]> sigrok.org Git - libsigrok.git/blob - hardware/asix-sigma/asix-sigma.c
017caea1f633ce4a9ba715d592e64cccf996e58c
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5  * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6  * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21
22 /*
23  * ASIX SIGMA/SIGMA2 logic analyzer driver
24  */
25
26 #include <glib.h>
27 #include <glib/gstdio.h>
28 #include <ftdi.h>
29 #include <string.h>
30 #include "libsigrok.h"
31 #include "libsigrok-internal.h"
32 #include "asix-sigma.h"
33
34 #define USB_VENDOR                      0xa600
35 #define USB_PRODUCT                     0xa000
36 #define USB_DESCRIPTION                 "ASIX SIGMA"
37 #define USB_VENDOR_NAME                 "ASIX"
38 #define USB_MODEL_NAME                  "SIGMA"
39 #define USB_MODEL_VERSION               ""
40 #define TRIGGER_TYPE                    "rf10"
41 #define NUM_PROBES                      16
42
43 SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
44 static struct sr_dev_driver *di = &asix_sigma_driver_info;
45 static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
46
47 static const uint64_t samplerates[] = {
48         SR_KHZ(200),
49         SR_KHZ(250),
50         SR_KHZ(500),
51         SR_MHZ(1),
52         SR_MHZ(5),
53         SR_MHZ(10),
54         SR_MHZ(25),
55         SR_MHZ(50),
56         SR_MHZ(100),
57         SR_MHZ(200),
58 };
59
60 /*
61  * Probe numbers seem to go from 1-16, according to this image:
62  * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
63  * (the cable has two additional GND pins, and a TI and TO pin)
64  */
65 static const char *probe_names[NUM_PROBES + 1] = {
66         "1", "2", "3", "4", "5", "6", "7", "8",
67         "9", "10", "11", "12", "13", "14", "15", "16",
68         NULL,
69 };
70
71 static const int32_t hwcaps[] = {
72         SR_CONF_LOGIC_ANALYZER,
73         SR_CONF_SAMPLERATE,
74         SR_CONF_CAPTURE_RATIO,
75         SR_CONF_LIMIT_MSEC,
76 };
77
78 /* Force the FPGA to reboot. */
79 static uint8_t suicide[] = {
80         0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
81 };
82
83 /* Prepare to upload firmware (FPGA specific). */
84 static uint8_t init[] = {
85         0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
86 };
87
88 /* Initialize the logic analyzer mode. */
89 static uint8_t logic_mode_start[] = {
90         0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
91         0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
92 };
93
94 static const char *firmware_files[] = {
95         "asix-sigma-50.fw",     /* 50 MHz, supports 8 bit fractions */
96         "asix-sigma-100.fw",    /* 100 MHz */
97         "asix-sigma-200.fw",    /* 200 MHz */
98         "asix-sigma-50sync.fw", /* Synchronous clock from pin */
99         "asix-sigma-phasor.fw", /* Frequency counter */
100 };
101
102 static int sigma_read(void *buf, size_t size, struct dev_context *devc)
103 {
104         int ret;
105
106         ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
107         if (ret < 0) {
108                 sr_err("ftdi_read_data failed: %s",
109                        ftdi_get_error_string(&devc->ftdic));
110         }
111
112         return ret;
113 }
114
115 static int sigma_write(void *buf, size_t size, struct dev_context *devc)
116 {
117         int ret;
118
119         ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
120         if (ret < 0) {
121                 sr_err("ftdi_write_data failed: %s",
122                        ftdi_get_error_string(&devc->ftdic));
123         } else if ((size_t) ret != size) {
124                 sr_err("ftdi_write_data did not complete write.");
125         }
126
127         return ret;
128 }
129
130 static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
131                                 struct dev_context *devc)
132 {
133         size_t i;
134         uint8_t buf[len + 2];
135         int idx = 0;
136
137         buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
138         buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
139
140         for (i = 0; i < len; ++i) {
141                 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
142                 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
143         }
144
145         return sigma_write(buf, idx, devc);
146 }
147
148 static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
149 {
150         return sigma_write_register(reg, &value, 1, devc);
151 }
152
153 static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
154                                struct dev_context *devc)
155 {
156         uint8_t buf[3];
157
158         buf[0] = REG_ADDR_LOW | (reg & 0xf);
159         buf[1] = REG_ADDR_HIGH | (reg >> 4);
160         buf[2] = REG_READ_ADDR;
161
162         sigma_write(buf, sizeof(buf), devc);
163
164         return sigma_read(data, len, devc);
165 }
166
167 static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
168 {
169         uint8_t value;
170
171         if (1 != sigma_read_register(reg, &value, 1, devc)) {
172                 sr_err("sigma_get_register: 1 byte expected");
173                 return 0;
174         }
175
176         return value;
177 }
178
179 static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
180                           struct dev_context *devc)
181 {
182         uint8_t buf[] = {
183                 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
184
185                 REG_READ_ADDR | NEXT_REG,
186                 REG_READ_ADDR | NEXT_REG,
187                 REG_READ_ADDR | NEXT_REG,
188                 REG_READ_ADDR | NEXT_REG,
189                 REG_READ_ADDR | NEXT_REG,
190                 REG_READ_ADDR | NEXT_REG,
191         };
192         uint8_t result[6];
193
194         sigma_write(buf, sizeof(buf), devc);
195
196         sigma_read(result, sizeof(result), devc);
197
198         *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
199         *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
200
201         /* Not really sure why this must be done, but according to spec. */
202         if ((--*stoppos & 0x1ff) == 0x1ff)
