]> sigrok.org Git - libsigrok.git/blob - hardware/zeroplus-logic-cube/api.c
output/csv: use intermediate time_t var, silence compiler warning
[libsigrok.git] / hardware / zeroplus-logic-cube / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include "protocol.h"
21
22 #define VENDOR_NAME                     "ZEROPLUS"
23 #define USB_INTERFACE                   0
24 #define USB_CONFIGURATION               1
25 #define NUM_TRIGGER_STAGES              4
26 #define TRIGGER_TYPE                    "01"
27 #define PACKET_SIZE                     2048    /* ?? */
28
29 //#define ZP_EXPERIMENTAL
30
31 struct zp_model {
32         uint16_t vid;
33         uint16_t pid;
34         char *model_name;
35         unsigned int channels;
36         unsigned int sample_depth;      /* In Ksamples/channel */
37         unsigned int max_sampling_freq;
38 };
39
40 /*
41  * Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the
42  * same 128K sample depth.
43  */
44 static const struct zp_model zeroplus_models[] = {
45         {0x0c12, 0x7002, "LAP-16128U",    16, 128,  200},
46         {0x0c12, 0x7009, "LAP-C(16064)",  16, 64,   100},
47         {0x0c12, 0x700a, "LAP-C(16128)",  16, 128,  200},
48         {0x0c12, 0x700b, "LAP-C(32128)",  32, 128,  200},
49         {0x0c12, 0x700c, "LAP-C(321000)", 32, 1024, 200},
50         {0x0c12, 0x700d, "LAP-C(322000)", 32, 2048, 200},
51         {0x0c12, 0x700e, "LAP-C(16032)",  16, 32,   100},
52         {0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200},
53         { 0, 0, 0, 0, 0, 0 }
54 };
55
56 static const int32_t hwcaps[] = {
57         SR_CONF_LOGIC_ANALYZER,
58         SR_CONF_SAMPLERATE,
59         SR_CONF_TRIGGER_TYPE,
60         SR_CONF_CAPTURE_RATIO,
61         SR_CONF_VOLTAGE_THRESHOLD,
62         SR_CONF_LIMIT_SAMPLES,
63 };
64
65 /*
66  * ZEROPLUS LAP-C (16032) numbers the 16 channels A0-A7 and B0-B7.
67  * We currently ignore other untested/unsupported devices here.
68  */
69 static const char *channel_names[] = {
70         "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",
71         "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",
72         "C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7",
73         "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
74         NULL,
75 };
76
77 SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info;
78 static struct sr_dev_driver *di = &zeroplus_logic_cube_driver_info;
79
80 /*
81  * The hardware supports more samplerates than these, but these are the
82  * options hardcoded into the vendor's Windows GUI.
83  */
84
85 static const uint64_t samplerates_100[] = {
86         SR_HZ(100),
87         SR_HZ(500),
88         SR_KHZ(1),
89         SR_KHZ(5),
90         SR_KHZ(25),
91         SR_KHZ(50),
92         SR_KHZ(100),
93         SR_KHZ(200),
94         SR_KHZ(400),
95         SR_KHZ(800),
96         SR_MHZ(1),
97         SR_MHZ(10),
98         SR_MHZ(25),
99         SR_MHZ(50),
100         SR_MHZ(80),
101         SR_MHZ(100),
102 };
103
104 const uint64_t samplerates_200[] = {
105         SR_HZ(100),
106         SR_HZ(500),
107         SR_KHZ(1),
108         SR_KHZ(5),
109         SR_KHZ(25),
110         SR_KHZ(50),
111         SR_KHZ(100),
112         SR_KHZ(200),
113         SR_KHZ(400),
114         SR_KHZ(800),
115         SR_MHZ(1),
116         SR_MHZ(10),
117         SR_MHZ(25),
118         SR_MHZ(50),
119         SR_MHZ(80),
120         SR_MHZ(100),
121         SR_MHZ(150),
122         SR_MHZ(200),
123 };
124
125 static int dev_close(struct sr_dev_inst *sdi);
126
127 #if 0
128 static int configure_channels(const struct sr_dev_inst *sdi)
129 {
130         struct dev_context *devc;
131         const struct sr_channel *ch;
132         const GSList *l;
133         int channel_bit, stage, i;
134         char *tc;
135
136         /* Note: sdi and sdi->priv are non-NULL, the caller checked this. */
137         devc = sdi->priv;
138
139         devc->channel_mask = 0;
140         for (i = 0; i < NUM_TRIGGER_STAGES; i++) {
141                 devc->trigger_mask[i] = 0;
142                 devc->trigger_value[i] = 0;
143         }
144
145         stage = -1;
146         for (l = sdi->channels; l; l = l->next) {
147                 ch = (struct sr_channel *)l->data;
148                 if (ch->enabled == FALSE)
149                         continue;
