev_context *devc, uint64_t samplerate)
217 {
218         int i;
219
220         for (i = 0; ARRAY_SIZE(samplerates_200); i++)
221                 if (samplerate == samplerates_200[i])
222                         break;
223
224         if (i == ARRAY_SIZE(samplerates_200) || samplerate > devc->max_samplerate) {
225                 sr_err("Unsupported samplerate: %" PRIu64 "Hz.", samplerate);
226                 return SR_ERR_ARG;
227         }
228
229         sr_info("Setting samplerate to %" PRIu64 "Hz.", samplerate);
230
231         if (samplerate >= SR_MHZ(1))
232                 analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
233         else if (samplerate >= SR_KHZ(1))
234                 analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
235         else
236                 analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
237
238         devc->cur_samplerate = samplerate;
239
240         return SR_OK;
241 }
242
243 static int dev_clear(void)
244 {
245         return std_dev_clear(di, NULL);
246 }
247
248 static int init(struct sr_context *sr_ctx)
249 {
250         return std_init(sr_ctx, di, LOG_PREFIX);
251 }
252
253 static GSList *scan(GSList *options)
254 {
255         struct sr_dev_inst *sdi;
256         struct sr_probe *probe;
257         struct drv_context *drvc;
258         struct dev_context *devc;
259         const struct zp_model *prof;
260         struct libusb_device_descriptor des;
261         libusb_device **devlist;
262         GSList *devices;
263         int ret, devcnt, i, j;
264
265         (void)options;
266
267         drvc = di->priv;
268
269         devices = NULL;
270
271         /* Find all ZEROPLUS analyzers and add them to device list. */
272         devcnt = 0;
273         libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); /* TODO: Errors. */
274
275         for (i = 0; devlist[i]; i++) {
276                 ret = libusb_get_device_descriptor(devlist[i], &des);
277                 if (ret != 0) {
278                         sr_err("Failed to get device descriptor: %s.",
279                                libusb_error_name(ret));
280                         continue;
281                 }
282
283                 prof = NULL;
284                 for (j = 0; j < zeroplus_models[j].vid; j++) {
285                         if (des.idVendor == zeroplus_models[j].vid &&
286                                 des.idProduct == zeroplus_models[j].pid) {
287                                 prof = &zeroplus_models[j];
288                         }
289                 }
290                 /* Skip if the device was not found. */
291                 if (!prof)
292                         continue;
293                 sr_info("Found ZEROPLUS %s.", prof->model_name);
294
295                 /* Register the device with libsigrok. */
296                 if (!(sdi = sr_dev_inst_new(devcnt, SR_ST_INACTIVE,
297                                 VENDOR_NAME, prof->model_name, NULL))) {
298                         sr_err("%s: sr_dev_inst_new failed", __func__);
299                         return NULL;
300                 }
301                 sdi->driver = di;
302
303                 /* Allocate memory for our private driver context. */
304                 if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) {
305                         sr_err("Device context malloc failed.");
306                         return NULL;
307                 }
308
309                 sdi->priv = devc;
310                 devc->prof = prof;
311                 devc->num_channels = prof->channels;
312 #ifdef ZP_EXPERIMENTAL
313                 devc->max_sample_depth = 128 * 1024;
314                 devc->max_samplerate = 200;
315 #else
316                 devc->max_sample_depth = prof->sample_depth * 1024;
317                 devc->max_samplerate = prof->max_sampling_freq;
318 #endif
319                 devc->max_samplerate *= SR_MHZ(1);
320                 devc->memory_size = MEMORY_SIZE_8K;
321                 // memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES);
322
323                 /* Fill in probelist according to this device's profile. */
324                 for (j = 0; j < devc->num_channels; j++) {
325                         if (!(probe = sr_probe_new(j, SR_PROBE_LOGIC, TRUE,
326                                         probe_names[j])))
327                                 return NULL;
328                         sdi->probes = g_slist_append(sdi->probes, probe);
329                 }
330
331                 devices = g_slist_append(devices, sdi);
332                 drvc->instances = g_slist_append(drvc->instances, sdi);
333                 sdi->inst_type = SR_INST_USB;
334                 sdi->conn = sr_usb_dev_inst_new(
335                         libusb_get_bus_number(devlist[i]),