203                 stoppos -= 64;
204
205         if ((*--triggerpos & 0x1ff) == 0x1ff)
206                 triggerpos -= 64;
207
208         return 1;
209 }
210
211 static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
212                            uint8_t *data, struct dev_context *devc)
213 {
214         size_t i;
215         uint8_t buf[4096];
216         int idx = 0;
217
218         /* Send the startchunk. Index start with 1. */
219         buf[0] = startchunk >> 8;
220         buf[1] = startchunk & 0xff;
221         sigma_write_register(WRITE_MEMROW, buf, 2, devc);
222
223         /* Read the DRAM. */
224         buf[idx++] = REG_DRAM_BLOCK;
225         buf[idx++] = REG_DRAM_WAIT_ACK;
226
227         for (i = 0; i < numchunks; ++i) {
228                 /* Alternate bit to copy from DRAM to cache. */
229                 if (i != (numchunks - 1))
230                         buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
231
232                 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
233
234                 if (i != (numchunks - 1))
235                         buf[idx++] = REG_DRAM_WAIT_ACK;
236         }
237
238         sigma_write(buf, idx, devc);
239
240         return sigma_read(data, numchunks * CHUNK_SIZE, devc);
241 }
242
243 /* Upload trigger look-up tables to Sigma. */
244 static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
245 {
246         int i;
247         uint8_t tmp[2];
248         uint16_t bit;
249
250         /* Transpose the table and send to Sigma. */
251         for (i = 0; i < 16; ++i) {
252                 bit = 1 << i;
253
254                 tmp[0] = tmp[1] = 0;
255
256                 if (lut->m2d[0] & bit)
257                         tmp[0] |= 0x01;
258                 if (lut->m2d[1] & bit)
259                         tmp[0] |= 0x02;
260                 if (lut->m2d[2] & bit)
261                         tmp[0] |= 0x04;
262                 if (lut->m2d[3] & bit)
263                         tmp[0] |= 0x08;
264
265                 if (lut->m3 & bit)
266                         tmp[0] |= 0x10;
267                 if (lut->m3s & bit)
268                         tmp[0] |= 0x20;
269                 if (lut->m4 & bit)
270                         tmp[0] |= 0x40;
271
272                 if (lut->m0d[0] & bit)
273                         tmp[1] |= 0x01;
274                 if (lut->m0d[1] & bit)
275                         tmp[1] |= 0x02;
276                 if (lut->m0d[2] & bit)
277                         tmp[1] |= 0x04;
278                 if (lut->m0d[3] & bit)
279                         tmp[1] |= 0x08;
280
281                 if (lut->m1d[0] & bit)
282                         tmp[1] |= 0x10;
283                 if (lut->m1d[1] & bit)
284                         tmp[1] |= 0x20;
285                 if (lut->m1d[2] & bit)
286                         tmp[1] |= 0x40;
287                 if (lut->m1d[3] & bit)
288                         tmp[1] |= 0x80;
289
290                 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
291                                      devc);
292                 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
293         }
294
295         /* Send the parameters */
296         sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
297                              sizeof(lut->params), devc);
298
299         return SR_OK;
300 }
301
302 /* Generate the bitbang stream for programming the FPGA. */
303 static int bin2bitbang(const char *filename,
304                        unsigned char **buf, size_t *buf_size)
305 {
306         FILE *f;
307         unsigned long file_size;
308         unsigned long offset = 0;
309         unsigned char *p;
310         uint8_t *firmware;
311         unsigned long fwsize = 0;
312         const int buffer_size = 65536;
313         size_t i;
314         int c, bit, v;
315         uint32_t imm = 0x3f6df2ab;
316
317         f = g_fopen(filename, "rb");
318         if (!f) {
319                 sr_err("g_fopen(\"%s\", \"rb\")", filename);
320                 return SR_ERR;
321         }
322
323         if (-1 == fseek(f, 0, SEEK_END)) {
324                 sr_err("fseek on %s failed", filename);
325                 fclose(f);
326                 return SR_ERR;
327         }
328
329         file_size = ftell(f);
330
331         fseek(f, 0, SEEK_SET);
332
333         if (!(firmware = g_try_malloc(buffer_size))) {
334                 sr_err("%s: firmware malloc failed", __func__);
335                 fclose(f);
336                 return SR_ERR_MALLOC;
337         }
338
339         while ((c = getc(f)) != EOF) {
340                 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
341                 firmware[fwsize++] = c ^ imm;
342         }
343         fclose(f);
344
345         if(fwsize != file_size) {
346             sr_err("%s: Error reading firmware", filename);
347             fclose(f);
348             g_free(firmware);
349             return SR_ERR;
350         }
351
352         *buf_size = fwsize * 2 * 8;
353
354         *buf = p = (unsigned char *)g_try_malloc(*buf_size);
355         if (!p) {
356                 sr_err("%s: buf/p malloc failed", __func__);
357                 g_free(firmware);
358                 return SR_ERR_MALLOC;
359         }
360
361         for (i = 0; i < fwsize; ++i) {
362                 for (bit = 7; bit >= 0; --bit) {
363                         v = firmware[i] & 1 << bit ? 0x40 : 0x00;
364                         p[offset++] = v | 0x01;
365                         p[offset++] = v;
366                 }
367         }
368
369         g_free(firmware);
370
371         if (offset != *buf_size) {
372                 g_free(*buf);
373                 sr_err("Error reading firmware %s "
374                        "offset=%ld, file_size=%ld, buf_size=%zd.",
375                        filename, offset, file_size, *buf_size);
376
377                 return SR_ERR;
378         }
379
380         return SR_OK;
381 }
382
383 static int clear_instances(void)
384 {
385         GSList *l;
386         struct sr_dev_inst *sdi;
387         struct drv_context *drvc;
388         struct dev_context *devc;
389