150                 channel_bit = 1 << (ch->index);
151                 devc->channel_mask |= channel_bit;
152
153                 if (ch->trigger) {
154                         stage = 0;
155                         for (tc = ch->trigger; *tc; tc++) {
156                                 devc->trigger_mask[stage] |= channel_bit;
157                                 if (*tc == '1')
158                                         devc->trigger_value[stage] |= channel_bit;
159                                 stage++;
160                                 if (stage > NUM_TRIGGER_STAGES)
161                                         return SR_ERR;
162                         }
163                 }
164         }
165
166         return SR_OK;
167 }
168 #endif
169
170 static int configure_channels(const struct sr_dev_inst *sdi)
171 {
172         struct dev_context *devc;
173         const GSList *l;
174         const struct sr_channel *ch;
175         char *tc;
176         int type;
177
178         /* Note: sdi and sdi->priv are non-NULL, the caller checked this. */
179         devc = sdi->priv;
180
181         for (l = sdi->channels; l; l = l->next) {
182                 ch = (struct sr_channel *)l->data;
183                 if (ch->enabled == FALSE)
184                         continue;
185
186                 if ((tc = ch->trigger)) {
187                         switch (*tc) {
188                         case '1':
189                                 type = TRIGGER_HIGH;
190                                 break;
191                         case '0':
192                                 type = TRIGGER_LOW;
193                                 break;
194 #if 0
195                         case 'r':
196                                 type = TRIGGER_POSEDGE;
197                                 break;
198                         case 'f':
199                                 type = TRIGGER_NEGEDGE;
200                                 break;
201                         case 'c':
202                                 type = TRIGGER_ANYEDGE;
203                                 break;
204 #endif
205                         default:
206                                 return SR_ERR;
207                         }
208                         analyzer_add_trigger(ch->index, type);
209                         devc->trigger = 1;
210                 }
211         }
212
213         return SR_OK;
214 }
215
216 SR_PRIV int zp_set_samplerate(struct dev_context *devc, uint64_t samplerate)
217 {
218         int i;
219
220         for (i = 0; ARRAY_SIZE(samplerates_200); i++)
221                 if (samplerate == samplerates_200[i])
222                         break;
223
224         if (i == ARRAY_SIZE(samplerates_200) || samplerate > devc->max_samplerate) {
225                 sr_err("Unsupported samplerate: %" PRIu64 "Hz.", samplerate);
226                 return SR_ERR_ARG;
227         }
228
229         sr_info("Setting samplerate to %" PRIu64 "Hz.", samplerate);
230
231         if (samplerate >= SR_MHZ(1))
232                 analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
233         else if (samplerate >= SR_KHZ(1))
234                 analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
235         else
236                 analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
237
238         devc->cur_samplerate = samplerate;
239
240         return SR_OK;
241 }
242
243 static int init(struct sr_context *sr_ctx)
244 {
245         return std_init(sr_ctx, di, LOG_PREFIX);
246 }
247
248 static GSList *scan(GSList *options)
249 {
250         struct sr_dev_inst *sdi;
251         struct sr_channel *ch;
252         struct drv_context *drvc;
253         struct dev_context *devc;
254         const struct zp_model *prof;
255         struct libusb_device_descriptor des;
256         libusb_device **devlist;
257         GSList *devices;
258         int ret, devcnt, i, j;
259
260         (void)options;
261
262         drvc = di->priv;
263
264         devices = NULL;
265
266         /* Find all ZEROPLUS analyzers and add them to device list. */
267         devcnt = 0;
268         libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); /* TODO: Errors. */
269
270         for (i = 0; devlist[i]; i++) {
271                 ret = libusb_get_device_descriptor(devlist[i], &des);
