]> sigrok.org Git - libsigrok.git/blame - src/hardware/asix-sigma/protocol.c
asix-sigma: Improve sample time estimation, consider hardware pipeline
[libsigrok.git] / src / hardware / asix-sigma / protocol.c
CommitLineData
28a35d8a 1/*
50985c20 2 * This file is part of the libsigrok project.
28a35d8a 3 *
868501fa 4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
911f1834
UH
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
28a35d8a
HE
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
911f1834 22/*
6352d030 23 * ASIX SIGMA/SIGMA2 logic analyzer driver
911f1834
UH
24 */
25
6ec6c43b 26#include <config.h>
3ba56876 27#include "protocol.h"
28a35d8a
HE
28
29#define USB_VENDOR 0xa600
30#define USB_PRODUCT 0xa000
31#define USB_DESCRIPTION "ASIX SIGMA"
32#define USB_VENDOR_NAME "ASIX"
33#define USB_MODEL_NAME "SIGMA"
28a35d8a 34
b1648dea
MV
35/*
36 * The ASIX Sigma supports arbitrary integer frequency divider in
37 * the 50MHz mode. The divider is in range 1...256 , allowing for
38 * very precise sampling rate selection. This driver supports only
39 * a subset of the sampling rates.
40 */
3ba56876 41SR_PRIV const uint64_t samplerates[] = {
b1648dea
MV
42 SR_KHZ(200), /* div=250 */
43 SR_KHZ(250), /* div=200 */
44 SR_KHZ(500), /* div=100 */
45 SR_MHZ(1), /* div=50 */
46 SR_MHZ(5), /* div=10 */
47 SR_MHZ(10), /* div=5 */
48 SR_MHZ(25), /* div=2 */
49 SR_MHZ(50), /* div=1 */
50 SR_MHZ(100), /* Special FW needed */
51 SR_MHZ(200), /* Special FW needed */
28a35d8a
HE
52};
53
4154a516 54SR_PRIV const size_t samplerates_count = ARRAY_SIZE(samplerates);
39c64c6a 55
8e2d6c9d 56static const char sigma_firmware_files[][24] = {
499b17e9 57 /* 50 MHz, supports 8 bit fractions */
8e2d6c9d 58 "asix-sigma-50.fw",
499b17e9 59 /* 100 MHz */
8e2d6c9d 60 "asix-sigma-100.fw",
499b17e9 61 /* 200 MHz */
8e2d6c9d 62 "asix-sigma-200.fw",
499b17e9 63 /* Synchronous clock from pin */
8e2d6c9d 64 "asix-sigma-50sync.fw",
499b17e9 65 /* Frequency counter */
8e2d6c9d 66 "asix-sigma-phasor.fw",
f6564c8d
HE
67};
68
0e1357e8 69static int sigma_read(void *buf, size_t size, struct dev_context *devc)
28a35d8a
HE
70{
71 int ret;
fefa1800 72
0e1357e8 73 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
28a35d8a 74 if (ret < 0) {
47f4f073 75 sr_err("ftdi_read_data failed: %s",
0e1357e8 76 ftdi_get_error_string(&devc->ftdic));
28a35d8a
HE
77 }
78
79 return ret;
80}
81
0e1357e8 82static int sigma_write(void *buf, size_t size, struct dev_context *devc)
28a35d8a
HE
83{
84 int ret;
fefa1800 85
0e1357e8 86 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
28a35d8a 87 if (ret < 0) {
47f4f073 88 sr_err("ftdi_write_data failed: %s",
0e1357e8 89 ftdi_get_error_string(&devc->ftdic));
fefa1800 90 } else if ((size_t) ret != size) {
47f4f073 91 sr_err("ftdi_write_data did not complete write.");
28a35d8a
HE
92 }
93
94 return ret;
95}
96
e8686e3a
AG
97/*
98 * NOTE: We chose the buffer size to be large enough to hold any write to the
99 * device. We still print a message just in case.
100 */
3ba56876 101SR_PRIV int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
102 struct dev_context *devc)
28a35d8a
HE
103{
104 size_t i;
e8686e3a 105 uint8_t buf[80];
28a35d8a
HE
106 int idx = 0;
107
7c86d853 108 if ((2 * len + 2) > sizeof(buf)) {
e8686e3a 109 sr_err("Attempted to write %zu bytes, but buffer is too small.",
7c86d853 110 len);
e8686e3a
AG
111 return SR_ERR_BUG;
112 }
113
28a35d8a
HE
114 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
115 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
116
0a1f7b09 117 for (i = 0; i < len; i++) {
28a35d8a
HE
118 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
119 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
120 }
121
0e1357e8 122 return sigma_write(buf, idx, devc);
28a35d8a
HE
123}
124
3ba56876 125SR_PRIV int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
28a35d8a 126{
0e1357e8 127 return sigma_write_register(reg, &value, 1, devc);
28a35d8a
HE
128}
129
99965709 130static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
0e1357e8 131 struct dev_context *devc)
28a35d8a
HE
132{
133 uint8_t buf[3];
fefa1800 134
28a35d8a
HE
135 buf[0] = REG_ADDR_LOW | (reg & 0xf);
136 buf[1] = REG_ADDR_HIGH | (reg >> 4);
28a35d8a
HE
137 buf[2] = REG_READ_ADDR;
138
0e1357e8 139 sigma_write(buf, sizeof(buf), devc);
28a35d8a 140