336                         libusb_get_device_address(devlist[i]), NULL);
337                 devcnt++;
338
339         }
340         libusb_free_device_list(devlist, 1);
341
342         return devices;
343 }
344
345 static GSList *dev_list(void)
346 {
347         return ((struct drv_context *)(di->priv))->instances;
348 }
349
350 static int dev_open(struct sr_dev_inst *sdi)
351 {
352         struct dev_context *devc;
353         struct drv_context *drvc;
354         struct sr_usb_dev_inst *usb;
355         libusb_device **devlist, *dev;
356         struct libusb_device_descriptor des;
357         int device_count, ret, i;
358
359         drvc = di->priv;
360         usb = sdi->conn;
361
362         if (!(devc = sdi->priv)) {
363                 sr_err("%s: sdi->priv was NULL", __func__);
364                 return SR_ERR_ARG;
365         }
366
367         device_count = libusb_get_device_list(drvc->sr_ctx->libusb_ctx,
368                                               &devlist);
369         if (device_count < 0) {
370                 sr_err("Failed to retrieve device list.");
371                 return SR_ERR;
372         }
373
374         dev = NULL;
375         for (i = 0; i < device_count; i++) {
376                 if ((ret = libusb_get_device_descriptor(devlist[i], &des))) {
377                         sr_err("Failed to get device descriptor: %s.",
378                                libusb_error_name(ret));
379                         continue;
380                 }
381                 if (libusb_get_bus_number(devlist[i]) == usb->bus
382                     && libusb_get_device_address(devlist[i]) == usb->address) {
383                         dev = devlist[i];
384                         break;
385                 }
386         }
387         if (!dev) {
388                 sr_err("Device on bus %d address %d disappeared!",
389                        usb->bus, usb->address);
390                 return SR_ERR;
391         }
392
393         if (!(ret = libusb_open(dev, &(usb->devhdl)))) {
394                 sdi->status = SR_ST_ACTIVE;
395                 sr_info("Opened device %d on %d.%d interface %d.",
396                         sdi->index, usb->bus, usb->address, USB_INTERFACE);
397         } else {
398                 sr_err("Failed to open device: %s.", libusb_error_name(ret));
399                 return SR_ERR;
400         }
401
402         ret = libusb_set_configuration(usb->devhdl, USB_CONFIGURATION);
403         if (ret < 0) {
404                 sr_err("Unable to set USB configuration %d: %s.",
405                        USB_CONFIGURATION, libusb_error_name(ret));
406                 return SR_ERR;
407         }
408
409         ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
410         if (ret != 0) {
411                 sr_err("Unable to claim interface: %s.",
412                        libusb_error_name(ret));
413                 return SR_ERR;
414         }
415
416         /* Set default configuration after power on. */
417         if (analyzer_read_status(usb->devhdl) == 0)
418                 analyzer_configure(usb->devhdl);
419
420         analyzer_reset(usb->devhdl);
421         analyzer_initialize(usb->devhdl);
422
423         //analyzer_set_memory_size(MEMORY_SIZE_512K);
424         // analyzer_set_freq(g_freq, g_freq_scale);
425         analyzer_set_trigger_count(1);
426         // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
427         // * get_memory_size(g_memory_size)) / 100) >> 2);
428
429 #if 0
430         if (g_double_mode == 1)
431                 analyzer_set_compression(COMPRESSION_DOUBLE);
432         else if (g_compression == 1)
433                 analyzer_set_compression(COMPRESSION_ENABLE);
434         else
435 #endif
436         analyzer_set_compression(COMPRESSION_NONE);
437
438         if (devc->cur_samplerate == 0) {
439                 /* Samplerate hasn't been set. Default to 1MHz. */
440                 analyzer_set_freq(1, FREQ_SCALE_MHZ);
441                 devc->cur_samplerate = SR_MHZ(1);
442         }
443
444         if (devc->cur_threshold == 0)
445                 set_voltage_threshold(devc, 1.5);
446
447         return SR_OK;
448 }
449
450 static int dev_close(struct sr_dev_inst *sdi)
451 {
452         struct sr_usb_dev_inst *usb;
453
454         usb = sdi->conn;
455
456         if (!usb->devhdl)
457                 return SR_ERR;
458
459         sr_info("Closing device %d on %d.%d interface %d.", sdi->index,
460                 usb->bus, usb->address, USB_INTERFACE);
461         libusb_release_interface(usb->devhdl, USB_INTERFACE);
462         libusb_reset_device(usb->devhdl);
463         libusb_close(usb->devhdl);
464         usb->devhdl = NULL;
465         sdi->status = SR_ST_INACTIVE;
466
467         return SR_OK;
468 }
469
470 static int cleanup(void)
471 {
472         return dev_clear();