272                 if (ret != 0) {
273                         sr_err("Failed to get device descriptor: %s.",
274                                libusb_error_name(ret));
275                         continue;
276                 }
277
278                 prof = NULL;
279                 for (j = 0; j < zeroplus_models[j].vid; j++) {
280                         if (des.idVendor == zeroplus_models[j].vid &&
281                                 des.idProduct == zeroplus_models[j].pid) {
282                                 prof = &zeroplus_models[j];
283                         }
284                 }
285                 /* Skip if the device was not found. */
286                 if (!prof)
287                         continue;
288                 sr_info("Found ZEROPLUS %s.", prof->model_name);
289
290                 /* Register the device with libsigrok. */
291                 if (!(sdi = sr_dev_inst_new(devcnt, SR_ST_INACTIVE,
292                                 VENDOR_NAME, prof->model_name, NULL))) {
293                         sr_err("%s: sr_dev_inst_new failed", __func__);
294                         return NULL;
295                 }
296                 sdi->driver = di;
297
298                 /* Allocate memory for our private driver context. */
299                 if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) {
300                         sr_err("Device context malloc failed.");
301                         return NULL;
302                 }
303
304                 sdi->priv = devc;
305                 devc->prof = prof;
306                 devc->num_channels = prof->channels;
307 #ifdef ZP_EXPERIMENTAL
308                 devc->max_sample_depth = 128 * 1024;
309                 devc->max_samplerate = 200;
310 #else
311                 devc->max_sample_depth = prof->sample_depth * 1024;
312                 devc->max_samplerate = prof->max_sampling_freq;
313 #endif
314                 devc->max_samplerate *= SR_MHZ(1);
315                 devc->memory_size = MEMORY_SIZE_8K;
316                 // memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES);
317
318                 /* Fill in channellist according to this device's profile. */
319                 for (j = 0; j < devc->num_channels; j++) {
320                         if (!(ch = sr_channel_new(j, SR_CHANNEL_LOGIC, TRUE,
321                                         channel_names[j])))
322                                 return NULL;
323                         sdi->channels = g_slist_append(sdi->channels, ch);
324                 }
325
326                 devices = g_slist_append(devices, sdi);
327                 drvc->instances = g_slist_append(drvc->instances, sdi);
328                 sdi->inst_type = SR_INST_USB;
329                 sdi->conn = sr_usb_dev_inst_new(
330                         libusb_get_bus_number(devlist[i]),
331                         libusb_get_device_address(devlist[i]), NULL);
332                 devcnt++;
333
334         }
335         libusb_free_device_list(devlist, 1);
336
337         return devices;
338 }
339
340 static GSList *dev_list(void)
341 {
342         return ((struct drv_context *)(di->priv))->instances;
343 }
344
345 static int dev_open(struct sr_dev_inst *sdi)
346 {
347         struct dev_context *devc;
348         struct drv_context *drvc;
349         struct sr_usb_dev_inst *usb;
350         libusb_device **devlist, *dev;
351         struct libusb_device_descriptor des;
352         int device_count, ret, i;
353
354         drvc = di->priv;
355         usb = sdi->conn;
356
357         if (!(devc = sdi->priv)) {
358                 sr_err("%s: sdi->priv was NULL", __func__);
359                 return SR_ERR_ARG;
360         }
361
362         device_count = libusb_get_device_list(drvc->sr_ctx->libusb_ctx,
363                                               &devlist);
364         if (device_count < 0) {
365                 sr_err("Failed to retrieve device list.");
366                 return SR_ERR;
367         }
368
369         dev = NULL;
370         for (i = 0; i < device_count; i++) {
371                 if ((ret = libusb_get_device_descriptor(devlist[i], &des))) {
372                         sr_err("Failed to get device descriptor: %s.",
373                                libusb_error_name(ret));