0e1357e8 141 return sigma_read(data, len, devc);
28a35d8a
HE
142}
143
0e1357e8 144static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
28a35d8a
HE
145{
146 uint8_t value;
fefa1800 147
0e1357e8 148 if (1 != sigma_read_register(reg, &value, 1, devc)) {
47f4f073 149 sr_err("sigma_get_register: 1 byte expected");
28a35d8a
HE
150 return 0;
151 }
152
153 return value;
154}
155
99965709 156static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
0e1357e8 157 struct dev_context *devc)
28a35d8a
HE
158{
159 uint8_t buf[] = {
160 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
161
162 REG_READ_ADDR | NEXT_REG,
163 REG_READ_ADDR | NEXT_REG,
164 REG_READ_ADDR | NEXT_REG,
165 REG_READ_ADDR | NEXT_REG,
166 REG_READ_ADDR | NEXT_REG,
167 REG_READ_ADDR | NEXT_REG,
168 };
28a35d8a
HE
169 uint8_t result[6];
170
0e1357e8 171 sigma_write(buf, sizeof(buf), devc);
28a35d8a 172
0e1357e8 173 sigma_read(result, sizeof(result), devc);
28a35d8a
HE
174
175 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
176 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
177
57bbf56b
HE
178 /* Not really sure why this must be done, but according to spec. */
179 if ((--*stoppos & 0x1ff) == 0x1ff)
382cb19f 180 *stoppos -= 64;
57bbf56b
HE
181
182 if ((*--triggerpos & 0x1ff) == 0x1ff)
382cb19f 183 *triggerpos -= 64;
57bbf56b 184
28a35d8a
HE
185 return 1;
186}
187
99965709 188static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
0e1357e8 189 uint8_t *data, struct dev_context *devc)
28a35d8a
HE
190{
191 size_t i;
192 uint8_t buf[4096];
193 int idx = 0;
194
fefa1800 195 /* Send the startchunk. Index start with 1. */
28a35d8a
HE
196 buf[0] = startchunk >> 8;
197 buf[1] = startchunk & 0xff;
0e1357e8 198 sigma_write_register(WRITE_MEMROW, buf, 2, devc);
28a35d8a 199
fefa1800 200 /* Read the DRAM. */
28a35d8a
HE
201 buf[idx++] = REG_DRAM_BLOCK;
202 buf[idx++] = REG_DRAM_WAIT_ACK;
203
0a1f7b09 204 for (i = 0; i < numchunks; i++) {
fefa1800
UH
205 /* Alternate bit to copy from DRAM to cache. */
206 if (i != (numchunks - 1))
207 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
28a35d8a
HE
208
209 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
210
fefa1800 211 if (i != (numchunks - 1))
28a35d8a
HE
212 buf[idx++] = REG_DRAM_WAIT_ACK;
213 }
214
0e1357e8 215 sigma_write(buf, idx, devc);
28a35d8a 216
0e1357e8 217 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
28a35d8a
HE
218}
219
4ae1f451 220/* Upload trigger look-up tables to Sigma. */
3ba56876 221SR_PRIV int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
ee492173
HE
222{
223 int i;
224 uint8_t tmp[2];
225 uint16_t bit;
226
227 /* Transpose the table and send to Sigma. */
0a1f7b09 228 for (i = 0; i < 16; i++) {
ee492173
HE
229 bit = 1 << i;
230
231 tmp[0] = tmp[1] = 0;
232
233 if (lut->m2d[0] & bit)
234 tmp[0] |= 0x01;
235 if (lut->m2d[1] & bit)
236 tmp[0] |= 0x02;
237 if (lut->m2d[2] & bit)
238 tmp[0] |= 0x04;
239 if (lut->m2d[3] & bit)
240 tmp[0] |= 0x08;
241
242 if (lut->m3 & bit)
243 tmp[0] |= 0x10;
244 if (lut->m3s & bit)
245 tmp[0] |= 0x20;
246 if (lut->m4 & bit)
247 tmp[0] |= 0x40;
248
249 if (lut->m0d[0] & bit)
250 tmp[1] |= 0x01;
251 if (lut->m0d[1] & bit)
252 tmp[1] |= 0x02;
253 if (lut->m0d[2] & bit)
254 tmp[1] |= 0x04;
255 if (lut->m0d[3] & bit)
256 tmp[1] |= 0x08;
257
258 if (lut->m1d[0] & bit)
259 tmp[1] |= 0x10;
260 if (lut->m1d[1] & bit)
261 tmp[1] |= 0x20;
262 if (lut->m1d[2] & bit)
263 tmp[1] |= 0x40;
264 if (lut->m1d[3] & bit)
265 tmp[1] |= 0x80;
266
99965709 267 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
0e1357e8
BV
268 devc);
269 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
ee492173
HE
270 }
271
272 /* Send the parameters */
273 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
0e1357e8 274 sizeof(lut->params), devc);
ee492173 275
e46b8fb1 276 return SR_OK;
ee492173
HE
277}
278
3ba56876 279SR_PRIV void sigma_clear_helper(void *priv)
0448d110 280{
0e1357e8 281 struct dev_context *devc;
ce4d26dd 282
3678cf73 283 devc = priv;
0e1357e8 284
3678cf73
UH
285 ftdi_deinit(&devc->ftdic);
286}
0448d110 287
d5fa188a
MV
288/*
289 * Configure the FPGA for bitbang mode.
290 * This sequence is documented in section 2. of the ASIX Sigma programming
291 * manual. This sequence is necessary to configure the FPGA in the Sigma
292 * into Bitbang mode, in which it can be programmed with the firmware.
