]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/uart.py
srd: I2C: No need for underscores in string cmds.
[libsigrokdecode.git] / decoders / uart.py
... / ...
CommitLineData
1##
2## This file is part of the sigrok project.
3##
4## Copyright (C) 2011 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21#
22# UART protocol decoder
23#
24
25#
26# Universal Asynchronous Receiver Transmitter (UART) is a simple serial
27# communication protocol which allows two devices to talk to each other.
28#
29# It uses just two data signals and a ground (GND) signal:
30# - RX/RXD: Receive signal
31# - TX/TXD: Transmit signal
32#
33# The protocol is asynchronous, i.e., there is no dedicated clock signal.
34# Rather, both devices have to agree on a baudrate (number of bits to be
35# transmitted per second) beforehand. Baudrates can be arbitrary in theory,
36# but usually the choice is limited by the hardware UARTs that are used.
37# Common values are 9600 or 115200.
38#
39# The protocol allows full-duplex transmission, i.e. both devices can send
40# data at the same time. However, unlike SPI (which is always full-duplex,
41# i.e., each send operation is automatically also a receive operation), UART
42# allows one-way communication, too. In such a case only one signal (and GND)
43# is required.
44#
45# The data is sent over the TX line in so-called 'frames', which consist of:
46# - Exactly one start bit (always 0/low).
47# - Between 5 and 9 data bits.
48# - An (optional) parity bit.
49# - One or more stop bit(s).
50#
51# The idle state of the RX/TX line is 1/high. As the start bit is 0/low, the
52# receiver can continually monitor its RX line for a falling edge, in order
53# to detect the start bit.
54#
55# Once detected, it can (due to the agreed-upon baudrate and thus the known
56# width/duration of one UART bit) sample the state of the RX line "in the
57# middle" of each (start/data/parity/stop) bit it wants to analyze.
58#
59# It is configurable whether there is a parity bit in a frame, and if yes,
60# which type of parity is used:
61# - None: No parity bit is included.
62# - Odd: The number of 1 bits in the data (and parity bit itself) is odd.
63# - Even: The number of 1 bits in the data (and parity bit itself) is even.
64# - Mark/one: The parity bit is always 1/high (also called 'mark state').
65# - Space/zero: The parity bit is always 0/low (also called 'space state').
66#
67# It is also configurable how many stop bits are to be used:
68# - 1 stop bit (most common case)
69# - 2 stop bits
70# - 1.5 stop bits (i.e., one stop bit, but 1.5 times the UART bit width)
71# - 0.5 stop bits (i.e., one stop bit, but 0.5 times the UART bit width)
72#
73# The bit order of the 5-9 data bits is LSB-first.
74#
75# Possible special cases:
76# - One or both data lines could be inverted, which also means that the idle
77# state of the signal line(s) is low instead of high.
78# - Only the data bits on one or both data lines (and the parity bit) could
79# be inverted (but the start/stop bits remain non-inverted).
80# - The bit order could be MSB-first instead of LSB-first.
81# - The baudrate could change in the middle of the communication. This only
82# happens in very special cases, and can only work if both devices know
83# to which baudrate they are to switch, and when.
84# - Theoretically, the baudrate on RX and the one on TX could also be
85# different, but that's a very obscure case and probably doesn't happen
86# very often in practice.
87#
88# Error conditions:
89# - If there is a parity bit, but it doesn't match the expected parity,
90# this is called a 'parity error'.
91# - If there are no stop bit(s), that's called a 'frame error'.
92#
93# More information:
94# TODO: URLs
95#
96
97#
98# Protocol output format:
99# put(<startsample>, <endsample>, self.out_proto, <packet>)
100#
101# The <packet> is a list with two entries:
102# [<packet-type>, <packet-data>]
103#
104# Valid packet-type values: T_START, T_DATA, T_PARITY, T_STOP, T_INVALID_START,
105# T_INVALID_STOP, T_PARITY_ERROR
106#
107# The packet-data field has the following format and meaning:
108# - T_START: The data is the (integer) value of the start bit (0 or 1).
109# - T_DATA: The data is the (integer) value of the UART data. Valid values
110# range from 0 to 512 (as the data can be up to 9 bits in size).
111# - T_PARITY: The data is the (integer) value of the parity bit (0 or 1).