390         drvc = di->priv;
391
392         /* Properly close all devices. */
393         for (l = drvc->instances; l; l = l->next) {
394                 if (!(sdi = l->data)) {
395                         /* Log error, but continue cleaning up the rest. */
396                         sr_err("%s: sdi was NULL, continuing", __func__);
397                         continue;
398                 }
399                 if (sdi->priv) {
400                         devc = sdi->priv;
401                         ftdi_deinit(&devc->ftdic);
402                 }
403                 sr_dev_inst_free(sdi);
404         }
405         g_slist_free(drvc->instances);
406         drvc->instances = NULL;
407
408         return SR_OK;
409 }
410
411 static int hw_init(struct sr_context *sr_ctx)
412 {
413         return std_hw_init(sr_ctx, di, LOG_PREFIX);
414 }
415
416 static GSList *hw_scan(GSList *options)
417 {
418         struct sr_dev_inst *sdi;
419         struct sr_probe *probe;
420         struct drv_context *drvc;
421         struct dev_context *devc;
422         GSList *devices;
423         struct ftdi_device_list *devlist;
424         char serial_txt[10];
425         uint32_t serial;
426         int ret, i;
427
428         (void)options;
429
430         drvc = di->priv;
431
432         devices = NULL;
433
434         if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
435                 sr_err("%s: devc malloc failed", __func__);
436                 return NULL;
437         }
438
439         ftdi_init(&devc->ftdic);
440
441         /* Look for SIGMAs. */
442
443         if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
444             USB_VENDOR, USB_PRODUCT)) <= 0) {
445                 if (ret < 0)
446                         sr_err("ftdi_usb_find_all(): %d", ret);
447                 goto free;
448         }
449
450         /* Make sure it's a version 1 or 2 SIGMA. */
451         ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
452                              serial_txt, sizeof(serial_txt));
453         sscanf(serial_txt, "%x", &serial);
454
455         if (serial < 0xa6010000 || serial > 0xa602ffff) {
456                 sr_err("Only SIGMA and SIGMA2 are supported "
457                        "in this version of libsigrok.");
458                 goto free;
459         }
460
461         sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
462
463         devc->cur_samplerate = 0;
464         devc->period_ps = 0;
465         devc->limit_msec = 0;
466         devc->cur_firmware = -1;
467         devc->num_probes = 0;
468         devc->samples_per_event = 0;
469         devc->capture_ratio = 50;
470         devc->use_triggers = 0;
471
472         /* Register SIGMA device. */
473         if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
474                                     USB_MODEL_NAME, USB_MODEL_VERSION))) {
475                 sr_err("%s: sdi was NULL", __func__);
476                 goto free;
477         }
478         sdi->driver = di;
479
480         for (i = 0; probe_names[i]; i++) {
481                 if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE,
482                                 probe_names[i])))
483                         return NULL;
484                 sdi->probes = g_slist_append(sdi->probes, probe);
485         }
486
487         devices = g_slist_append(devices, sdi);
488         drvc->instances = g_slist_append(drvc->instances, sdi);
489         sdi->priv = devc;
490
491         /* We will open the device again when we need it. */
492         ftdi_list_free(&devlist);
493
494         return devices;
495
496 free:
497         ftdi_deinit(&devc->ftdic);
498         g_free(devc);
499         return NULL;
500 }
501
502 static GSList *hw_dev_list(void)
503 {
504         return ((struct drv_context *)(di->priv))->instances;
505 }
506
507 static int upload_firmware(int firmware_idx, struct dev_context *devc)
508 {
509         int ret;
510         unsigned char *buf;
511         unsigned char pins;
512         size_t buf_size;
513         unsigned char result[32];
514         char firmware_path[128];
515
516         /* Make sure it's an ASIX SIGMA. */
517         if ((ret = ftdi_usb_open_desc(&devc->ftdic,
518                 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
519                 sr_err("ftdi_usb_open failed: %s",
520                        ftdi_get_error_string(&devc->ftdic));
521                 return 0;
522         }
523
524         if ((ret = ftdi_set_bitmode(&devc->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
525                 sr_err("ftdi_set_bitmode failed: %s",
526                        ftdi_get_error_string(&devc->ftdic));
527                 return 0;
528         }
529
530         /* Four times the speed of sigmalogan - Works well. */
531         if ((ret = ftdi_set_baudrate(&devc->ftdic, 750000)) < 0) {
532                 sr_err("ftdi_set_baudrate failed: %s",
533                        ftdi_get_error_string(&devc->ftdic));
534                 return 0;
535         }
536
537         /* Force the FPGA to reboot. */
538         sigma_write(suicide, sizeof(suicide), devc);
539         sigma_write(suicide, sizeof(suicide), devc);
540         sigma_write(suicide, sizeof(suicide), devc);
541         sigma_write(suicide, sizeof(suicide), devc);
542
543         /* Prepare to upload firmware (FPGA specific). */
544         sigma_write(init, sizeof(init), devc);
545
546         ftdi_usb_purge_buffers(&devc->ftdic);
547
548         /* Wait until the FPGA asserts INIT_B. */
549         while (1) {
550                 ret = sigma_read(result, 1, devc);
551                 if (result[0] & 0x20)
552                         break;
553         }
554
555         /* Prepare firmware. */
556         snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
557                  firmware_files[firmware_idx]);
558
559         if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
560                 sr_err("An error occured while reading the firmware: %s",
561                        firmware_path);
562                 return ret;
563         }
564
565         /* Upload firmare. */