293 */
294static int sigma_fpga_init_bitbang(struct dev_context *devc)
295{
296 uint8_t suicide[] = {
297 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
298 };
299 uint8_t init_array[] = {
300 0x01, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01,
301 0x01, 0x01,
302 };
1a46cc62 303 int i, ret, timeout = (10 * 1000);
d5fa188a
MV
304 uint8_t data;
305
306 /* Section 2. part 1), do the FPGA suicide. */
307 sigma_write(suicide, sizeof(suicide), devc);
308 sigma_write(suicide, sizeof(suicide), devc);
309 sigma_write(suicide, sizeof(suicide), devc);
310 sigma_write(suicide, sizeof(suicide), devc);
311
312 /* Section 2. part 2), do pulse on D1. */
313 sigma_write(init_array, sizeof(init_array), devc);
314 ftdi_usb_purge_buffers(&devc->ftdic);
315
316 /* Wait until the FPGA asserts D6/INIT_B. */
317 for (i = 0; i < timeout; i++) {
318 ret = sigma_read(&data, 1, devc);
319 if (ret < 0)
320 return ret;
321 /* Test if pin D6 got asserted. */
322 if (data & (1 << 5))
323 return 0;
324 /* The D6 was not asserted yet, wait a bit. */
1a46cc62 325 g_usleep(10 * 1000);
d5fa188a
MV
326 }
327
328 return SR_ERR_TIMEOUT;
329}
330
64fe661b
MV
331/*
332 * Configure the FPGA for logic-analyzer mode.
333 */
334static int sigma_fpga_init_la(struct dev_context *devc)
335{
336 /* Initialize the logic analyzer mode. */
337 uint8_t logic_mode_start[] = {
011f1091
MV
338 REG_ADDR_LOW | (READ_ID & 0xf),
339 REG_ADDR_HIGH | (READ_ID >> 8),
340 REG_READ_ADDR, /* Read ID register. */
341
342 REG_ADDR_LOW | (WRITE_TEST & 0xf),
343 REG_DATA_LOW | 0x5,
344 REG_DATA_HIGH_WRITE | 0x5,
345 REG_READ_ADDR, /* Read scratch register. */
346
347 REG_DATA_LOW | 0xa,
348 REG_DATA_HIGH_WRITE | 0xa,
349 REG_READ_ADDR, /* Read scratch register. */
350
351 REG_ADDR_LOW | (WRITE_MODE & 0xf),
352 REG_DATA_LOW | 0x0,
353 REG_DATA_HIGH_WRITE | 0x8,
64fe661b
MV
354 };
355
356 uint8_t result[3];
357 int ret;
358
359 /* Initialize the logic analyzer mode. */
360 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
361
011f1091 362 /* Expect a 3 byte reply since we issued three READ requests. */
64fe661b
MV
363 ret = sigma_read(result, 3, devc);
364 if (ret != 3)
365 goto err;
366
367 if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
368 goto err;
369
370 return SR_OK;
371err:
372 sr_err("Configuration failed. Invalid reply received.");
373 return SR_ERR;
374}
375
a80226bb
MV
376/*
377 * Read the firmware from a file and transform it into a series of bitbang
378 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
379 * by the caller of this function.
380 */
8e2d6c9d 381static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
a80226bb
MV
382 uint8_t **bb_cmd, gsize *bb_cmd_size)
383{
8e2d6c9d
DE
384 size_t i, file_size, bb_size;
385 char *firmware;
a80226bb
MV
386 uint8_t *bb_stream, *bbs;
387 uint32_t imm;
388 int bit, v;
389 int ret = SR_OK;
390
387825dc 391 /* Retrieve the on-disk firmware file content. */
8e2d6c9d
DE
392 firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE,
393 name, &file_size, 256 * 1024);
394 if (!firmware)
395 return SR_ERR;
a80226bb 396
387825dc 397 /* Unscramble the file content (XOR with "random" sequence). */
a80226bb
MV
398 imm = 0x3f6df2ab;
399 for (i = 0; i < file_size; i++) {
400 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
401 firmware[i] ^= imm & 0xff;
402 }
403
404 /*
387825dc
GS
405 * Generate a sequence of bitbang samples. With two samples per
406 * FPGA configuration bit, providing the level for the DIN signal
407 * as well as two edges for CCLK. See Xilinx UG332 for details
408 * ("slave serial" mode).
409 *
410 * Note that CCLK is inverted in hardware. That's why the
411 * respective bit is first set and then cleared in the bitbang
412 * sample sets. So that the DIN level will be stable when the
413 * data gets sampled at the rising CCLK edge, and the signals'
414 * setup time constraint will be met.
415 *
416 * The caller will put the FPGA into download mode, will send
417 * the bitbang samples, and release the allocated memory.
a80226bb 418 */
a80226bb
MV
419 bb_size = file_size * 8 * 2;
420 bb_stream = (uint8_t *)g_try_malloc(bb_size);
421 if (!bb_stream) {
422 sr_err("%s: Failed to allocate bitbang stream", __func__);
423 ret = SR_ERR_MALLOC;
424 goto exit;
425 }
a80226bb
MV
426 bbs = bb_stream;
427 for (i = 0; i < file_size; i++) {
428 for (bit = 7; bit >= 0; bit--) {
429 v = (firmware[i] & (1 << bit)) ? 0x40 : 0x00;
430 *bbs++ = v | 0x01;
431 *bbs++ = v;
432 }
433 }
434
435 /* The transformation completed successfully, return the result. */
436 *bb_cmd = bb_stream;
437 *bb_cmd_size = bb_size;
438
439exit:
8e2d6c9d 440 g_free(firmware);
a80226bb
MV
441 return ret;
442}
443
8e2d6c9d
DE
444static int upload_firmware(struct sr_context *ctx,
445 int firmware_idx, struct dev_context *devc)
28a35d8a
HE
446{
447 int ret;
448 unsigned char *buf;
449 unsigned char pins;
450 size_t buf_size;
499b17e9 451 const char *firmware = sigma_firmware_files[firmware_idx];
8bbf7627 452 struct ftdi_context *ftdic = &devc->ftdic;
