]> sigrok.org Git - pulseview.git/blame_incremental - pv/data/logicsegment.cpp
Continue work on SRD_OUTPUT_LOGIC
[pulseview.git] / pv / data / logicsegment.cpp
... / ...
CommitLineData
1/*
2 * This file is part of the PulseView project.
3 *
4 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "config.h" // For HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
21
22#include <extdef.h>
23
24#include <cassert>
25#include <cmath>
26#include <cstdlib>
27#include <cstring>
28#include <cstdint>
29
30#include "logic.hpp"
31#include "logicsegment.hpp"
32
33#include <libsigrokcxx/libsigrokcxx.hpp>
34
35using std::lock_guard;
36using std::recursive_mutex;
37using std::max;
38using std::min;
39using std::shared_ptr;
40using std::vector;
41
42using sigrok::Logic;
43
44namespace pv {
45namespace data {
46
47const int LogicSegment::MipMapScalePower = 4;
48const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
49const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
50const uint64_t LogicSegment::MipMapDataUnit = 64 * 1024; // bytes
51
52LogicSegment::LogicSegment(pv::data::Logic& owner, uint32_t segment_id,
53 unsigned int unit_size, uint64_t samplerate) :
54 Segment(segment_id, samplerate, unit_size),
55 owner_(owner),
56 last_append_sample_(0),
57 last_append_accumulator_(0),
58 last_append_extra_(0)
59{
60 memset(mip_map_, 0, sizeof(mip_map_));
61}
62
63LogicSegment::~LogicSegment()
64{
65 lock_guard<recursive_mutex> lock(mutex_);
66
67 for (MipMapLevel &l : mip_map_)
68 free(l.data);
69}
70
71shared_ptr<const LogicSegment> LogicSegment::get_shared_ptr() const
72{
73 shared_ptr<const Segment> ptr = nullptr;
74
75 try {
76 ptr = shared_from_this();
77 } catch (std::exception& e) {
78 /* Do nothing, ptr remains a null pointer */
79 }
80
81 return ptr ? std::dynamic_pointer_cast<const LogicSegment>(ptr) : nullptr;
82}
83
84template <class T>
85void LogicSegment::downsampleTmain(const T*&in, T &acc, T &prev)
86{
87 // Accumulate one sample at a time
88 for (uint64_t i = 0; i < MipMapScaleFactor; i++) {
89 T sample = *in++;
90 acc |= prev ^ sample;
91 prev = sample;
92 }
93}
94
95template <>
96void LogicSegment::downsampleTmain<uint8_t>(const uint8_t*&in, uint8_t &acc, uint8_t &prev)
97{
98 // Handle 8 bit samples in 32 bit steps
99 uint32_t prev32 = prev | prev << 8 | prev << 16 | prev << 24;
100 uint32_t acc32 = acc;
101 const uint32_t *in32 = (const uint32_t*)in;
102 for (uint64_t i = 0; i < MipMapScaleFactor; i += 4) {
103 uint32_t sample32 = *in32++;
104 acc32 |= prev32 ^ sample32;
105 prev32 = sample32;
106 }
107 // Reduce result back to uint8_t
108#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
109 prev = (prev32 >> 24) & 0xff; // MSB is last
110#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
111 prev = prev32 & 0xff; // LSB is last
112#else
113#error Endianness unknown
114#endif
115 acc |= acc32 & 0xff;
116 acc |= (acc32 >> 8) & 0xff;
117 acc |= (acc32 >> 16) & 0xff;
118 acc |= (acc32 >> 24) & 0xff;
119 in = (const uint8_t*)in32;
120}
121
122template <>
123void LogicSegment::downsampleTmain<uint16_t>(const uint16_t*&in, uint16_t &acc, uint16_t &prev)
124{
125 // Handle 16 bit samples in 32 bit steps
126 uint32_t prev32 = prev | prev << 16;
127 uint32_t acc32 = acc;
128 const uint32_t *in32 = (const uint32_t*)in;