374                         continue;
375                 }
376                 if (libusb_get_bus_number(devlist[i]) == usb->bus
377                     && libusb_get_device_address(devlist[i]) == usb->address) {
378                         dev = devlist[i];
379                         break;
380                 }
381         }
382         if (!dev) {
383                 sr_err("Device on bus %d address %d disappeared!",
384                        usb->bus, usb->address);
385                 return SR_ERR;
386         }
387
388         if (!(ret = libusb_open(dev, &(usb->devhdl)))) {
389                 sdi->status = SR_ST_ACTIVE;
390                 sr_info("Opened device %d on %d.%d interface %d.",
391                         sdi->index, usb->bus, usb->address, USB_INTERFACE);
392         } else {
393                 sr_err("Failed to open device: %s.", libusb_error_name(ret));
394                 return SR_ERR;
395         }
396
397         ret = libusb_set_configuration(usb->devhdl, USB_CONFIGURATION);
398         if (ret < 0) {
399                 sr_err("Unable to set USB configuration %d: %s.",
400                        USB_CONFIGURATION, libusb_error_name(ret));
401                 return SR_ERR;
402         }
403
404         ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
405         if (ret != 0) {
406                 sr_err("Unable to claim interface: %s.",
407                        libusb_error_name(ret));
408                 return SR_ERR;
409         }
410
411         /* Set default configuration after power on. */
412         if (analyzer_read_status(usb->devhdl) == 0)
413                 analyzer_configure(usb->devhdl);
414
415         analyzer_reset(usb->devhdl);
416         analyzer_initialize(usb->devhdl);
417
418         //analyzer_set_memory_size(MEMORY_SIZE_512K);
419         // analyzer_set_freq(g_freq, g_freq_scale);
420         analyzer_set_trigger_count(1);
421         // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
422         // * get_memory_size(g_memory_size)) / 100) >> 2);
423
424 #if 0
425         if (g_double_mode == 1)
426                 analyzer_set_compression(COMPRESSION_DOUBLE);
427         else if (g_compression == 1)
428                 analyzer_set_compression(COMPRESSION_ENABLE);
429         else
430 #endif
431         analyzer_set_compression(COMPRESSION_NONE);
432
433         if (devc->cur_samplerate == 0) {
434                 /* Samplerate hasn't been set. Default to 1MHz. */
435                 analyzer_set_freq(1, FREQ_SCALE_MHZ);
436                 devc->cur_samplerate = SR_MHZ(1);
437         }
438
439         if (devc->cur_threshold == 0)
440                 set_voltage_threshold(devc, 1.5);
441
442         return SR_OK;
443 }
444
445 static int dev_close(struct sr_dev_inst *sdi)
446 {
447         struct sr_usb_dev_inst *usb;
448
449         usb = sdi->conn;
450
451         if (!usb->devhdl)
452                 return SR_ERR;
453
454         sr_info("Closing device %d on %d.%d interface %d.", sdi->index,
455                 usb->bus, usb->address, USB_INTERFACE);
456         libusb_release_interface(usb->devhdl, USB_INTERFACE);
457         libusb_reset_device(usb->devhdl);
458         libusb_close(usb->devhdl);
459         usb->devhdl = NULL;
460         sdi->status = SR_ST_INACTIVE;
461
462         return SR_OK;
463 }
464
465 static int cleanup(void)
466 {
467         return std_dev_clear(di, NULL);
468 }
469
470 static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
471                 const struct sr_channel_group *cg)
472 {
473         struct dev_context *devc;
474
475         (void)cg;
476
477         switch (id) {
478         case SR_CONF_SAMPLERATE:
479                 if (sdi) {
480                         devc = sdi->priv;
481                         *data = g_variant_new_uint64(devc->cur_samplerate);
482                         sr_spew("Returning samplerate: %" PRIu64 "Hz.",
483                                 devc->cur_samplerate);
484                 } else
485                         return SR_ERR_ARG;
486                 break;
487         case SR_CONF_CAPTURE_RATIO:
488                 if (sdi) {
489                         devc = sdi->priv;
490                         *data = g_variant_new_uint64(devc->capture_ratio);
491                 } else
492                         return SR_ERR_ARG;