28a35d8a 453
fefa1800 454 /* Make sure it's an ASIX SIGMA. */
8bbf7627
MV
455 ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT,
456 USB_DESCRIPTION, NULL);
457 if (ret < 0) {
47f4f073 458 sr_err("ftdi_usb_open failed: %s",
8bbf7627 459 ftdi_get_error_string(ftdic));
28a35d8a
HE
460 return 0;
461 }
462
8bbf7627
MV
463 ret = ftdi_set_bitmode(ftdic, 0xdf, BITMODE_BITBANG);
464 if (ret < 0) {
47f4f073 465 sr_err("ftdi_set_bitmode failed: %s",
8bbf7627 466 ftdi_get_error_string(ftdic));
28a35d8a
HE
467 return 0;
468 }
469
fefa1800 470 /* Four times the speed of sigmalogan - Works well. */
1a46cc62 471 ret = ftdi_set_baudrate(ftdic, 750 * 1000);
8bbf7627 472 if (ret < 0) {
47f4f073 473 sr_err("ftdi_set_baudrate failed: %s",
8bbf7627 474 ftdi_get_error_string(ftdic));
28a35d8a
HE
475 return 0;
476 }
477
d5fa188a
MV
478 /* Initialize the FPGA for firmware upload. */
479 ret = sigma_fpga_init_bitbang(devc);
480 if (ret)
481 return ret;
28a35d8a 482
9ddb2a12 483 /* Prepare firmware. */
8e2d6c9d 484 ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
8bbf7627 485 if (ret != SR_OK) {
f3f19d11 486 sr_err("An error occurred while reading the firmware: %s",
499b17e9 487 firmware);
b53738ba 488 return ret;
28a35d8a
HE
489 }
490
f3f19d11 491 /* Upload firmware. */
499b17e9 492 sr_info("Uploading firmware file '%s'.", firmware);
0e1357e8 493 sigma_write(buf, buf_size, devc);
28a35d8a
HE
494
495 g_free(buf);
496
8bbf7627
MV
497 ret = ftdi_set_bitmode(ftdic, 0x00, BITMODE_RESET);
498 if (ret < 0) {
47f4f073 499 sr_err("ftdi_set_bitmode failed: %s",
8bbf7627 500 ftdi_get_error_string(ftdic));
e46b8fb1 501 return SR_ERR;
28a35d8a
HE
502 }
503
8bbf7627 504 ftdi_usb_purge_buffers(ftdic);
28a35d8a 505
fefa1800 506 /* Discard garbage. */
29b66a2e 507 while (sigma_read(&pins, 1, devc) == 1)
28a35d8a
HE
508 ;
509
64fe661b
MV
510 /* Initialize the FPGA for logic-analyzer mode. */
511 ret = sigma_fpga_init_la(devc);
512 if (ret != SR_OK)
513 return ret;
28a35d8a 514
0e1357e8 515 devc->cur_firmware = firmware_idx;
f6564c8d 516
47f4f073 517 sr_info("Firmware uploaded.");
e3fff420 518
e46b8fb1 519 return SR_OK;
f6564c8d
HE
520}
521
9a0a606a
GS
522/*
523 * Sigma doesn't support limiting the number of samples, so we have to
524 * translate the number and the samplerate to an elapsed time.
525 *
526 * In addition we need to ensure that the last data cluster has passed
527 * the hardware pipeline, and became available to the PC side. With RLE
528 * compression up to 327ms could pass before another cluster accumulates
529 * at 200kHz samplerate when input pins don't change.
530 */
531SR_PRIV uint64_t sigma_limit_samples_to_msec(const struct dev_context *devc,
532 uint64_t limit_samples)
533{
534 uint64_t limit_msec;
535 uint64_t worst_cluster_time_ms;
536
537 limit_msec = limit_samples * 1000 / devc->cur_samplerate;
538 worst_cluster_time_ms = 65536 * 1000 / devc->cur_samplerate;
539 /*
540 * One cluster time is not enough to flush pipeline when sampling
541 * grounded pins with 1 sample limit at 200kHz. Hence the 2* fix.
542 */
543 return limit_msec + 2 * worst_cluster_time_ms;
544}
545
3ba56876 546SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
f6564c8d 547{
2c9c0df8 548 struct dev_context *devc;
8e2d6c9d 549 struct drv_context *drvc;
4154a516 550 size_t i;
2c9c0df8 551 int ret;
f6564c8d 552
2c9c0df8 553 devc = sdi->priv;
8e2d6c9d 554 drvc = sdi->driver->context;
f4abaa9f
UH
555 ret = SR_OK;
556
2f7e529c 557 /* Reject rates that are not in the list of supported rates. */
4154a516 558 for (i = 0; i < samplerates_count; i++) {
2c9c0df8 559 if (samplerates[i] == samplerate)
f6564c8d
HE
560 break;
561 }
4154a516 562 if (i >= samplerates_count || samplerates[i] == 0)
e46b8fb1 563 return SR_ERR_SAMPLERATE;
f6564c8d 564
2f7e529c
GS
565 /*
566 * Depending on the samplerates of 200/100/50- MHz, specific
567 * firmware is required and higher rates might limit the set
568 * of available channels.
569 */
59df0c77 570 if (samplerate <= SR_MHZ(50)) {
8e2d6c9d 571 ret = upload_firmware(drvc->sr_ctx, 0, devc);
ba7dd8bb 572 devc->num_channels = 16;
6b2d3385 573 } else if (samplerate == SR_MHZ(100)) {
8e2d6c9d 574 ret = upload_firmware(drvc->sr_ctx, 1, devc);
ba7dd8bb 575 devc->num_channels = 8;
6b2d3385 576 } else if (samplerate == SR_MHZ(200)) {
8e2d6c9d 577 ret = upload_firmware(drvc->sr_ctx, 2, devc);
ba7dd8bb 578 devc->num_channels = 4;
f78898e9 579 }
f6564c8d 580
2f7e529c
GS
581 /*
582 * Derive the sample period from the sample rate as well as the
583 * number of samples that the device will communicate within
584 * an "event" (memory organization internal to the device).
585 */
6b2d3385
BV
586 if (ret == SR_OK) {
587 devc->cur_samplerate = samplerate;
588 devc->period_ps = 1000000000000ULL / samplerate;
589 devc->samples_per_event = 16 / devc->num_channels;
590 devc->state.state = SIGMA_IDLE;
591 }
f6564c8d 592
2f7e529c
GS
593 /*
594 * Support for "limit_samples" is implemented by stopping
595 * acquisition after a corresponding period of time.