112# - T_STOP: The data is the (integer) value of the stop bit (0 or 1).
113# - T_INVALID_START: The data is the (integer) value of the start bit (0 or 1).
114# - T_INVALID_STOP: The data is the (integer) value of the stop bit (0 or 1).
115# - T_PARITY_ERROR: The data is a tuple with two entries. The first one is
116# the expected parity value, the second is the actual parity value.
117#
118# Examples:
119# [T_START, 0]
120# [T_DATA, 65]
121# [T_PARITY, 0]
122# [T_STOP, 1]
123# [T_INVALID_START, 1]
124# [T_INVALID_STOP, 0]
125# [T_PARITY_ERROR, (0, 1)]
126#
127
128import sigrokdecode as srd
129
130# States
131WAIT_FOR_START_BIT = 0
132GET_START_BIT = 1
133GET_DATA_BITS = 2
134GET_PARITY_BIT = 3
135GET_STOP_BITS = 4
136
137# Parity options
138PARITY_NONE = 0
139PARITY_ODD = 1
140PARITY_EVEN = 2
141PARITY_ZERO = 3
142PARITY_ONE = 4
143
144# Stop bit options
145STOP_BITS_0_5 = 0
146STOP_BITS_1 = 1
147STOP_BITS_1_5 = 2
148STOP_BITS_2 = 3
149
150# Bit order options
151LSB_FIRST = 0
152MSB_FIRST = 1
153
154# Annotation feed formats
155ANN_ASCII = 0
156ANN_DEC = 1
157ANN_HEX = 2
158ANN_OCT = 3
159ANN_BITS = 4
160
161# Protocol output packet types
162T_START = 0
163T_DATA = 1
164T_PARITY = 2
165T_STOP = 3
166T_INVALID_START = 4
167T_INVALID_STOP = 5
168T_PARITY_ERROR = 6
169
170# Given a parity type to check (odd, even, zero, one), the value of the
171# parity bit, the value of the data, and the length of the data (5-9 bits,
172# usually 8 bits) return True if the parity is correct, False otherwise.
173# PARITY_NONE is _not_ allowed as value for 'parity_type'.
174def parity_ok(parity_type, parity_bit, data, num_data_bits):
175
176 # Handle easy cases first (parity bit is always 1 or 0).
177 if parity_type == PARITY_ZERO:
178 return parity_bit == 0
179 elif parity_type == PARITY_ONE:
180 return parity_bit == 1
181
182 # Count number of 1 (high) bits in the data (and the parity bit itself!).
183 parity = bin(data).count('1') + parity_bit
184
185 # Check for odd/even parity.
186 if parity_type == PARITY_ODD:
187 return (parity % 2) == 1
188 elif parity_type == PARITY_EVEN:
189 return (parity % 2) == 0
190 else:
191 raise Exception('Invalid parity type: %d' % parity_type)
192
193class Decoder(srd.Decoder):
194 id = 'uart'
195 name = 'UART'
196 longname = 'Universal Asynchronous Receiver/Transmitter (UART)'
197 desc = 'Universal Asynchronous Receiver/Transmitter (UART)'
198 longdesc = 'TODO.'
199 author = 'Uwe Hermann'
200 email = 'uwe@hermann-uwe.de'
201 license = 'gplv2+'
202 inputs = ['logic']
203 outputs = ['uart']
204 probes = [
205 # Allow specifying only one of the signals, e.g. if only one data
206 # direction exists (or is relevant).
207 {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
208 {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
209 ]
210 options = {
211 'baudrate': ['UART baud rate', 115200],
212 'num_data_bits': ['Data bits', 8], # Valid: 5-9.
213 'parity': ['Parity', PARITY_NONE],
214 'parity_check': ['Check parity', True],
215 'num_stop_bits': ['Stop bit(s)', STOP_BITS_1],
216 'bit_order': ['Bit order', LSB_FIRST],
217 # TODO: Options to invert the signal(s).
218 }
219 annotations = [
220 # ANN_ASCII
221 ['ASCII', 'TODO: description'],
222 # ANN_DEC
223 ['Decimal', 'TODO: description'],
224 # ANN_HEX
225 ['Hex', 'TODO: description'],
226 # ANN_OCT
227 ['Octal', 'TODO: description'],
228 # ANN_BITS
229 ['Bits', 'TODO: description'],
230 ]
231
232 def __init__(self, **kwargs):
233 self.samplenum = 0
234 self.frame_start = -1
235 self.startbit = -1
236 self.cur_data_bit = 0
237 self.databyte = 0
238 self.stopbit1 = -1
239 self.startsample = -1
240
241 # Initial state.