473 }
474
475 static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
476                 const struct sr_probe_group *probe_group)
477 {
478         struct dev_context *devc;
479
480         (void)probe_group;
481
482         switch (id) {
483         case SR_CONF_SAMPLERATE:
484                 if (sdi) {
485                         devc = sdi->priv;
486                         *data = g_variant_new_uint64(devc->cur_samplerate);
487                         sr_spew("Returning samplerate: %" PRIu64 "Hz.",
488                                 devc->cur_samplerate);
489                 } else
490                         return SR_ERR_ARG;
491                 break;
492         case SR_CONF_CAPTURE_RATIO:
493                 if (sdi) {
494                         devc = sdi->priv;
495                         *data = g_variant_new_uint64(devc->capture_ratio);
496                 } else
497                         return SR_ERR_ARG;
498                 break;
499         case SR_CONF_VOLTAGE_THRESHOLD:
500                 if (sdi) {
501                         GVariant *range[2];
502                         devc = sdi->priv;
503                         range[0] = g_variant_new_double(devc->cur_threshold);
504                         range[1] = g_variant_new_double(devc->cur_threshold);
505                         *data = g_variant_new_tuple(range, 2);
506                 } else
507                         return SR_ERR_ARG;
508                 break;
509         case SR_CONF_MAX_UNCOMPRESSED_SAMPLES:
510                 if (sdi) {
511                         /* As long as this driver doesn't support compression,
512                          * this is ok. When compression is enabled, this should
513                          * return SR_ERR_NA instead. */
514                         devc = sdi->priv;
515                         *data = g_variant_new_uint64(devc->max_sample_depth);
516                 } else
517                         return SR_ERR;
518                 break;
519         default:
520                 return SR_ERR_NA;
521         }
522
523         return SR_OK;
524 }
525
526 static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi,
527                 const struct sr_probe_group *probe_group)
528 {
529         struct dev_context *devc;
530         gdouble low, high;
531
532         (void)probe_group;
533
534         if (sdi->status != SR_ST_ACTIVE)
535                 return SR_ERR_DEV_CLOSED;
536
537         if (!(devc = sdi->priv)) {
538                 sr_err("%s: sdi->priv was NULL", __func__);
539                 return SR_ERR_ARG;
540         }
541
542         switch (id) {
543         case SR_CONF_SAMPLERATE:
544                 return zp_set_samplerate(devc, g_variant_get_uint64(data));
545         case SR_CONF_LIMIT_SAMPLES:
546                 return set_limit_samples(devc, g_variant_get_uint64(data));
547         case SR_CONF_CAPTURE_RATIO:
548                 return set_capture_ratio(devc, g_variant_get_uint64(data));
549         case SR_CONF_VOLTAGE_THRESHOLD:
550                 g_variant_get(data, "(dd)", &low, &high);
551                 return set_voltage_threshold(devc, (low + high) / 2.0);
552         default:
553                 return SR_ERR_NA;
554         }
555
556         return SR_OK;
557 }
558
559 static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
560                 const struct sr_probe_group *probe_group)
561 {
562         struct dev_context *devc;
563         GVariant *gvar;
564         GVariantBuilder gvb;
565         double v;
566         GVariant *range[2];
567
568         (void)probe_group;
569
570         switch (key) {
571         case SR_CONF_DEVICE_OPTIONS:
572                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
573                                 hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
574                 break;
575         case SR_CONF_SAMPLERATE:
576                 devc = sdi->priv;
577                 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
578                 if (devc->prof->max_sampling_freq == 100) {
579                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
580                                         samplerates_100, ARRAY_SIZE(samplerates_100),
581                                         sizeof(uint64_t));
582                 } else if (devc->prof->max_sampling_freq == 200) {
583                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
584                                         samplerates_200, ARRAY_SIZE(samplerates_200),
585                                         sizeof(uint64_t));
586                 } else {
587                         sr_err("Internal error: Unknown max. samplerate: %d.",
588                                devc->prof->max_sampling_freq);
589                         return SR_ERR_ARG;