596 * Re-calculate that period of time, in case the limit is
597 * set first and the samplerate gets (re-)configured later.
598 */
599 if (ret == SR_OK && devc->limit_samples) {
600 uint64_t msecs;
9a0a606a 601 msecs = sigma_limit_samples_to_msec(devc, devc->limit_samples);
2f7e529c
GS
602 devc->limit_msec = msecs;
603 }
604
e8397563 605 return ret;
28a35d8a
HE
606}
607
c53d793f
HE
608/*
609 * In 100 and 200 MHz mode, only a single pin rising/falling can be
610 * set as trigger. In other modes, two rising/falling triggers can be set,
ba7dd8bb 611 * in addition to value/mask trigger for any number of channels.
c53d793f
HE
612 *
613 * The Sigma supports complex triggers using boolean expressions, but this
614 * has not been implemented yet.
615 */
3ba56876 616SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
57bbf56b 617{
39c64c6a
BV
618 struct dev_context *devc;
619 struct sr_trigger *trigger;
620 struct sr_trigger_stage *stage;
621 struct sr_trigger_match *match;
622 const GSList *l, *m;
623 int channelbit, trigger_set;
57bbf56b 624
39c64c6a 625 devc = sdi->priv;
0e1357e8 626 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
0812c40e 627 if (!(trigger = sr_session_trigger_get(sdi->session)))
39c64c6a
BV
628 return SR_OK;
629
630 trigger_set = 0;
631 for (l = trigger->stages; l; l = l->next) {
632 stage = l->data;
633 for (m = stage->matches; m; m = m->next) {
634 match = m->data;
635 if (!match->channel->enabled)
636 /* Ignore disabled channels with a trigger. */
637 continue;
638 channelbit = 1 << (match->channel->index);
639 if (devc->cur_samplerate >= SR_MHZ(100)) {
640 /* Fast trigger support. */
641 if (trigger_set) {
642 sr_err("Only a single pin trigger is "
643 "supported in 100 and 200MHz mode.");
644 return SR_ERR;
645 }
646 if (match->match == SR_TRIGGER_FALLING)
647 devc->trigger.fallingmask |= channelbit;
648 else if (match->match == SR_TRIGGER_RISING)
649 devc->trigger.risingmask |= channelbit;
650 else {
651 sr_err("Only rising/falling trigger is "
652 "supported in 100 and 200MHz mode.");
653 return SR_ERR;
654 }
eec5275e 655
0a1f7b09 656 trigger_set++;
39c64c6a
BV
657 } else {
658 /* Simple trigger support (event). */
659 if (match->match == SR_TRIGGER_ONE) {
660 devc->trigger.simplevalue |= channelbit;
661 devc->trigger.simplemask |= channelbit;
662 }
663 else if (match->match == SR_TRIGGER_ZERO) {
664 devc->trigger.simplevalue &= ~channelbit;
665 devc->trigger.simplemask |= channelbit;
666 }
667 else if (match->match == SR_TRIGGER_FALLING) {
668 devc->trigger.fallingmask |= channelbit;
0a1f7b09 669 trigger_set++;
39c64c6a
BV
670 }
671 else if (match->match == SR_TRIGGER_RISING) {
672 devc->trigger.risingmask |= channelbit;
0a1f7b09 673 trigger_set++;
39c64c6a
BV
674 }
675
676 /*
677 * Actually, Sigma supports 2 rising/falling triggers,
678 * but they are ORed and the current trigger syntax
679 * does not permit ORed triggers.
680 */
681 if (trigger_set > 1) {
682 sr_err("Only 1 rising/falling trigger "
683 "is supported.");
684 return SR_ERR;
685 }
ee492173 686 }
ee492173 687 }
57bbf56b
HE
688 }
689
e46b8fb1 690 return SR_OK;
57bbf56b
HE
691}
692
a1c743fc 693
36b1c8e6 694/* Software trigger to determine exact trigger position. */
5fc01191 695static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
36b1c8e6
HE
696 struct sigma_trigger *t)
697{
698 int i;
5fc01191 699 uint16_t sample = 0;
36b1c8e6 700
0a1f7b09 701 for (i = 0; i < 8; i++) {
36b1c8e6 702 if (i > 0)
5fc01191
MV
703 last_sample = sample;
704 sample = samples[2 * i] | (samples[2 * i + 1] << 8);
36b1c8e6
HE
705
706 /* Simple triggers. */
5fc01191 707 if ((sample & t->simplemask) != t->simplevalue)
36b1c8e6
HE
708 continue;
709
710 /* Rising edge. */
5fc01191
MV
711 if (((last_sample & t->risingmask) != 0) ||
712 ((sample & t->risingmask) != t->risingmask))
36b1c8e6
HE
713 continue;
714
715 /* Falling edge. */
bdfc7a89 716 if ((last_sample & t->fallingmask) != t->fallingmask ||
5fc01191 717 (sample & t->fallingmask) != 0)
36b1c8e6
HE
718 continue;
719
720 break;
721 }
722
723 /* If we did not match, return original trigger pos. */
724 return i & 0x7;
725}
726
3513d965
MV
727/*
728 * Return the timestamp of "DRAM cluster".