129 for (uint64_t i = 0; i < MipMapScaleFactor; i += 2) {
130 uint32_t sample32 = *in32++;
131 acc32 |= prev32 ^ sample32;
132 prev32 = sample32;
133 }
134 // Reduce result back to uint16_t
135#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
136 prev = (prev32 >> 16) & 0xffff; // MSB is last
137#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
138 prev = prev32 & 0xffff; // LSB is last
139#else
140#error Endian unknown
141#endif
142 acc |= acc32 & 0xffff;
143 acc |= (acc32 >> 16) & 0xffff;
144 in = (const uint16_t*)in32;
145}
146
147template <class T>
148void LogicSegment::downsampleT(const uint8_t *in_, uint8_t *&out_, uint64_t len)
149{
150 const T *in = (const T*)in_;
151 T *out = (T*)out_;
152 T prev = last_append_sample_;
153 T acc = last_append_accumulator_;
154
155 // Try to complete the previous downsample
156 if (last_append_extra_) {
157 while (last_append_extra_ < MipMapScaleFactor && len > 0) {
158 T sample = *in++;
159 acc |= prev ^ sample;
160 prev = sample;
161 last_append_extra_++;
162 len--;
163 }
164 if (!len) {
165 // Not enough samples available to complete downsample
166 last_append_sample_ = prev;
167 last_append_accumulator_ = acc;
168 return;
169 }
170 // We have a complete downsample
171 *out++ = acc;
172 acc = 0;
173 last_append_extra_ = 0;
174 }
175
176 // Handle complete blocks of MipMapScaleFactor samples
177 while (len >= MipMapScaleFactor) {
178 downsampleTmain<T>(in, acc, prev);
179 len -= MipMapScaleFactor;
180 // Output downsample
181 *out++ = acc;
182 acc = 0;
183 }
184
185 // Process remainder, not enough for a complete sample
186 while (len > 0) {
187 T sample = *in++;
188 acc |= prev ^ sample;
189 prev = sample;
190 last_append_extra_++;
191 len--;
192 }
193
194 // Update context
195 last_append_sample_ = prev;
196 last_append_accumulator_ = acc;
197 out_ = (uint8_t *)out;
198}
199
200void LogicSegment::downsampleGeneric(const uint8_t *in, uint8_t *&out, uint64_t len)
201{
202 // Downsample using the generic unpack_sample()
203 // which can handle any width between 1 and 8 bytes
204 uint64_t prev = last_append_sample_;
205 uint64_t acc = last_append_accumulator_;
206
207 // Try to complete the previous downsample
208 if (last_append_extra_) {
209 while (last_append_extra_ < MipMapScaleFactor && len > 0) {
210 const uint64_t sample = unpack_sample(in);
211 in += unit_size_;
212 acc |= prev ^ sample;
213 prev = sample;
214 last_append_extra_++;
215 len--;
216 }
217 if (!len) {
218 // Not enough samples available to complete downsample
219 last_append_sample_ = prev;
220 last_append_accumulator_ = acc;
221 return;
222 }
223 // We have a complete downsample
224 pack_sample(out, acc);
225 out += unit_size_;
226 acc = 0;
227 last_append_extra_ = 0;
228 }
229
230 // Handle complete blocks of MipMapScaleFactor samples
231 while (len >= MipMapScaleFactor) {
232 // Accumulate one sample at a time
233 for (uint64_t i = 0; i < MipMapScaleFactor; i++) {
234 const uint64_t sample = unpack_sample(in);
235 in += unit_size_;
236 acc |= prev ^ sample;
237 prev = sample;
238 }
239 len -= MipMapScaleFactor;
240 // Output downsample
241 pack_sample(out, acc);
242 out += unit_size_;
243 acc = 0;
244 }
245
246 // Process remainder, not enough for a complete sample
247 while (len > 0) {
248 const uint64_t sample = unpack_sample(in);
249 in += unit_size_;