566         sr_info("Uploading firmware file '%s'.", firmware_files[firmware_idx]);
567         sigma_write(buf, buf_size, devc);
568
569         g_free(buf);
570
571         if ((ret = ftdi_set_bitmode(&devc->ftdic, 0x00, BITMODE_RESET)) < 0) {
572                 sr_err("ftdi_set_bitmode failed: %s",
573                        ftdi_get_error_string(&devc->ftdic));
574                 return SR_ERR;
575         }
576
577         ftdi_usb_purge_buffers(&devc->ftdic);
578
579         /* Discard garbage. */
580         while (1 == sigma_read(&pins, 1, devc))
581                 ;
582
583         /* Initialize the logic analyzer mode. */
584         sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
585
586         /* Expect a 3 byte reply. */
587         ret = sigma_read(result, 3, devc);
588         if (ret != 3 ||
589             result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
590                 sr_err("Configuration failed. Invalid reply received.");
591                 return SR_ERR;
592         }
593
594         devc->cur_firmware = firmware_idx;
595
596         sr_info("Firmware uploaded.");
597
598         return SR_OK;
599 }
600
601 static int hw_dev_open(struct sr_dev_inst *sdi)
602 {
603         struct dev_context *devc;
604         int ret;
605
606         devc = sdi->priv;
607
608         /* Make sure it's an ASIX SIGMA. */
609         if ((ret = ftdi_usb_open_desc(&devc->ftdic,
610                 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
611
612                 sr_err("ftdi_usb_open failed: %s",
613                        ftdi_get_error_string(&devc->ftdic));
614
615                 return 0;
616         }
617
618         sdi->status = SR_ST_ACTIVE;
619
620         return SR_OK;
621 }
622
623 static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
624 {
625         struct dev_context *devc;
626         unsigned int i;
627         int ret;
628
629         devc = sdi->priv;
630         ret = SR_OK;
631
632         for (i = 0; i < ARRAY_SIZE(samplerates); i++) {
633                 if (samplerates[i] == samplerate)
634                         break;
635         }
636         if (samplerates[i] == 0)
637                 return SR_ERR_SAMPLERATE;
638
639         if (samplerate <= SR_MHZ(50)) {
640                 ret = upload_firmware(0, devc);
641                 devc->num_probes = 16;
642         }
643         if (samplerate == SR_MHZ(100)) {
644                 ret = upload_firmware(1, devc);
645                 devc->num_probes = 8;
646         }
647         else if (samplerate == SR_MHZ(200)) {
648                 ret = upload_firmware(2, devc);
649                 devc->num_probes = 4;
650         }
651
652         devc->cur_samplerate = samplerate;
653         devc->period_ps = 1000000000000ULL / samplerate;
654         devc->samples_per_event = 16 / devc->num_probes;
655         devc->state.state = SIGMA_IDLE;
656
657         return ret;
658 }
659
660 /*
661  * In 100 and 200 MHz mode, only a single pin rising/falling can be
662  * set as trigger. In other modes, two rising/falling triggers can be set,
663  * in addition to value/mask trigger for any number of probes.
664  *
665  * The Sigma supports complex triggers using boolean expressions, but this
666  * has not been implemented yet.
667  */
668 static int configure_probes(const struct sr_dev_inst *sdi)
669 {
670         struct dev_context *devc = sdi->priv;
671         const struct sr_probe *probe;
672         const GSList *l;
673         int trigger_set = 0;
674         int probebit;
675
676         memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
677
678         for (l = sdi->probes; l; l = l->next) {
679                 probe = (struct sr_probe *)l->data;
680                 probebit = 1 << (probe->index);
681
682                 if (!probe->enabled || !probe->trigger)
683                         continue;
684
685                 if (devc->cur_samplerate >= SR_MHZ(100)) {
686                         /* Fast trigger support. */
687                         if (trigger_set) {
688                                 sr_err("Only a single pin trigger in 100 and "
689                                        "200MHz mode is supported.");
690                                 return SR_ERR;
691                         }
692                         if (probe->trigger[0] == 'f')
693                                 devc->trigger.fallingmask |= probebit;
694                         else if (probe->trigger[0] == 'r')
695                                 devc->trigger.risingmask |= probebit;
696                         else {
697                                 sr_err("Only rising/falling trigger in 100 "
698                                        "and 200MHz mode is supported.");
699                                 return SR_ERR;
700                         }
701
702                         ++trigger_set;
703                 } else {
704                         /* Simple trigger support (event). */
705                         if (probe->trigger[0] == '1') {
706                                 devc->trigger.simplevalue |= probebit;
707                                 devc->trigger.simplemask |= probebit;
708                         }
709                         else if (probe->trigger[0] == '0') {
710                                 devc->trigger.simplevalue &= ~probebit;
711                                 devc->trigger.simplemask |= probebit;
712                         }
713                         else if (probe->trigger[0] == 'f') {
714                                 devc->trigger.fallingmask |= probebit;
715                                 ++trigger_set;
716                         }
717                         else if (probe->trigger[0] == 'r') {
718                                 devc->trigger.risingmask |= probebit;
719                                 ++trigger_set;
720                         }
721
722                         /*
723                          * Actually, Sigma supports 2 rising/falling triggers,
724                          * but they are ORed and the current trigger syntax
725                          * does not permit ORed triggers.