729 */
730static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
731{
732 return (cluster->timestamp_hi << 8) | cluster->timestamp_lo;
733}
734
23239b5c
MV
735static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster,
736 unsigned int events_in_cluster,
1e23158b 737 unsigned int triggered,
23239b5c
MV
738 struct sr_dev_inst *sdi)
739{
740 struct dev_context *devc = sdi->priv;
741 struct sigma_state *ss = &devc->state;
742 struct sr_datafeed_packet packet;
743 struct sr_datafeed_logic logic;
744 uint16_t tsdiff, ts;
745 uint8_t samples[2048];
746 unsigned int i;
747
23239b5c
MV
748 ts = sigma_dram_cluster_ts(dram_cluster);
749 tsdiff = ts - ss->lastts;
a44b3b3f 750 ss->lastts = ts + EVENTS_PER_CLUSTER;
23239b5c
MV
751
752 packet.type = SR_DF_LOGIC;
753 packet.payload = &logic;
754 logic.unitsize = 2;
755 logic.data = samples;
756
757 /*
758 * First of all, send Sigrok a copy of the last sample from
759 * previous cluster as many times as needed to make up for
760 * the differential characteristics of data we get from the
761 * Sigma. Sigrok needs one sample of data per period.
762 *
763 * One DRAM cluster contains a timestamp and seven samples,
764 * the units of timestamp are "devc->period_ps" , the first
765 * sample in the cluster happens at the time of the timestamp
766 * and the remaining samples happen at timestamp +1...+6 .
767 */
a44b3b3f 768 for (ts = 0; ts < tsdiff; ts++) {
23239b5c
MV
769 i = ts % 1024;
770 samples[2 * i + 0] = ss->lastsample & 0xff;
771 samples[2 * i + 1] = ss->lastsample >> 8;
772
773 /*
774 * If we have 1024 samples ready or we're at the
775 * end of submitting the padding samples, submit
776 * the packet to Sigrok.
777 */
a44b3b3f 778 if ((i == 1023) || (ts == tsdiff - 1)) {
23239b5c 779 logic.length = (i + 1) * logic.unitsize;
102f1239 780 sr_session_send(sdi, &packet);
23239b5c
MV
781 }
782 }
783
784 /*
785 * Parse the samples in current cluster and prepare them
786 * to be submitted to Sigrok.
787 */
788 for (i = 0; i < events_in_cluster; i++) {
789 samples[2 * i + 1] = dram_cluster->samples[i].sample_lo;
790 samples[2 * i + 0] = dram_cluster->samples[i].sample_hi;
791 }
792
793 /* Send data up to trigger point (if triggered). */
794 int trigger_offset = 0;
1e23158b 795 if (triggered) {
23239b5c
MV
796 /*
797 * Trigger is not always accurate to sample because of
798 * pipeline delay. However, it always triggers before
799 * the actual event. We therefore look at the next
800 * samples to pinpoint the exact position of the trigger.
801 */
802 trigger_offset = get_trigger_offset(samples,
803 ss->lastsample, &devc->trigger);
804
805 if (trigger_offset > 0) {
806 packet.type = SR_DF_LOGIC;
807 logic.length = trigger_offset * logic.unitsize;
102f1239 808 sr_session_send(sdi, &packet);
23239b5c
MV
809 events_in_cluster -= trigger_offset;
810 }
811
812 /* Only send trigger if explicitly enabled. */
813 if (devc->use_triggers) {
814 packet.type = SR_DF_TRIGGER;
102f1239 815 sr_session_send(sdi, &packet);
23239b5c
MV
816 }
817 }
818
819 if (events_in_cluster > 0) {
820 packet.type = SR_DF_LOGIC;
821 logic.length = events_in_cluster * logic.unitsize;
822 logic.data = samples + (trigger_offset * logic.unitsize);
102f1239 823 sr_session_send(sdi, &packet);
23239b5c
MV
824 }
825
826 ss->lastsample =
827 samples[2 * (events_in_cluster - 1) + 0] |
828 (samples[2 * (events_in_cluster - 1) + 1] << 8);
829
830}
831
28a35d8a 832/*
fefa1800
UH
833 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
834 * Each event is 20ns apart, and can contain multiple samples.
f78898e9
HE
835 *
836 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
837 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
838 * For 50 MHz and below, events contain one sample for each channel,
839 * spread 20 ns apart.
28a35d8a 840 */
1e23158b
MV
841static int decode_chunk_ts(struct sigma_dram_line *dram_line,
842 uint16_t events_in_line,
843 uint32_t trigger_event,
102f1239 844 struct sr_dev_inst *sdi)
28a35d8a 845{
3628074d 846 struct sigma_dram_cluster *dram_cluster;
0e1357e8 847 struct dev_context *devc = sdi->priv;
5fc01191
MV
848 unsigned int clusters_in_line =
849 (events_in_line + (EVENTS_PER_CLUSTER - 1)) / EVENTS_PER_CLUSTER;
850 unsigned int events_in_cluster;
23239b5c 851 unsigned int i;
1e23158b 852 uint32_t trigger_cluster = ~0, triggered = 0;
ee492173 853
4ae1f451 854 /* Check if trigger is in this chunk. */