493                 break;
494         case SR_CONF_VOLTAGE_THRESHOLD:
495                 if (sdi) {
496                         GVariant *range[2];
497                         devc = sdi->priv;
498                         range[0] = g_variant_new_double(devc->cur_threshold);
499                         range[1] = g_variant_new_double(devc->cur_threshold);
500                         *data = g_variant_new_tuple(range, 2);
501                 } else
502                         return SR_ERR_ARG;
503                 break;
504         default:
505                 return SR_ERR_NA;
506         }
507
508         return SR_OK;
509 }
510
511 static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi,
512                 const struct sr_channel_group *cg)
513 {
514         struct dev_context *devc;
515         gdouble low, high;
516
517         (void)cg;
518
519         if (sdi->status != SR_ST_ACTIVE)
520                 return SR_ERR_DEV_CLOSED;
521
522         if (!(devc = sdi->priv)) {
523                 sr_err("%s: sdi->priv was NULL", __func__);
524                 return SR_ERR_ARG;
525         }
526
527         switch (id) {
528         case SR_CONF_SAMPLERATE:
529                 return zp_set_samplerate(devc, g_variant_get_uint64(data));
530         case SR_CONF_LIMIT_SAMPLES:
531                 return set_limit_samples(devc, g_variant_get_uint64(data));
532         case SR_CONF_CAPTURE_RATIO:
533                 return set_capture_ratio(devc, g_variant_get_uint64(data));
534         case SR_CONF_VOLTAGE_THRESHOLD:
535                 g_variant_get(data, "(dd)", &low, &high);
536                 return set_voltage_threshold(devc, (low + high) / 2.0);
537         default:
538                 return SR_ERR_NA;
539         }
540
541         return SR_OK;
542 }
543
544 static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
545                 const struct sr_channel_group *cg)
546 {
547         struct dev_context *devc;
548         GVariant *gvar, *grange[2];
549         GVariantBuilder gvb;
550         double v;
551         GVariant *range[2];
552
553         (void)cg;
554
555         switch (key) {
556         case SR_CONF_DEVICE_OPTIONS:
557                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
558                                 hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
559                 break;
560         case SR_CONF_SAMPLERATE:
561                 devc = sdi->priv;
562                 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
563                 if (devc->prof->max_sampling_freq == 100) {
564                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
565                                         samplerates_100, ARRAY_SIZE(samplerates_100),
566                                         sizeof(uint64_t));
567                 } else if (devc->prof->max_sampling_freq == 200) {
568                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
569                                         samplerates_200, ARRAY_SIZE(samplerates_200),
570                                         sizeof(uint64_t));
571                 } else {
572                         sr_err("Internal error: Unknown max. samplerate: %d.",
573                                devc->prof->max_sampling_freq);
574                         return SR_ERR_ARG;
575                 }
576                 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
577                 *data = g_variant_builder_end(&gvb);
578                 break;
579         case SR_CONF_TRIGGER_TYPE:
580                 *data = g_variant_new_string(TRIGGER_TYPE);
581                 break;
582         case SR_CONF_VOLTAGE_THRESHOLD:
583                 g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
584                 for (v = -6.0; v <= 6.0; v += 0.1) {
585                         range[0] = g_variant_new_double(v);
586                         range[1] = g_variant_new_double(v);
587                         gvar = g_variant_new_tuple(range, 2);
588                         g_variant_builder_add_value(&gvb, gvar);
589                 }
590                 *data = g_variant_builder_end(&gvb);
591                 break;
592         case SR_CONF_LIMIT_SAMPLES:
593                 if (!sdi)
594                         return SR_ERR_ARG;