726                          */
727                         if (trigger_set > 1) {
728                                 sr_err("Only 1 rising/falling trigger "
729                                        "is supported.");
730                                 return SR_ERR;
731                         }
732                 }
733
734                 if (trigger_set)
735                         devc->use_triggers = 1;
736         }
737
738         return SR_OK;
739 }
740
741 static int hw_dev_close(struct sr_dev_inst *sdi)
742 {
743         struct dev_context *devc;
744
745         devc = sdi->priv;
746
747         /* TODO */
748         if (sdi->status == SR_ST_ACTIVE)
749                 ftdi_usb_close(&devc->ftdic);
750
751         sdi->status = SR_ST_INACTIVE;
752
753         return SR_OK;
754 }
755
756 static int hw_cleanup(void)
757 {
758         if (!di->priv)
759                 return SR_OK;
760
761         clear_instances();
762
763         return SR_OK;
764 }
765
766 static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi)
767 {
768         struct dev_context *devc;
769
770         switch (id) {
771         case SR_CONF_SAMPLERATE:
772                 if (sdi) {
773                         devc = sdi->priv;
774                         *data = g_variant_new_uint64(devc->cur_samplerate);
775                 } else
776                         return SR_ERR;
777                 break;
778         default:
779                 return SR_ERR_NA;
780         }
781
782         return SR_OK;
783 }
784
785 static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi)
786 {
787         struct dev_context *devc;
788         int ret;
789
790         if (sdi->status != SR_ST_ACTIVE)
791                 return SR_ERR_DEV_CLOSED;
792
793         devc = sdi->priv;
794
795         if (id == SR_CONF_SAMPLERATE) {
796                 ret = set_samplerate(sdi, g_variant_get_uint64(data));
797         } else if (id == SR_CONF_LIMIT_MSEC) {
798                 devc->limit_msec = g_variant_get_uint64(data);
799                 if (devc->limit_msec > 0)
800                         ret = SR_OK;
801                 else
802                         ret = SR_ERR;
803         } else if (id == SR_CONF_CAPTURE_RATIO) {
804                 devc->capture_ratio = g_variant_get_uint64(data);
805                 if (devc->capture_ratio < 0 || devc->capture_ratio > 100)
806                         ret = SR_ERR;
807                 else
808                         ret = SR_OK;
809         } else {
810                 ret = SR_ERR_NA;
811         }
812
813         return ret;
814 }
815
816 static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi)
817 {
818         GVariant *gvar;
819         GVariantBuilder gvb;
820
821         (void)sdi;
822
823         switch (key) {
824         case SR_CONF_DEVICE_OPTIONS:
825                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
826                                 hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
827                 break;
828         case SR_CONF_SAMPLERATE:
829                 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
830                 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
831                                 ARRAY_SIZE(samplerates), sizeof(uint64_t));
832                 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
833                 *data = g_variant_builder_end(&gvb);
834                 break;
835         case SR_CONF_TRIGGER_TYPE:
836                 *data = g_variant_new_string(TRIGGER_TYPE);
837                 break;
838         default:
839                 return SR_ERR_NA;
840         }
841
842         return SR_OK;
843 }
844
845 /* Software trigger to determine exact trigger position. */
846 static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
847                               struct sigma_trigger *t)
848 {
849         int i;
850
851         for (i = 0; i < 8; ++i) {
852                 if (i > 0)
853                         last_sample = samples[i-1];
854
855                 /* Simple triggers. */
856                 if ((samples[i] & t->simplemask) != t->simplevalue)
857                         continue;
858
859                 /* Rising edge. */
860                 if ((last_sample & t->risingmask) != 0 || (samples[i] &
861                     t->risingmask) != t->risingmask)
862                         continue;
863
864                 /* Falling edge. */
865                 if ((last_sample & t->fallingmask) != t->fallingmask ||
866                     (samples[i] & t->fallingmask) != 0)
867                         continue;
868
869                 break;
870         }
871
872         /* If we did not match, return original trigger pos. */
873         return i & 0x7;
874 }
875
876 /*
877  * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
878  * Each event is 20ns apart, and can contain multiple samples.
879  *
880  * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
881  * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
882  * For 50 MHz and below, events contain one sample for each channel,
883  * spread 20 ns apart.
884  */
885 static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
886                            uint16_t *lastsample, int triggerpos,
887                            uint16_t limit_chunk, void *cb_data)
888 {
889         struct sr_dev_inst *sdi = cb_data;
890         struct dev_context *devc = sdi->priv;
891         uint16_t tsdiff, ts;
892         uint16_t samples[65536 * devc->samples_per_event];
893         struct sr_datafeed_packet packet;
894         struct sr_datafeed_logic logic;
895         int i, j, k, l, numpad, tosend;
896         size_t n = 0, sent = 0;
897         int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event;
898         uint16_t *event;
899         uint16_t cur_sample;
900         int triggerts = -1;
901
902         /* Check if trigger is in this chunk. */
903         if (triggerpos != -1) {
904                 if (devc->cur_samplerate <= SR_MHZ(50))
905                         triggerpos -= EVENTS_PER_CLUSTER - 1;
906
907                 if (triggerpos < 0)
908                         triggerpos = 0;
909
910                 /* Find in which cluster the trigger occured. */
911                 triggerts = triggerpos / 7;
912         }
913
914         /* For each ts. */
915         for (i = 0; i < 64; ++i) {
916                 ts = *(uint16_t *) &buf[i * 16];
917                 tsdiff = ts - *lastts;
918                 *lastts = ts;
919
920                 /* Decode partial chunk. */
921                 if (limit_chunk && ts > limit_chunk)
922                         return SR_OK;
923
924                 /* Pad last sample up to current point. */
925                 numpad = tsdiff * devc->samples_per_event - clustersize;
926                 if (numpad > 0) {
927                         for (j = 0; j < numpad; ++j)
928                                 samples[j] = *lastsample;
929
930                         n = numpad;
931                 }
932
933                 /* Send samples between previous and this timestamp to sigrok. */
934                 sent = 0;
935                 while (sent < n) {
936                         tosend = MIN(2048, n - sent);
937
938                         packet.type = SR_DF_LOGIC;
939                         packet.payload = &logic;
940                         logic.length = tosend * sizeof(uint16_t);
941                         logic.unitsize = 2;
942                         logic.data = samples + sent;
943                         sr_session_send(devc->cb_data, &packet);
944
945                         sent += tosend;
946                 }
947                 n = 0;
948
949                 event = (uint16_t *) &buf[i * 16 + 2];
950                 cur_sample = 0;
951
952                 /* For each event in cluster. */
953                 for (j = 0; j < 7; ++j) {
954
955                         /* For each sample in event. */
956                         for (k = 0; k < devc->samples_per_event; ++k) {
957                                 cur_sample = 0;
958
959                                 /* For each probe. */
960                                 for (l = 0; l < devc->num_probes; ++l)
961                                         cur_sample |= (!!(event[j] & (1 << (l *
962                                            devc->samples_per_event + k)))) << l;
963
964                                 samples[n++] = cur_sample;
965                         }
966                 }
967
968                 /* Send data up to trigger point (if triggered). */
969                 sent = 0;
970                 if (i == triggerts) {
971                         /*
972                          * Trigger is not always accurate to sample because of
973                          * pipeline delay. However, it always triggers before
974                          * the actual event. We therefore look at the next
975                          * samples to pinpoint the exact position of the trigger.