1e23158b
MV
855 if (trigger_event < (64 * 7)) {
856 if (devc->cur_samplerate <= SR_MHZ(50)) {
857 trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
858 trigger_event);
859 }
57bbf56b 860
f3f19d11 861 /* Find in which cluster the trigger occurred. */
1e23158b 862 trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
ee492173 863 }
28a35d8a 864
5fc01191
MV
865 /* For each full DRAM cluster. */
866 for (i = 0; i < clusters_in_line; i++) {
3628074d 867 dram_cluster = &dram_line->cluster[i];
5fc01191 868
5fc01191 869 /* The last cluster might not be full. */
23239b5c
MV
870 if ((i == clusters_in_line - 1) &&
871 (events_in_line % EVENTS_PER_CLUSTER)) {
5fc01191 872 events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
23239b5c 873 } else {
5fc01191 874 events_in_cluster = EVENTS_PER_CLUSTER;
abda62ce 875 }
ee492173 876
1e23158b
MV
877 triggered = (i == trigger_cluster);
878 sigma_decode_dram_cluster(dram_cluster, events_in_cluster,
879 triggered, sdi);
28a35d8a
HE
880 }
881
e46b8fb1 882 return SR_OK;
28a35d8a
HE
883}
884
6057d9fa 885static int download_capture(struct sr_dev_inst *sdi)
28a35d8a 886{
6057d9fa 887 struct dev_context *devc = sdi->priv;
e15e5873 888 const uint32_t chunks_per_read = 32;
fd830beb 889 struct sigma_dram_line *dram_line;
c6648b66 890 int bufsz;
462fe786 891 uint32_t stoppos, triggerpos;
6057d9fa
MV
892 uint8_t modestatus;
893
c6648b66
MV
894 uint32_t i;
895 uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
46641fac 896 uint32_t dl_events_in_line = 64 * 7;
1e23158b 897 uint32_t trg_line = ~0, trg_event = ~0;
c6648b66 898
fd830beb
MV
899 dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
900 if (!dram_line)
901 return FALSE;
902
6868626b
BV
903 sr_info("Downloading sample data.");
904
6057d9fa
MV
905 /* Stop acquisition. */
906 sigma_set_register(WRITE_MODE, 0x11, devc);
907
908 /* Set SDRAM Read Enable. */
909 sigma_set_register(WRITE_MODE, 0x02, devc);
910
911 /* Get the current position. */
462fe786 912 sigma_read_pos(&stoppos, &triggerpos, devc);
6057d9fa
MV
913
914 /* Check if trigger has fired. */
915 modestatus = sigma_get_register(READ_MODE, devc);
1e23158b 916 if (modestatus & 0x20) {
c6648b66 917 trg_line = triggerpos >> 9;
1e23158b
MV
918 trg_event = triggerpos & 0x1ff;
919 }
6057d9fa 920
c6648b66
MV
921 /*
922 * Determine how many 1024b "DRAM lines" do we need to read from the
923 * Sigma so we have a complete set of samples. Note that the last
924 * line can be only partial, containing less than 64 clusters.
925 */
926 dl_lines_total = (stoppos >> 9) + 1;
6868626b 927
c6648b66 928 dl_lines_done = 0;
6868626b 929
c6648b66
MV
930 while (dl_lines_total > dl_lines_done) {
931 /* We can download only up-to 32 DRAM lines in one go! */
932 dl_lines_curr = MIN(chunks_per_read, dl_lines_total);
6868626b 933
f41a4cae
MV
934 bufsz = sigma_read_dram(dl_lines_done, dl_lines_curr,
935 (uint8_t *)dram_line, devc);
c6648b66
MV
936 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
937 (void)bufsz;
6868626b 938
c6648b66
MV
939 /* This is the first DRAM line, so find the initial timestamp. */
940 if (dl_lines_done == 0) {
3513d965
MV
941 devc->state.lastts =
942 sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
c6648b66 943 devc->state.lastsample = 0;
6868626b
BV
944 }
945
c6648b66 946 for (i = 0; i < dl_lines_curr; i++) {
1e23158b 947 uint32_t trigger_event = ~0;
c6648b66
MV
948 /* The last "DRAM line" can be only partially full. */
949 if (dl_lines_done + i == dl_lines_total - 1)
46641fac 950 dl_events_in_line = stoppos & 0x1ff;
c6648b66 951
e69ad48e 952 /* Test if the trigger happened on this line. */
c6648b66 953 if (dl_lines_done + i == trg_line)
1e23158b 954 trigger_event = trg_event;
e69ad48e 955
1e23158b
MV
956 decode_chunk_ts(dram_line + i, dl_events_in_line,
957 trigger_event, sdi);
c6648b66 958 }
6868626b 959
c6648b66 960 dl_lines_done += dl_lines_curr;
6868626b
BV
961 }
962
bee2b016 963 std_session_send_df_end(sdi);
6057d9fa 964
695dc859 965 sdi->driver->dev_acquisition_stop(sdi);
6057d9fa 966
fd830beb
MV
967 g_free(dram_line);
968
6057d9fa 969 return TRUE;
6868626b
BV
970}
971
d4051930
MV
972/*
973 * Handle the Sigma when in CAPTURE mode. This function checks:
974 * - Sampling time ended
975 * - DRAM capacity overflow
976 * This function triggers download of the samples from Sigma
977 * in case either of the above conditions is true.