242 self.staterx = WAIT_FOR_START_BIT
243
244 self.oldrx = None
245 self.oldtx = None
246
247 # Set protocol decoder option defaults.
248 self.baudrate = Decoder.options['baudrate'][1]
249 self.num_data_bits = Decoder.options['num_data_bits'][1]
250 self.parity = Decoder.options['parity'][1]
251 self.check_parity = Decoder.options['parity_check'][1]
252 self.num_stop_bits = Decoder.options['num_stop_bits'][1]
253 self.bit_order = Decoder.options['bit_order'][1]
254
255 def start(self, metadata):
256 self.samplerate = metadata['samplerate']
257 self.out_proto = self.add(srd.OUTPUT_PROTO, 'uart')
258 self.out_ann = self.add(srd.OUTPUT_ANN, 'uart')
259
260 # TODO: Override PD options, if user wants that.
261
262 # The width of one UART bit in number of samples.
263 self.bit_width = float(self.samplerate) / float(self.baudrate)
264
265 def report(self):
266 pass
267
268 # Return true if we reached the middle of the desired bit, false otherwise.
269 def reached_bit(self, bitnum):
270 # bitpos is the samplenumber which is in the middle of the
271 # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
272 # (if used) or the first stop bit, and so on).
273 bitpos = self.frame_start + (self.bit_width / 2.0)
274 bitpos += bitnum * self.bit_width
275 if self.samplenum >= bitpos:
276 return True
277 return False
278
279 def reached_bit_last(self, bitnum):
280 bitpos = self.frame_start + ((bitnum + 1) * self.bit_width)
281 if self.samplenum >= bitpos:
282 return True
283 return False
284
285 def wait_for_start_bit(self, old_signal, signal):
286 # The start bit is always 0 (low). As the idle UART (and the stop bit)
287 # level is 1 (high), the beginning of a start bit is a falling edge.
288 if not (old_signal == 1 and signal == 0):
289 return
290
291 # Save the sample number where the start bit begins.
292 self.frame_start = self.samplenum
293
294 self.staterx = GET_START_BIT
295
296 def get_start_bit(self, signal):
297 # Skip samples until we're in the middle of the start bit.
298 if not self.reached_bit(0):
299 return
300
301 self.startbit = signal
302
303 # The startbit must be 0. If not, we report an error.
304 if self.startbit != 0:
305 self.put(self.frame_start, self.samplenum, self.out_proto,
306 [T_INVALID_START, self.startbit])
307 # TODO: Abort? Ignore rest of the frame?
308
309 self.cur_data_bit = 0
310 self.databyte = 0
311 self.startsample = -1
312
313 self.staterx = GET_DATA_BITS
314
315 self.put(self.frame_start, self.samplenum, self.out_proto,
316 [T_START, self.startbit])
317 self.put(self.frame_start, self.samplenum, self.out_ann,
318 [ANN_ASCII, ['Start bit', 'Start', 'S']])
319
320 def get_data_bits(self, signal):
321 # Skip samples until we're in the middle of the desired data bit.
322 if not self.reached_bit(self.cur_data_bit + 1):
323 return
324
325 # Save the sample number where the data byte starts.
326 if self.startsample == -1:
327 self.startsample = self.samplenum
328
329 # Get the next data bit in LSB-first or MSB-first fashion.
330 if self.bit_order == LSB_FIRST:
331 self.databyte >>= 1
332 self.databyte |= (signal << (self.num_data_bits - 1))
333 elif self.bit_order == MSB_FIRST:
334 self.databyte <<= 1
335 self.databyte |= (signal << 0)
336 else:
337 raise Exception('Invalid bit order value: %d', self.bit_order)
338
339 # Return here, unless we already received all data bits.
340 if self.cur_data_bit < self.num_data_bits - 1: # TODO? Off-by-one?