976                          */
977                         tosend = get_trigger_offset(samples, *lastsample,
978                                                     &devc->trigger);
979
980                         if (tosend > 0) {
981                                 packet.type = SR_DF_LOGIC;
982                                 packet.payload = &logic;
983                                 logic.length = tosend * sizeof(uint16_t);
984                                 logic.unitsize = 2;
985                                 logic.data = samples;
986                                 sr_session_send(devc->cb_data, &packet);
987
988                                 sent += tosend;
989                         }
990
991                         /* Only send trigger if explicitly enabled. */
992                         if (devc->use_triggers) {
993                                 packet.type = SR_DF_TRIGGER;
994                                 sr_session_send(devc->cb_data, &packet);
995                         }
996                 }
997
998                 /* Send rest of the chunk to sigrok. */
999                 tosend = n - sent;
1000
1001                 if (tosend > 0) {
1002                         packet.type = SR_DF_LOGIC;
1003                         packet.payload = &logic;
1004                         logic.length = tosend * sizeof(uint16_t);
1005                         logic.unitsize = 2;
1006                         logic.data = samples + sent;
1007                         sr_session_send(devc->cb_data, &packet);
1008                 }
1009
1010                 *lastsample = samples[n - 1];
1011         }
1012
1013         return SR_OK;
1014 }
1015
1016 static int receive_data(int fd, int revents, void *cb_data)
1017 {
1018         struct sr_dev_inst *sdi = cb_data;
1019         struct dev_context *devc = sdi->priv;
1020         struct sr_datafeed_packet packet;
1021         const int chunks_per_read = 32;
1022         unsigned char buf[chunks_per_read * CHUNK_SIZE];
1023         int bufsz, numchunks, i, newchunks;
1024         uint64_t running_msec;
1025         struct timeval tv;
1026
1027         (void)fd;
1028         (void)revents;
1029
1030         /* Get the current position. */
1031         sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1032
1033         numchunks = (devc->state.stoppos + 511) / 512;
1034
1035         if (devc->state.state == SIGMA_IDLE)
1036                 return TRUE;
1037
1038         if (devc->state.state == SIGMA_CAPTURE) {
1039                 /* Check if the timer has expired, or memory is full. */
1040                 gettimeofday(&tv, 0);
1041                 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1042                         (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1043
1044                 if (running_msec < devc->limit_msec && numchunks < 32767)
1045                         return TRUE; /* While capturing... */
1046                 else
1047                         hw_dev_acquisition_stop(sdi, sdi);
1048
1049         }
1050
1051         if (devc->state.state == SIGMA_DOWNLOAD) {
1052                 if (devc->state.chunks_downloaded >= numchunks) {
1053                         /* End of samples. */
1054                         packet.type = SR_DF_END;
1055                         sr_session_send(devc->cb_data, &packet);
1056
1057                         devc->state.state = SIGMA_IDLE;
1058
1059                         return TRUE;
1060                 }
1061
1062                 newchunks = MIN(chunks_per_read,
1063                                 numchunks - devc->state.chunks_downloaded);
1064
1065                 sr_info("Downloading sample data: %.0f %%.",
1066                         100.0 * devc->state.chunks_downloaded / numchunks);
1067
1068                 bufsz = sigma_read_dram(devc->state.chunks_downloaded,
1069                                         newchunks, buf, devc);
1070                 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1071                 (void)bufsz;
1072
1073                 /* Find first ts. */
1074                 if (devc->state.chunks_downloaded == 0) {
1075                         devc->state.lastts = *(uint16_t *) buf - 1;
1076                         devc->state.lastsample = 0;
1077                 }
1078
1079                 /* Decode chunks and send them to sigrok. */
1080                 for (i = 0; i < newchunks; ++i) {
1081                         int limit_chunk = 0;
1082
1083                         /* The last chunk may potentially be only in part. */
1084                         if (devc->state.chunks_downloaded == numchunks - 1) {
1085                                 /* Find the last valid timestamp */
1086                                 limit_chunk = devc->state.stoppos % 512 + devc->state.lastts;
1087                         }
1088