978 */
979static int sigma_capture_mode(struct sr_dev_inst *sdi)
6868626b 980{
d4051930
MV
981 struct dev_context *devc = sdi->priv;
982
94ba4bd6 983 uint64_t running_msec;
28a35d8a 984 struct timeval tv;
28a35d8a 985
00c86508 986 uint32_t stoppos, triggerpos;
28a35d8a 987
00c86508 988 /* Check if the selected sampling duration passed. */
d4051930
MV
989 gettimeofday(&tv, 0);
990 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
00c86508
MV
991 (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
992 if (running_msec >= devc->limit_msec)
6057d9fa 993 return download_capture(sdi);
00c86508
MV
994
995 /* Get the position in DRAM to which the FPGA is writing now. */
996 sigma_read_pos(&stoppos, &triggerpos, devc);
997 /* Test if DRAM is full and if so, download the data. */
998 if ((stoppos >> 9) == 32767)
6057d9fa 999 return download_capture(sdi);
28a35d8a 1000
d4051930
MV
1001 return TRUE;
1002}
28a35d8a 1003
3ba56876 1004SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
d4051930
MV
1005{
1006 struct sr_dev_inst *sdi;
1007 struct dev_context *devc;
88c51afe 1008
d4051930
MV
1009 (void)fd;
1010 (void)revents;
88c51afe 1011
d4051930
MV
1012 sdi = cb_data;
1013 devc = sdi->priv;
1014
1015 if (devc->state.state == SIGMA_IDLE)
1016 return TRUE;
1017
1018 if (devc->state.state == SIGMA_CAPTURE)
1019 return sigma_capture_mode(sdi);
28a35d8a 1020
28a35d8a
HE
1021 return TRUE;
1022}
1023
c53d793f
HE
1024/* Build a LUT entry used by the trigger functions. */
1025static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
ee492173
HE
1026{
1027 int i, j, k, bit;
1028
ba7dd8bb 1029 /* For each quad channel. */
0a1f7b09 1030 for (i = 0; i < 4; i++) {
c53d793f 1031 entry[i] = 0xffff;
ee492173 1032
f758d074 1033 /* For each bit in LUT. */
0a1f7b09 1034 for (j = 0; j < 16; j++)
ee492173 1035
ba7dd8bb 1036 /* For each channel in quad. */
0a1f7b09 1037 for (k = 0; k < 4; k++) {
ee492173
HE
1038 bit = 1 << (i * 4 + k);
1039
c53d793f 1040 /* Set bit in entry */
0a1f7b09
UH
1041 if ((mask & bit) && ((!(value & bit)) !=
1042 (!(j & (1 << k)))))
c53d793f 1043 entry[i] &= ~(1 << j);
ee492173
HE
1044 }
1045 }
c53d793f 1046}
ee492173 1047
c53d793f
HE
1048/* Add a logical function to LUT mask. */
1049static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1050 int index, int neg, uint16_t *mask)
1051{
1052 int i, j;
1053 int x[2][2], tmp, a, b, aset, bset, rset;
1054
1055 memset(x, 0, 4 * sizeof(int));
1056
1057 /* Trigger detect condition. */
1058 switch (oper) {
1059 case OP_LEVEL:
1060 x[0][1] = 1;
1061 x[1][1] = 1;
1062 break;
1063 case OP_NOT:
1064 x[0][0] = 1;
1065 x[1][0] = 1;
1066 break;
1067 case OP_RISE:
1068 x[0][1] = 1;
1069 break;
1070 case OP_FALL:
1071 x[1][0] = 1;
1072 break;
1073 case OP_RISEFALL:
1074 x[0][1] = 1;
1075 x[1][0] = 1;
1076 break;
1077 case OP_NOTRISE:
1078 x[1][1] = 1;
1079 x[0][0] = 1;
1080 x[1][0] = 1;
1081 break;
1082 case OP_NOTFALL:
1083 x[1][1] = 1;
1084 x[0][0] = 1;
1085 x[0][1] = 1;
1086 break;
1087 case OP_NOTRISEFALL:
1088 x[1][1] = 1;
1089 x[0][0] = 1;
1090 break;
1091 }
1092
1093 /* Transpose if neg is set. */
1094 if (neg) {
0a1f7b09
UH
1095 for (i = 0; i < 2; i++) {
1096 for (j = 0; j < 2; j++) {
c53d793f 1097 tmp = x[i][j];
0a1f7b09
UH
1098 x[i][j] = x[1 - i][1 - j];
1099 x[1 - i][1 - j] = tmp;
c53d793f 1100 }
ea9cfed7 1101 }
c53d793f
HE
1102 }
1103
1104 /* Update mask with function. */
0a1f7b09 1105 for (i = 0; i < 16; i++) {
c53d793f
HE
1106 a = (i >> (2 * index + 0)) & 1;
1107 b = (i >> (2 * index + 1)) & 1;
1108
1109 aset = (*mask >> i) & 1;
1110 bset = x[b][a];
1111
382cb19f 1112 rset = 0;
c53d793f
HE
1113 if (func == FUNC_AND || func == FUNC_NAND)
1114 rset = aset & bset;
1115 else if (func == FUNC_OR || func == FUNC_NOR)
1116 rset = aset | bset;
1117 else if (func == FUNC_XOR || func == FUNC_NXOR)
1118 rset = aset ^ bset;
1119
1120 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1121 rset = !rset;
1122
1123 *mask &= ~(1 << i);
1124
1125 if (rset)
1126 *mask |= 1 << i;
1127 }
1128}
1129
1130/*
1131 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1132 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1133 * set at any time, but a full mask and value can be set (0/1).
1134 */
3ba56876 1135SR_PRIV int sigma_build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
c53d793f
HE
1136{
1137 int i,j;
4ae1f451 1138 uint16_t masks[2] = { 0, 0 };
c53d793f
HE
1139
1140 memset(lut, 0, sizeof(struct triggerlut));
1141
f3f19d11 1142 /* Constant for simple triggers. */
c53d793f
HE
1143 lut->m4 = 0xa000;
1144
1145 /* Value/mask trigger support. */
0e1357e8 1146 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
99965709 1147 lut->m2d);
c53d793f
HE
1148
1149 /* Rise/fall trigger support. */
0a1f7b09 1150 for (i = 0, j = 0; i < 16; i++) {
0e1357e8
BV
1151 if (devc->trigger.risingmask & (1 << i) ||
1152 devc->trigger.fallingmask & (1 << i))
c53d793f
HE
1153 masks[j++] = 1 << i;
1154 }
1155
1156 build_lut_entry(masks[0], masks[0], lut->m0d);
1157 build_lut_entry(masks[1], masks[1], lut->m1d);
1158
1159 /* Add glue logic */
1160 if (masks[0] || masks[1]) {
1161 /* Transition trigger. */
0e1357e8 1162 if (masks[0] & devc->trigger.risingmask)
c53d793f 1163 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1164 if (masks[0] & devc->trigger.fallingmask)
c53d793f 1165 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1166 if (masks[1] & devc->trigger.risingmask)
c53d793f 1167 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
0e1357e8 1168 if (masks[1] & devc->trigger.fallingmask)
c53d793f
HE
1169 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1170 } else {
1171 /* Only value/mask trigger. */
1172 lut->m3 = 0xffff;
1173 }
ee492173 1174
c53d793f 1175 /* Triggertype: event. */
ee492173
HE
1176 lut->params.selres = 3;
1177
e46b8fb1 1178 return SR_OK;
ee492173 1179}