341 self.cur_data_bit += 1
342 return
343
344 self.staterx = GET_PARITY_BIT
345
346 self.put(self.startsample, self.samplenum - 1, self.out_proto,
347 [T_DATA, self.databyte])
348
349 self.put(self.startsample, self.samplenum - 1, self.out_ann,
350 [ANN_ASCII, [chr(self.databyte)]])
351 self.put(self.startsample, self.samplenum - 1, self.out_ann,
352 [ANN_DEC, [str(self.databyte)]])
353 self.put(self.startsample, self.samplenum - 1, self.out_ann,
354 [ANN_HEX, [hex(self.databyte), hex(self.databyte)[2:]]])
355 self.put(self.startsample, self.samplenum - 1, self.out_ann,
356 [ANN_OCT, [oct(self.databyte), oct(self.databyte)[2:]]])
357 self.put(self.startsample, self.samplenum - 1, self.out_ann,
358 [ANN_BITS, [bin(self.databyte), bin(self.databyte)[2:]]])
359
360 def get_parity_bit(self, signal):
361 # If no parity is used/configured, skip to the next state immediately.
362 if self.parity == PARITY_NONE:
363 self.staterx = GET_STOP_BITS
364 return
365
366 # Skip samples until we're in the middle of the parity bit.
367 if not self.reached_bit(self.num_data_bits + 1):
368 return
369
370 self.paritybit = signal
371
372 self.staterx = GET_STOP_BITS
373
374 if parity_ok(self.parity, self.paritybit, self.databyte,
375 self.num_data_bits):
376 # TODO: Fix range.
377 self.put(self.samplenum, self.samplenum, self.out_proto,
378 [T_PARITY_BIT, self.paritybit])
379 self.put(self.samplenum, self.samplenum, self.out_ann,
380 [ANN_ASCII, ['Parity bit', 'Parity', 'P']])
381 else:
382 # TODO: Fix range.
383 # TODO: Return expected/actual parity values.
384 self.put(self.samplenum, self.samplenum, self.out_proto,
385 [T_PARITY_ERROR, (0, 1)]) # FIXME: Dummy tuple...
386 self.put(self.samplenum, self.samplenum, self.out_ann,
387 [ANN_ASCII, ['Parity error', 'Parity err', 'PE']])
388
389 # TODO: Currently only supports 1 stop bit.
390 def get_stop_bits(self, signal):
391 # Skip samples until we're in the middle of the stop bit(s).
392 skip_parity = 0 if self.parity == PARITY_NONE else 1
393 if not self.reached_bit(self.num_data_bits + 1 + skip_parity):
394 return
395
396 self.stopbit1 = signal
397
398 # Stop bits must be 1. If not, we report an error.
399 if self.stopbit1 != 1:
400 self.put(self.frame_start, self.samplenum, self.out_proto,
401 [T_INVALID_STOP, self.stopbit1])
402 # TODO: Abort? Ignore the frame? Other?
403
404 self.staterx = WAIT_FOR_START_BIT
405
406 # TODO: Fix range.
407 self.put(self.samplenum, self.samplenum, self.out_proto,
408 [T_STOP, self.stopbit1])
409 self.put(self.samplenum, self.samplenum, self.out_ann,
410 [ANN_ASCII, ['Stop bit', 'Stop', 'P']])
411
412 def decode(self, ss, es, data): # TODO
413 # for (samplenum, (rx, tx)) in data:
414 for (samplenum, (rx)) in data:
415
416 # TODO: Start counting at 0 or 1? Increase before or after?
417 self.samplenum += 1
418
419 # First sample: Save RX/TX value.
420 if self.oldrx == None:
421 # Get RX/TX bit values (0/1 for low/high) of the first sample.
422 self.oldrx = rx
423 # self.oldtx = tx
424 continue
425
426 # State machine.
427 if self.staterx == WAIT_FOR_START_BIT:
428 self.wait_for_start_bit(self.oldrx, rx)
429 elif self.staterx == GET_START_BIT:
430 self.get_start_bit(rx)
431 elif self.staterx == GET_DATA_BITS:
432 self.get_data_bits(rx)
433 elif self.staterx == GET_PARITY_BIT:
434 self.get_parity_bit(rx)
435 elif self.staterx == GET_STOP_BITS:
436 self.get_stop_bits(rx)
437 else:
438 raise Exception('Invalid state: %s' % self.staterx)
439
440 # Save current RX/TX values for the next round.
441 self.oldrx = rx
442 # self.oldtx = tx
443