250 acc |= prev ^ sample;
251 prev = sample;
252 last_append_extra_++;
253 len--;
254 }
255
256 // Update context
257 last_append_sample_ = prev;
258 last_append_accumulator_ = acc;
259}
260
261inline uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
262{
263#ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
264 return *(uint64_t*)ptr;
265#else
266 uint64_t value = 0;
267 switch (unit_size_) {
268 default:
269 value |= ((uint64_t)ptr[7]) << 56;
270 /* FALLTHRU */
271 case 7:
272 value |= ((uint64_t)ptr[6]) << 48;
273 /* FALLTHRU */
274 case 6:
275 value |= ((uint64_t)ptr[5]) << 40;
276 /* FALLTHRU */
277 case 5:
278 value |= ((uint64_t)ptr[4]) << 32;
279 /* FALLTHRU */
280 case 4:
281 value |= ((uint32_t)ptr[3]) << 24;
282 /* FALLTHRU */
283 case 3:
284 value |= ((uint32_t)ptr[2]) << 16;
285 /* FALLTHRU */
286 case 2:
287 value |= ptr[1] << 8;
288 /* FALLTHRU */
289 case 1:
290 value |= ptr[0];
291 /* FALLTHRU */
292 case 0:
293 break;
294 }
295 return value;
296#endif
297}
298
299inline void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
300{
301#ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
302 *(uint64_t*)ptr = value;
303#else
304 switch (unit_size_) {
305 default:
306 ptr[7] = value >> 56;
307 /* FALLTHRU */
308 case 7:
309 ptr[6] = value >> 48;
310 /* FALLTHRU */
311 case 6:
312 ptr[5] = value >> 40;
313 /* FALLTHRU */
314 case 5:
315 ptr[4] = value >> 32;
316 /* FALLTHRU */
317 case 4:
318 ptr[3] = value >> 24;
319 /* FALLTHRU */
320 case 3:
321 ptr[2] = value >> 16;
322 /* FALLTHRU */
323 case 2:
324 ptr[1] = value >> 8;
325 /* FALLTHRU */
326 case 1:
327 ptr[0] = value;
328 /* FALLTHRU */
329 case 0:
330 break;
331 }
332#endif
333}
334
335void LogicSegment::append_payload(shared_ptr<sigrok::Logic> logic)
336{
337 assert(unit_size_ == logic->unit_size());
338 assert((logic->data_length() % unit_size_) == 0);
339
340 append_payload(logic->data_pointer(), logic->data_length());
341}
342
343void LogicSegment::append_payload(void *data, uint64_t data_size)
344{
345 assert(unit_size_ > 0);
346 assert((data_size % unit_size_) == 0);
347
348 lock_guard<recursive_mutex> lock(mutex_);
349
350 const uint64_t prev_sample_count = sample_count_;
351 const uint64_t sample_count = data_size / unit_size_;
352
353 append_samples(data, sample_count);
354
355 // Generate the first mip-map from the data
356 append_payload_to_mipmap();
357
358 if (sample_count > 1)
359 owner_.notify_samples_added(SharedPtrToSegment(shared_from_this()),
360 prev_sample_count + 1, prev_sample_count + 1 + sample_count);
361 else
362 owner_.notify_samples_added(SharedPtrToSegment(shared_from_this()),
363 prev_sample_count + 1, prev_sample_count + 1);
364}
365
366void LogicSegment::append_subsignal_payload(unsigned int index, void *data, uint64_t data_size)
367{
368 static vector<uint8_t> merged_data; // To preserve intermediate data across calls
369
370 if (index == 0)
371 for (uint64_t i = 0; i < data_size * unit_size_; i++)
372 merged_data.emplace_back(0);
373
374 // Set the bits for this sub-signal where needed
375 // Note: the bytes in *data must either be 0 or 1, nothing else
376 unsigned int index_byte_offs = index / 8;
377 uint8_t* output_data = merged_data.data() + index_byte_offs;
378 uint8_t* input_data = (uint8_t*)data;
379
380 for (uint64_t i = 0; i < data_size; i++) {