1089                         if (devc->state.chunks_downloaded + i == devc->state.triggerchunk)
1090                                 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1091                                                 &devc->state.lastts,
1092                                                 &devc->state.lastsample,
1093                                                 devc->state.triggerpos & 0x1ff,
1094                                                 limit_chunk, sdi);
1095                         else
1096                                 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1097                                                 &devc->state.lastts,
1098                                                 &devc->state.lastsample,
1099                                                 -1, limit_chunk, sdi);
1100
1101                         ++devc->state.chunks_downloaded;
1102                 }
1103         }
1104
1105         return TRUE;
1106 }
1107
1108 /* Build a LUT entry used by the trigger functions. */
1109 static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1110 {
1111         int i, j, k, bit;
1112
1113         /* For each quad probe. */
1114         for (i = 0; i < 4; ++i) {
1115                 entry[i] = 0xffff;
1116
1117                 /* For each bit in LUT. */
1118                 for (j = 0; j < 16; ++j)
1119
1120                         /* For each probe in quad. */
1121                         for (k = 0; k < 4; ++k) {
1122                                 bit = 1 << (i * 4 + k);
1123
1124                                 /* Set bit in entry */
1125                                 if ((mask & bit) &&
1126                                     ((!(value & bit)) !=
1127                                     (!(j & (1 << k)))))
1128                                         entry[i] &= ~(1 << j);
1129                         }
1130         }
1131 }
1132
1133 /* Add a logical function to LUT mask. */
1134 static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1135                                  int index, int neg, uint16_t *mask)
1136 {
1137         int i, j;
1138         int x[2][2], tmp, a, b, aset, bset, rset;
1139
1140         memset(x, 0, 4 * sizeof(int));
1141
1142         /* Trigger detect condition. */
1143         switch (oper) {
1144         case OP_LEVEL:
1145                 x[0][1] = 1;
1146                 x[1][1] = 1;
1147                 break;
1148         case OP_NOT:
1149                 x[0][0] = 1;
1150                 x[1][0] = 1;
1151                 break;
1152         case OP_RISE:
1153                 x[0][1] = 1;
1154                 break;
1155         case OP_FALL:
1156                 x[1][0] = 1;
1157                 break;
1158         case OP_RISEFALL:
1159                 x[0][1] = 1;
1160                 x[1][0] = 1;
1161                 break;
1162         case OP_NOTRISE:
1163                 x[1][1] = 1;
1164                 x[0][0] = 1;
1165                 x[1][0] = 1;
1166                 break;
1167         case OP_NOTFALL:
1168                 x[1][1] = 1;
1169                 x[0][0] = 1;
1170                 x[0][1] = 1;
1171                 break;
1172         case OP_NOTRISEFALL:
1173                 x[1][1] = 1;
1174                 x[0][0] = 1;
1175                 break;
1176         }
1177
1178         /* Transpose if neg is set. */
1179         if (neg) {
1180                 for (i = 0; i < 2; ++i) {
1181                         for (j = 0; j < 2; ++j) {
1182                                 tmp = x[i][j];
1183                                 x[i][j] = x[1-i][1-j];
1184                                 x[1-i][1-j] = tmp;
1185                         }
1186                 }
1187         }
1188
1189         /* Update mask with function. */
1190         for (i = 0; i < 16; ++i) {
1191                 a = (i >> (2 * index + 0)) & 1;
1192                 b = (i >> (2 * index + 1)) & 1;
1193
1194                 aset = (*mask >> i) & 1;
1195                 bset = x[b][a];
1196
1197                 if (func == FUNC_AND || func == FUNC_NAND)
1198                         rset = aset & bset;
1199                 else if (func == FUNC_OR || func == FUNC_NOR)
1200                         rset = aset | bset;
1201                 else if (func == FUNC_XOR || func == FUNC_NXOR)
1202                         rset = aset ^ bset;
1203
1204                 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1205                         rset = !rset;
1206
1207                 *mask &= ~(1 << i);
1208
1209                 if (rset)
1210                         *mask |= 1 << i;
1211         }
1212 }
1213
1214 /*
1215  * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1216  * simple pin change and state triggers. Only two transitions (rise/fall) can be
1217  * set at any time, but a full mask and value can be set (0/1).