595                 devc = sdi->priv;
596                 grange[0] = g_variant_new_uint64(0);
597                 grange[1] = g_variant_new_uint64(devc->max_sample_depth);
598                 *data = g_variant_new_tuple(grange, 2);
599                 break;
600         default:
601                 return SR_ERR_NA;
602         }
603
604         return SR_OK;
605 }
606
607 static int dev_acquisition_start(const struct sr_dev_inst *sdi,
608                 void *cb_data)
609 {
610         struct dev_context *devc;
611         struct sr_usb_dev_inst *usb;
612         struct sr_datafeed_packet packet;
613         struct sr_datafeed_logic logic;
614         unsigned int samples_read;
615         int res;
616         unsigned int packet_num, n;
617         unsigned char *buf;
618         unsigned int status;
619         unsigned int stop_address;
620         unsigned int now_address;
621         unsigned int trigger_address;
622         unsigned int trigger_offset;
623         unsigned int triggerbar;
624         unsigned int ramsize_trigger;
625         unsigned int memory_size;
626         unsigned int valid_samples;
627         unsigned int discard;
628         int trigger_now;
629
630         if (sdi->status != SR_ST_ACTIVE)
631                 return SR_ERR_DEV_CLOSED;
632
633         if (!(devc = sdi->priv)) {
634                 sr_err("%s: sdi->priv was NULL", __func__);
635                 return SR_ERR_ARG;
636         }
637
638         if (configure_channels(sdi) != SR_OK) {
639                 sr_err("Failed to configure channels.");
640                 return SR_ERR;
641         }
642
643         usb = sdi->conn;
644
645         set_triggerbar(devc);
646
647         /* Push configured settings to device. */
648         analyzer_configure(usb->devhdl);
649
650         analyzer_start(usb->devhdl);
651         sr_info("Waiting for data.");
652         analyzer_wait_data(usb->devhdl);
653
654         status = analyzer_read_status(usb->devhdl);
655         stop_address = analyzer_get_stop_address(usb->devhdl);
656         now_address = analyzer_get_now_address(usb->devhdl);
657         trigger_address = analyzer_get_trigger_address(usb->devhdl);
658
659         triggerbar = analyzer_get_triggerbar_address();
660         ramsize_trigger = analyzer_get_ramsize_trigger_address();
661
662         n = get_memory_size(devc->memory_size);
663         memory_size = n / 4;
664
665         sr_info("Status = 0x%x.", status);
666         sr_info("Stop address       = 0x%x.", stop_address);
667         sr_info("Now address        = 0x%x.", now_address);
668         sr_info("Trigger address    = 0x%x.", trigger_address);
669         sr_info("Triggerbar address = 0x%x.", triggerbar);
670         sr_info("Ramsize trigger    = 0x%x.", ramsize_trigger);
671         sr_info("Memory size        = 0x%x.", memory_size);
672
673         /* Send header packet to the session bus. */
674         std_session_send_df_header(cb_data, LOG_PREFIX);
675
676         /* Check for empty capture */
677         if ((status & STATUS_READY) && !stop_address) {
678                 packet.type = SR_DF_END;
679                 sr_session_send(cb_data, &packet);
680                 return SR_OK;
681         }
682
683         if (!(buf = g_try_malloc(PACKET_SIZE))) {
684                 sr_err("Packet buffer malloc failed.");
685                 return SR_ERR_MALLOC;
686         }
687
688         /* Check if the trigger is in the samples we are throwing away */
689         trigger_now = now_address == trigger_address ||
690                 ((now_address + 1) % memory_size) == trigger_address;
691
692         /*
693          * STATUS_READY doesn't clear until now_address advances past
694          * addr 0, but for our logic, clear it in that case
695          */
696         if (!now_address)
697                 status &= ~STATUS_READY;
698
699         analyzer_read_start(usb->devhdl);
700
701         /* Calculate how much data to discard */
702         discard = 0;
703         if (status & STATUS_READY) {
704                 /*
705                  * We haven't wrapped around, we need to throw away data from
706                  * our current position to the end of the buffer.
707                  * Additionally, the first two samples captured are always
708                  * bogus.