381 assert((i * unit_size_ + index_byte_offs) < merged_data.size());
382 *output_data |= (input_data[i] << index);
383 output_data += unit_size_;
384 }
385
386 if (index == owner_.num_channels() - 1) {
387 // We gathered sample data of all sub-signals, let's append it
388 append_payload(merged_data.data(), merged_data.size());
389 merged_data.clear();
390 }
391}
392
393void LogicSegment::get_samples(int64_t start_sample,
394 int64_t end_sample, uint8_t* dest) const
395{
396 assert(start_sample >= 0);
397 assert(start_sample <= (int64_t)sample_count_);
398 assert(end_sample >= 0);
399 assert(end_sample <= (int64_t)sample_count_);
400 assert(start_sample <= end_sample);
401 assert(dest != nullptr);
402
403 lock_guard<recursive_mutex> lock(mutex_);
404
405 get_raw_samples(start_sample, (end_sample - start_sample), dest);
406}
407
408void LogicSegment::get_subsampled_edges(
409 vector<EdgePair> &edges,
410 uint64_t start, uint64_t end,
411 float min_length, int sig_index, bool first_change_only)
412{
413 uint64_t index = start;
414 unsigned int level;
415 bool last_sample;
416 bool fast_forward;
417
418 assert(start <= end);
419 assert(min_length > 0);
420 assert(sig_index >= 0);
421 assert(sig_index < 64);
422
423 lock_guard<recursive_mutex> lock(mutex_);
424
425 // Make sure we only process as many samples as we have
426 if (end > get_sample_count())
427 end = get_sample_count();
428
429 const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
430 const unsigned int min_level = max((int)floorf(logf(min_length) /
431 LogMipMapScaleFactor) - 1, 0);
432 const uint64_t sig_mask = 1ULL << sig_index;
433
434 // Store the initial state
435 last_sample = (get_unpacked_sample(start) & sig_mask) != 0;
436 if (!first_change_only)
437 edges.emplace_back(index++, last_sample);
438
439 while (index + block_length <= end) {
440 //----- Continue to search -----//
441 level = min_level;
442
443 // We cannot fast-forward if there is no mip-map data at
444 // the minimum level.
445 fast_forward = (mip_map_[level].data != nullptr);
446
447 if (min_length < MipMapScaleFactor) {
448 // Search individual samples up to the beginning of
449 // the next first level mip map block
450 const uint64_t final_index = min(end, pow2_ceil(index, MipMapScalePower));
451
452 for (; index < final_index &&
453 (index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
454 index++) {
455
456 const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
457
458 // If there was a change we cannot fast forward
459 if (sample != last_sample) {
460 fast_forward = false;
461 break;
462 }
463 }
464 } else {
465 // If resolution is less than a mip map block,
466 // round up to the beginning of the mip-map block
467 // for this level of detail
468 const int min_level_scale_power = (level + 1) * MipMapScalePower;
469 index = pow2_ceil(index, min_level_scale_power);
470 if (index >= end)
471 break;
472
473 // We can fast forward only if there was no change
474 const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
475 if (last_sample != sample)
476 fast_forward = false;
477 }
478
479 if (fast_forward) {
480
481 // Fast forward: This involves zooming out to higher
482 // levels of the mip map searching for changes, then
483 // zooming in on them to find the point where the edge
484 // begins.