1218  */
1219 static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1220 {
1221         int i,j;
1222         uint16_t masks[2] = { 0, 0 };
1223
1224         memset(lut, 0, sizeof(struct triggerlut));
1225
1226         /* Contant for simple triggers. */
1227         lut->m4 = 0xa000;
1228
1229         /* Value/mask trigger support. */
1230         build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1231                         lut->m2d);
1232
1233         /* Rise/fall trigger support. */
1234         for (i = 0, j = 0; i < 16; ++i) {
1235                 if (devc->trigger.risingmask & (1 << i) ||
1236                     devc->trigger.fallingmask & (1 << i))
1237                         masks[j++] = 1 << i;
1238         }
1239
1240         build_lut_entry(masks[0], masks[0], lut->m0d);
1241         build_lut_entry(masks[1], masks[1], lut->m1d);
1242
1243         /* Add glue logic */
1244         if (masks[0] || masks[1]) {
1245                 /* Transition trigger. */
1246                 if (masks[0] & devc->trigger.risingmask)
1247                         add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1248                 if (masks[0] & devc->trigger.fallingmask)
1249                         add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1250                 if (masks[1] & devc->trigger.risingmask)
1251                         add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1252                 if (masks[1] & devc->trigger.fallingmask)
1253                         add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1254         } else {
1255                 /* Only value/mask trigger. */
1256                 lut->m3 = 0xffff;
1257         }
1258
1259         /* Triggertype: event. */
1260         lut->params.selres = 3;
1261
1262         return SR_OK;
1263 }
1264
1265 static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
1266                 void *cb_data)
1267 {
1268         struct dev_context *devc;
1269         struct clockselect_50 clockselect;
1270         int frac, triggerpin, ret;
1271         uint8_t triggerselect = 0;
1272         struct triggerinout triggerinout_conf;
1273         struct triggerlut lut;
1274
1275         if (sdi->status != SR_ST_ACTIVE)
1276                 return SR_ERR_DEV_CLOSED;
1277
1278         devc = sdi->priv;
1279
1280         if (configure_probes(sdi) != SR_OK) {
1281                 sr_err("Failed to configure probes.");
1282                 return SR_ERR;
1283         }
1284
1285         /* If the samplerate has not been set, default to 200 kHz. */
1286         if (devc->cur_firmware == -1) {
1287                 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1288                         return ret;
1289         }
1290
1291         /* Enter trigger programming mode. */
1292         sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
1293
1294         /* 100 and 200 MHz mode. */
1295         if (devc->cur_samplerate >= SR_MHZ(100)) {
1296                 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
1297
1298                 /* Find which pin to trigger on from mask. */
1299                 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1300                         if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
1301                             (1 << triggerpin))
1302                                 break;
1303
1304                 /* Set trigger pin and light LED on trigger. */
1305                 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1306
1307                 /* Default rising edge. */
1308                 if (devc->trigger.fallingmask)
1309                         triggerselect |= 1 << 3;
1310
1311         /* All other modes. */
1312         } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1313                 build_basic_trigger(&lut, devc);
1314
1315                 sigma_write_trigger_lut(&lut, devc);
1316
1317                 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1318         }
1319
1320         /* Setup trigger in and out pins to default values. */
1321         memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1322         triggerinout_conf.trgout_bytrigger = 1;
1323         triggerinout_conf.trgout_enable = 1;
1324
1325         sigma_write_register(WRITE_TRIGGER_OPTION,
1326                              (uint8_t *) &triggerinout_conf,
1327                              sizeof(struct triggerinout), devc);
1328
1329         /* Go back to normal mode. */
1330         sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
1331
1332         /* Set clock select register. */
1333         if (devc->cur_samplerate == SR_MHZ(200))
1334                 /* Enable 4 probes. */
1335                 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1336         else if (devc->cur_samplerate == SR_MHZ(100))
1337                 /* Enable 8 probes. */
1338                 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
1339         else {
1340                 /*
1341                  * 50 MHz mode (or fraction thereof). Any fraction down to
1342                  * 50 MHz / 256 can be used, but is not supported by sigrok API.
1343                  */
1344                 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
1345
1346                 clockselect.async = 0;
1347                 clockselect.fraction = frac;
1348                 clockselect.disabled_probes = 0;
1349
1350                 sigma_write_register(WRITE_CLOCK_SELECT,
1351                                      (uint8_t *) &clockselect,
1352                                      sizeof(clockselect), devc);
1353         }
1354
1355         /* Setup maximum post trigger time. */
1356         sigma_set_register(WRITE_POST_TRIGGER,
1357                            (devc->capture_ratio * 255) / 100, devc);
1358
1359         /* Start acqusition. */
1360         gettimeofday(&devc->start_tv, 0);
1361         sigma_set_register(WRITE_MODE, 0x0d, devc);
1362
1363         devc->cb_data = cb_data;
1364
1365         /* Send header packet to the session bus. */
1366         std_session_send_df_header(cb_data, LOG_PREFIX);
1367
1368         /* Add capture source. */
1369         sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
1370
1371         devc->state.state = SIGMA_CAPTURE;
1372
1373         return SR_OK;
1374 }
1375
1376 static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
1377 {
1378         struct dev_context *devc;
1379         uint8_t modestatus;
1380
1381         (void)cb_data;
1382
1383         sr_source_remove(0);
1384
1385         if (!(devc = sdi->priv)) {
1386                 sr_err("%s: sdi->priv was NULL", __func__);
1387                 return SR_ERR_BUG;
1388         }
1389
1390         /* Stop acquisition. */
1391         sigma_set_register(WRITE_MODE, 0x11, devc);
1392
1393         /* Set SDRAM Read Enable. */
1394         sigma_set_register(WRITE_MODE, 0x02, devc);
1395
1396         /* Get the current position. */
1397         sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1398
1399         /* Check if trigger has fired. */
1400         modestatus = sigma_get_register(READ_MODE, devc);
1401         if (modestatus & 0x20)
1402                 devc->state.triggerchunk = devc->state.triggerpos / 512;
1403         else
1404                 devc->state.triggerchunk = -1;
1405
1406         devc->state.chunks_downloaded = 0;
1407
1408         devc->state.state = SIGMA_DOWNLOAD;
1409
1410         return SR_OK;
1411 }
1412
1413 SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1414         .name = "asix-sigma",
1415         .longname = "ASIX SIGMA/SIGMA2",
1416         .api_version = 1,
1417         .init = hw_init,
1418         .cleanup = hw_cleanup,
1419         .scan = hw_scan,
1420         .dev_list = hw_dev_list,
1421         .dev_clear = clear_instances,
1422         .config_get = config_get,
1423         .config_set = config_set,
1424         .config_list = config_list,
1425         .dev_open = hw_dev_open,
1426         .dev_close = hw_dev_close,
1427         .dev_acquisition_start = hw_dev_acquisition_start,
1428         .dev_acquisition_stop = hw_dev_acquisition_stop,
1429         .priv = NULL,
1430 };