709                  */
710                 discard += memory_size - now_address + 2;
711                 now_address = 2;
712         }
713
714         /* If we have more samples than we need, discard them */
715         valid_samples = (stop_address - now_address) % memory_size;
716         if (valid_samples > ramsize_trigger + triggerbar) {
717                 discard += valid_samples - (ramsize_trigger + triggerbar);
718                 now_address += valid_samples - (ramsize_trigger + triggerbar);
719         }
720
721         sr_info("Need to discard %d samples.", discard);
722
723         /* Calculate how far in the trigger is */
724         if (trigger_now)
725                 trigger_offset = 0;
726         else
727                 trigger_offset = (trigger_address - now_address) % memory_size;
728
729         /* Recalculate the number of samples available */
730         valid_samples = (stop_address - now_address) % memory_size;
731
732         /* Send the incoming transfer to the session bus. */
733         samples_read = 0;
734         for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) {
735                 unsigned int len;
736                 unsigned int buf_offset;
737
738                 res = analyzer_read_data(usb->devhdl, buf, PACKET_SIZE);
739                 sr_info("Tried to read %d bytes, actually read %d bytes.",
740                         PACKET_SIZE, res);
741
742                 if (discard >= PACKET_SIZE / 4) {
743                         discard -= PACKET_SIZE / 4;
744                         continue;
745                 }
746
747                 len = PACKET_SIZE - discard * 4;
748                 buf_offset = discard * 4;
749                 discard = 0;
750
751                 /* Check if we've read all the samples */
752                 if (samples_read + len / 4 >= valid_samples)
753                         len = (valid_samples - samples_read) * 4;
754                 if (!len)
755                         break;
756
757                 if (samples_read < trigger_offset &&
758                     samples_read + len / 4 > trigger_offset) {
759                         /* Send out samples remaining before trigger */
760                         packet.type = SR_DF_LOGIC;
761                         packet.payload = &logic;
762                         logic.length = (trigger_offset - samples_read) * 4;
763                         logic.unitsize = 4;
764                         logic.data = buf + buf_offset;
765                         sr_session_send(cb_data, &packet);
766                         len -= logic.length;
767                         samples_read += logic.length / 4;
768                         buf_offset += logic.length;
769                 }
770
771                 if (samples_read == trigger_offset) {
772                         /* Send out trigger */
773                         packet.type = SR_DF_TRIGGER;
774                         packet.payload = NULL;
775                         sr_session_send(cb_data, &packet);
776                 }
777
778                 /* Send out data (or data after trigger) */
779                 packet.type = SR_DF_LOGIC;
780                 packet.payload = &logic;
781                 logic.length = len;
782                 logic.unitsize = 4;
783                 logic.data = buf + buf_offset;
784                 sr_session_send(cb_data, &packet);
785                 samples_read += len / 4;
786         }
787         analyzer_read_stop(usb->devhdl);
788         g_free(buf);
789
790         packet.type = SR_DF_END;
791         sr_session_send(cb_data, &packet);
792
793         return SR_OK;
794 }
795
796 /* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
797 static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
798 {
799         struct dev_context *devc;
800         struct sr_usb_dev_inst *usb;
801         struct sr_datafeed_packet packet;
802
803         packet.type = SR_DF_END;
804         sr_session_send(cb_data, &packet);
805
806         if (!(devc = sdi->priv)) {
807                 sr_err("%s: sdi->priv was NULL", __func__);
808                 return SR_ERR_BUG;
809         }
810
811         usb = sdi->conn;
812         analyzer_reset(usb->devhdl);
813         /* TODO: Need to cancel and free any queued up transfers. */
814
815         return SR_OK;
816 }
817
818 SR_PRIV struct sr_dev_driver zeroplus_logic_cube_driver_info = {
819         .name = "zeroplus-logic-cube",
820         .longname = "ZEROPLUS Logic Cube LAP-C series",
821         .api_version = 1,
822         .init = init,
823         .cleanup = cleanup,
824         .scan = scan,
825         .dev_list = dev_list,
826         .dev_clear = NULL,
827         .config_get = config_get,
828         .config_set = config_set,
829         .config_list = config_list,
830         .dev_open = dev_open,
831         .dev_close = dev_close,
832         .dev_acquisition_start = dev_acquisition_start,
833         .dev_acquisition_stop = dev_acquisition_stop,
834         .priv = NULL,
835 };