485
486 // Slide right and zoom out at the beginnings of mip-map
487 // blocks until we encounter a change
488 while (true) {
489 const int level_scale_power = (level + 1) * MipMapScalePower;
490 const uint64_t offset = index >> level_scale_power;
491
492 // Check if we reached the last block at this
493 // level, or if there was a change in this block
494 if (offset >= mip_map_[level].length ||
495 (get_subsample(level, offset) & sig_mask))
496 break;
497
498 if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
499 // If we are now at the beginning of a
500 // higher level mip-map block ascend one
501 // level
502 if ((level + 1 >= ScaleStepCount) || (!mip_map_[level + 1].data))
503 break;
504
505 level++;
506 } else {
507 // Slide right to the beginning of the
508 // next mip map block
509 index = pow2_ceil(index + 1, level_scale_power);
510 }
511 }
512
513 // Zoom in, and slide right until we encounter a change,
514 // and repeat until we reach min_level
515 while (true) {
516 assert(mip_map_[level].data);
517
518 const int level_scale_power = (level + 1) * MipMapScalePower;
519 const uint64_t offset = index >> level_scale_power;
520
521 // Check if we reached the last block at this
522 // level, or if there was a change in this block
523 if (offset >= mip_map_[level].length ||
524 (get_subsample(level, offset) & sig_mask)) {
525 // Zoom in unless we reached the minimum
526 // zoom
527 if (level == min_level)
528 break;
529
530 level--;
531 } else {
532 // Slide right to the beginning of the
533 // next mip map block
534 index = pow2_ceil(index + 1, level_scale_power);
535 }
536 }
537
538 // If individual samples within the limit of resolution,
539 // do a linear search for the next transition within the
540 // block
541 if (min_length < MipMapScaleFactor) {
542 for (; index < end; index++) {
543 const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
544 if (sample != last_sample)
545 break;
546 }
547 }
548 }
549
550 //----- Store the edge -----//
551
552 // Take the last sample of the quanization block
553 const int64_t final_index = index + block_length;
554 if (index + block_length > end)
555 break;
556
557 // Store the final state
558 const bool final_sample = (get_unpacked_sample(final_index - 1) & sig_mask) != 0;
559 edges.emplace_back(index, final_sample);
560
561 index = final_index;
562 last_sample = final_sample;
563
564 if (first_change_only)
565 break;
566 }
567
568 // Add the final state
569 if (!first_change_only) {
570 const bool end_sample = get_unpacked_sample(end) & sig_mask;
571 if (last_sample != end_sample)
572 edges.emplace_back(end, end_sample);
573 edges.emplace_back(end + 1, end_sample);
574 }
575}
576
577void LogicSegment::get_surrounding_edges(vector<EdgePair> &dest,
578 uint64_t origin_sample, float min_length, int sig_index)
579{
580 if (origin_sample >= sample_count_)
581 return;
582
583 // Put the edges vector on the heap, it can become quite big until we can
584 // use a get_subsampled_edges() implementation that searches backwards
585 vector<EdgePair>* edges = new vector<EdgePair>;
586
587 // Get all edges to the left of origin_sample
588 get_subsampled_edges(*edges, 0, origin_sample, min_length, sig_index, false);
589
590 // If we don't specify "first only", the first and last edge are the states
591 // at samples 0 and origin_sample. If only those exist, there are no edges
592 if (edges->size() == 2) {
593 delete edges;
594 return;
595 }
596
597 // Dismiss the entry for origin_sample so that back() gives us the
598 // real last entry
599 edges->pop_back();
600 dest.push_back(edges->back());
601 edges->clear();
602
603 // Get first edge to the right of origin_sample
604 get_subsampled_edges(*edges, origin_sample, sample_count_, min_length, sig_index, true);
605
606 // "first only" is specified, so nothing needs to be dismissed
607 if (edges->size() == 0) {
608 delete edges;
609 return;
610 }
611
612 dest.push_back(edges->front());
613