590                 }
591                 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
592                 *data = g_variant_builder_end(&gvb);
593                 break;
594         case SR_CONF_TRIGGER_TYPE:
595                 *data = g_variant_new_string(TRIGGER_TYPE);
596                 break;
597         case SR_CONF_VOLTAGE_THRESHOLD:
598                 g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
599                 for (v = -6.0; v <= 6.0; v += 0.1) {
600                         range[0] = g_variant_new_double(v);
601                         range[1] = g_variant_new_double(v);
602                         gvar = g_variant_new_tuple(range, 2);
603                         g_variant_builder_add_value(&gvb, gvar);
604                 }
605                 *data = g_variant_builder_end(&gvb);
606                 break;
607         default:
608                 return SR_ERR_NA;
609         }
610
611         return SR_OK;
612 }
613
614 static int dev_acquisition_start(const struct sr_dev_inst *sdi,
615                 void *cb_data)
616 {
617         struct dev_context *devc;
618         struct sr_usb_dev_inst *usb;
619         struct sr_datafeed_packet packet;
620         struct sr_datafeed_logic logic;
621         unsigned int samples_read;
622         int res;
623         unsigned int packet_num, n;
624         unsigned char *buf;
625         unsigned int status;
626         unsigned int stop_address;
627         unsigned int now_address;
628         unsigned int trigger_address;
629         unsigned int trigger_offset;
630         unsigned int triggerbar;
631         unsigned int ramsize_trigger;
632         unsigned int memory_size;
633         unsigned int valid_samples;
634         unsigned int discard;
635         int trigger_now;
636
637         if (sdi->status != SR_ST_ACTIVE)
638                 return SR_ERR_DEV_CLOSED;
639
640         if (!(devc = sdi->priv)) {
641                 sr_err("%s: sdi->priv was NULL", __func__);
642                 return SR_ERR_ARG;
643         }
644
645         if (configure_probes(sdi) != SR_OK) {
646                 sr_err("Failed to configure probes.");
647                 return SR_ERR;
648         }
649
650         usb = sdi->conn;
651
652         set_triggerbar(devc);
653
654         /* Push configured settings to device. */
655         analyzer_configure(usb->devhdl);
656
657         analyzer_start(usb->devhdl);
658         sr_info("Waiting for data.");
659         analyzer_wait_data(usb->devhdl);
660
661         status = analyzer_read_status(usb->devhdl);
662         stop_address = analyzer_get_stop_address(usb->devhdl);
663         now_address = analyzer_get_now_address(usb->devhdl);
664         trigger_address = analyzer_get_trigger_address(usb->devhdl);
665
666         triggerbar = analyzer_get_triggerbar_address();
667         ramsize_trigger = analyzer_get_ramsize_trigger_address();
668
669         n = get_memory_size(devc->memory_size);
670         memory_size = n / 4;
671
672         sr_info("Status = 0x%x.", status);
673         sr_info("Stop address       = 0x%x.", stop_address);
674         sr_info("Now address        = 0x%x.", now_address);
675         sr_info("Trigger address    = 0x%x.", trigger_address);
676         sr_info("Triggerbar address = 0x%x.", triggerbar);
677         sr_info("Ramsize trigger    = 0x%x.", ramsize_trigger);
678         sr_info("Memory size        = 0x%x.", memory_size);
679
680         /* Send header packet to the session bus. */
681         std_session_send_df_header(cb_data, LOG_PREFIX);
682
683         /* Check for empty capture */
684         if ((status & STATUS_READY) && !stop_address) {
685                 packet.type = SR_DF_END;
686                 sr_session_send(cb_data, &packet);
687                 return SR_OK;
688         }
689
690         if (!(buf = g_try_malloc(PACKET_SIZE))) {
691                 sr_err("Packet buffer malloc failed.");
692                 return SR_ERR_MALLOC;
693         }
694
695         /* Check if the trigger is in the samples we are throwing away */
696         trigger_now = now_address == trigger_address ||
697                 ((now_address + 1) % memory_size) == trigger_address;
698
699         /*
700          * STATUS_READY doesn't clear until now_address advances past
701          * addr 0, but for our logic, clear it in that case
702          */
703         if (!now_address)
704                 status &= ~STATUS_READY;
705
706         analyzer_read_start(usb->devhdl);
707
708         /* Calculate how much data to discard */
709         discard = 0;
710         if (status & STATUS_READY) {
711                 /*
712                  * We haven't wrapped around, we need to throw away data from
713                  * our current position to the end of the buffer.