614 delete edges;
615}
616
617void LogicSegment::reallocate_mipmap_level(MipMapLevel &m)
618{
619 lock_guard<recursive_mutex> lock(mutex_);
620
621 const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
622 MipMapDataUnit) * MipMapDataUnit;
623
624 if (new_data_length > m.data_length) {
625 m.data_length = new_data_length;
626
627 // Padding is added to allow for the uint64_t write word
628 m.data = realloc(m.data, new_data_length * unit_size_ +
629 sizeof(uint64_t));
630 }
631}
632
633void LogicSegment::append_payload_to_mipmap()
634{
635 MipMapLevel &m0 = mip_map_[0];
636 uint64_t prev_length;
637 uint8_t *dest_ptr;
638 SegmentDataIterator* it;
639 uint64_t accumulator;
640 unsigned int diff_counter;
641
642 // Expand the data buffer to fit the new samples
643 prev_length = m0.length;
644 m0.length = sample_count_ / MipMapScaleFactor;
645
646 // Break off if there are no new samples to compute
647 if (m0.length == prev_length)
648 return;
649
650 reallocate_mipmap_level(m0);
651
652 dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;
653
654 // Iterate through the samples to populate the first level mipmap
655 const uint64_t start_sample = prev_length * MipMapScaleFactor;
656 const uint64_t end_sample = m0.length * MipMapScaleFactor;
657 uint64_t len_sample = end_sample - start_sample;
658 it = begin_sample_iteration(start_sample);
659 while (len_sample > 0) {
660 // Number of samples available in this chunk
661 uint64_t count = get_iterator_valid_length(it);
662 // Reduce if less than asked for
663 count = std::min(count, len_sample);
664 uint8_t *src_ptr = get_iterator_value(it);
665 // Submit these contiguous samples to downsampling in bulk
666 if (unit_size_ == 1)
667 downsampleT<uint8_t>(src_ptr, dest_ptr, count);
668 else if (unit_size_ == 2)
669 downsampleT<uint16_t>(src_ptr, dest_ptr, count);
670 else if (unit_size_ == 4)
671 downsampleT<uint32_t>(src_ptr, dest_ptr, count);
672 else if (unit_size_ == 8)
673 downsampleT<uint64_t>(src_ptr, dest_ptr, count);
674 else
675 downsampleGeneric(src_ptr, dest_ptr, count);
676 len_sample -= count;
677 // Advance iterator, should move to start of next chunk
678 continue_sample_iteration(it, count);
679 }
680 end_sample_iteration(it);
681
682 // Compute higher level mipmaps
683 for (unsigned int level = 1; level < ScaleStepCount; level++) {
684 MipMapLevel &m = mip_map_[level];
685 const MipMapLevel &ml = mip_map_[level - 1];
686
687 // Expand the data buffer to fit the new samples
688 prev_length = m.length;
689 m.length = ml.length / MipMapScaleFactor;
690
691 // Break off if there are no more samples to be computed
692 if (m.length == prev_length)
693 break;
694
695 reallocate_mipmap_level(m);
696
697 // Subsample the lower level
698 const uint8_t* src_ptr = (uint8_t*)ml.data +
699 unit_size_ * prev_length * MipMapScaleFactor;
700 const uint8_t *const end_dest_ptr =
701 (uint8_t*)m.data + unit_size_ * m.length;
702
703 for (dest_ptr = (uint8_t*)m.data +
704 unit_size_ * prev_length;
705 dest_ptr < end_dest_ptr;
706 dest_ptr += unit_size_) {
707 accumulator = 0;
708 diff_counter = MipMapScaleFactor;
709 while (diff_counter-- > 0) {
710 accumulator |= unpack_sample(src_ptr);
711 src_ptr += unit_size_;
712 }
713
714 pack_sample(dest_ptr, accumulator);
715 }
716 }
717}
718
719uint64_t LogicSegment::get_unpacked_sample(uint64_t index) const
720{
721 assert(index < sample_count_);
722
723 assert(unit_size_ <= 8); // 8 * 8 = 64 channels
724 uint8_t data[8];
725
726 get_raw_samples(index, 1, data);
727
728 return unpack_sample(data);
729}
730
731uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
732{
733 assert(level >= 0);
734 assert(mip_map_[level].data);
735 return unpack_sample((uint8_t*)mip_map_[level].data +
736 unit_size_ * offset);
737}
738
739uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
740{
741 const uint64_t p = UINT64_C(1) << power;
742 return (x + p - 1) / p * p;
743}
744
745} // namespace data
746} // namespace pv