714                  * Additionally, the first two samples captured are always
715                  * bogus.
716                  */
717                 discard += memory_size - now_address + 2;
718                 now_address = 2;
719         }
720
721         /* If we have more samples than we need, discard them */
722         valid_samples = (stop_address - now_address) % memory_size;
723         if (valid_samples > ramsize_trigger + triggerbar) {
724                 discard += valid_samples - (ramsize_trigger + triggerbar);
725                 now_address += valid_samples - (ramsize_trigger + triggerbar);
726         }
727
728         sr_info("Need to discard %d samples.", discard);
729
730         /* Calculate how far in the trigger is */
731         if (trigger_now)
732                 trigger_offset = 0;
733         else
734                 trigger_offset = (trigger_address - now_address) % memory_size;
735
736         /* Recalculate the number of samples available */
737         valid_samples = (stop_address - now_address) % memory_size;
738
739         /* Send the incoming transfer to the session bus. */
740         samples_read = 0;
741         for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) {
742                 unsigned int len;
743                 unsigned int buf_offset;
744
745                 res = analyzer_read_data(usb->devhdl, buf, PACKET_SIZE);
746                 sr_info("Tried to read %d bytes, actually read %d bytes.",
747                         PACKET_SIZE, res);
748
749                 if (discard >= PACKET_SIZE / 4) {
750                         discard -= PACKET_SIZE / 4;
751                         continue;
752                 }
753
754                 len = PACKET_SIZE - discard * 4;
755                 buf_offset = discard * 4;
756                 discard = 0;
757
758                 /* Check if we've read all the samples */
759                 if (samples_read + len / 4 >= valid_samples)
760                         len = (valid_samples - samples_read) * 4;
761                 if (!len)
762                         break;
763
764                 if (samples_read < trigger_offset &&
765                     samples_read + len / 4 > trigger_offset) {
766                         /* Send out samples remaining before trigger */
767                         packet.type = SR_DF_LOGIC;
768                         packet.payload = &logic;
769                         logic.length = (trigger_offset - samples_read) * 4;
770                         logic.unitsize = 4;
771                         logic.data = buf + buf_offset;
772                         sr_session_send(cb_data, &packet);
773                         len -= logic.length;
774                         samples_read += logic.length / 4;
775                         buf_offset += logic.length;
776                 }
777
778                 if (samples_read == trigger_offset) {
779                         /* Send out trigger */
780                         packet.type = SR_DF_TRIGGER;
781                         packet.payload = NULL;
782                         sr_session_send(cb_data, &packet);
783                 }
784
785                 /* Send out data (or data after trigger) */
786                 packet.type = SR_DF_LOGIC;
787                 packet.payload = &logic;
788                 logic.length = len;
789                 logic.unitsize = 4;
790                 logic.data = buf + buf_offset;
791                 sr_session_send(cb_data, &packet);
792                 samples_read += len / 4;
793         }
794         analyzer_read_stop(usb->devhdl);
795         g_free(buf);
796
797         packet.type = SR_DF_END;
798         sr_session_send(cb_data, &packet);
799
800         return SR_OK;
801 }
802
803 /* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
804 static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
805 {
806         struct dev_context *devc;
807         struct sr_usb_dev_inst *usb;
808         struct sr_datafeed_packet packet;
809
810         packet.type = SR_DF_END;
811         sr_session_send(cb_data, &packet);
812
813         if (!(devc = sdi->priv)) {
814                 sr_err("%s: sdi->priv was NULL", __func__);
815                 return SR_ERR_BUG;
816         }
817
818         usb = sdi->conn;
819         analyzer_reset(usb->devhdl);
820         /* TODO: Need to cancel and free any queued up transfers. */
821
822         return SR_OK;
823 }
824
825 SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info = {
826         .name = "zeroplus-logic-cube",
827         .longname = "ZEROPLUS Logic Cube LAP-C series",
828         .api_version = 1,
829         .init = init,
830         .cleanup = cleanup,
831         .scan = scan,
832         .dev_list = dev_list,
833         .dev_clear = dev_clear,
834         .config_get = config_get,
835         .config_set = config_set,
836         .config_list = config_list,
837         .dev_open = dev_open,
838         .dev_close = dev_close,
839         .dev_acquisition_start = dev_acquisition_start,
840         .dev_acquisition_stop = dev_acquisition_stop,
841         .priv = NULL,
842 };