]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/uart/pd.py
uart: document the Python annotation for BREAK
[libsigrokdecode.git] / decoders / uart / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2011-2014 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, see <http://www.gnu.org/licenses/>.
18##
19
20import sigrokdecode as srd
21from common.srdhelper import bitpack
22from math import floor, ceil
23
24'''
25OUTPUT_PYTHON format:
26
27Packet:
28[<ptype>, <rxtx>, <pdata>]
29
30This is the list of <ptype>s and their respective <pdata> values:
31 - 'STARTBIT': The data is the (integer) value of the start bit (0/1).
32 - 'DATA': This is always a tuple containing two items:
33 - 1st item: the (integer) value of the UART data. Valid values
34 range from 0 to 511 (as the data can be up to 9 bits in size).
35 - 2nd item: the list of individual data bits and their ss/es numbers.
36 - 'PARITYBIT': The data is the (integer) value of the parity bit (0/1).
37 - 'STOPBIT': The data is the (integer) value of the stop bit (0 or 1).
38 - 'INVALID STARTBIT': The data is the (integer) value of the start bit (0/1).
39 - 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1).
40 - 'PARITY ERROR': The data is a tuple with two entries. The first one is
41 the expected parity value, the second is the actual parity value.
42 - TODO: Frame error?
43 - 'BREAK': The data is always 0.
44
45The <rxtx> field is 0 for RX packets, 1 for TX packets.
46'''
47
48# Used for differentiating between the two data directions.
49RX = 0
50TX = 1
51
52# Given a parity type to check (odd, even, zero, one), the value of the
53# parity bit, the value of the data, and the length of the data (5-9 bits,
54# usually 8 bits) return True if the parity is correct, False otherwise.
55# 'none' is _not_ allowed as value for 'parity_type'.
56def parity_ok(parity_type, parity_bit, data, num_data_bits):
57
58 # Handle easy cases first (parity bit is always 1 or 0).
59 if parity_type == 'zero':
60 return parity_bit == 0
61 elif parity_type == 'one':
62 return parity_bit == 1
63
64 # Count number of 1 (high) bits in the data (and the parity bit itself!).
65 ones = bin(data).count('1') + parity_bit
66
67 # Check for odd/even parity.
68 if parity_type == 'odd':
69 return (ones % 2) == 1
70 elif parity_type == 'even':
71 return (ones % 2) == 0
72
73class SamplerateError(Exception):
74 pass
75
76class ChannelError(Exception):
77 pass
78
79class Decoder(srd.Decoder):
80 api_version = 3
81 id = 'uart'
82 name = 'UART'
83 longname = 'Universal Asynchronous Receiver/Transmitter'
84 desc = 'Asynchronous, serial bus.'
85 license = 'gplv2+'
86 inputs = ['logic']
87 outputs = ['uart']
88 optional_channels = (
89 # Allow specifying only one of the signals, e.g. if only one data
90 # direction exists (or is relevant).
91 {'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
92 {'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
93 )
94 options = (
95 {'id': 'baudrate', 'desc': 'Baud rate', 'default': 115200},
96 {'id': 'num_data_bits', 'desc': 'Data bits', 'default': 8,
97 'values': (5, 6, 7, 8, 9)},
98 {'id': 'parity_type', 'desc': 'Parity type', 'default': 'none',
99 'values': ('none', 'odd', 'even', 'zero', 'one')},
100 {'id': 'parity_check', 'desc': 'Check parity?', 'default': 'yes',
101 'values': ('yes', 'no')},
102 {'id': 'num_stop_bits', 'desc': 'Stop bits', 'default': 1.0,
103 'values': (0.0, 0.5, 1.0, 1.5)},
104 {'id': 'bit_order', 'desc': 'Bit order', 'default': 'lsb-first',
105 'values': ('lsb-first', 'msb-first')},
106 {'id': 'format', 'desc': 'Data format', 'default': 'hex',
107 'values': ('ascii', 'dec', 'hex', 'oct', 'bin')},
108 {'id': 'invert_rx', 'desc': 'Invert RX?', 'default': 'no',
109 'values': ('yes', 'no')},
110 {'id': 'invert_tx', 'desc': 'Invert TX?', 'default': 'no',
111 'values': ('yes', 'no')},
112 )
113 annotations = (
114 ('rx-data', 'RX data'),
115 ('tx-data', 'TX data'),
116 ('rx-start', 'RX start bits'),
117 ('tx-start', 'TX start bits'),
118 ('rx-parity-ok', 'RX parity OK bits'),
119 ('tx-parity-ok', 'TX parity OK bits'),
120 ('rx-parity-err', 'RX parity error bits'),
121 ('tx-parity-err', 'TX parity error bits'),
122 ('rx-stop', 'RX stop bits'),
123 ('tx-stop', 'TX stop bits'),
124 ('rx-warnings', 'RX warnings'),
125 ('tx-warnings', 'TX warnings'),
126 ('rx-data-bits', 'RX data bits'),
127 ('tx-data-bits', 'TX data bits'),
128 ('rx-break', 'RX break'),
129 ('tx-break', 'TX break'),
130 )
131 annotation_rows = (
132 ('rx-data', 'RX', (0, 2, 4, 6, 8)),
133 ('rx-data-bits', 'RX bits', (12,)),
134 ('rx-warnings', 'RX warnings', (10,)),
135 ('rx-break', 'RX break', (14,)),
136 ('tx-data', 'TX', (1, 3, 5, 7, 9)),
137 ('tx-data-bits', 'TX bits', (13,)),
138 ('tx-warnings', 'TX warnings', (11,)),
139 ('tx-break', 'TX break', (15,)),
140 )
141 binary = (
142 ('rx', 'RX dump'),
143 ('tx', 'TX dump'),
144 ('rxtx', 'RX/TX dump'),
145 )
146 idle_state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
147
148 def putx(self, rxtx, data):
149 s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
150 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data)
151
152 def putpx(self, rxtx, data):
153 s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
154 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_python, data)
155
156 def putg(self, data):
157 s, halfbit = self.samplenum, self.bit_width / 2.0
158 self.put(s - floor(halfbit), s + ceil(halfbit), self.out_ann, data)
159
160 def putp(self, data):
161 s, halfbit = self.samplenum, self.bit_width / 2.0
162 self.put(s - floor(halfbit), s + ceil(halfbit), self.out_python, data)
163
164 def putgse(self, ss, es, data):
165 self.put(ss, es, self.out_ann, data)
166
167 def putpse(self, ss, es, data):
168 self.put(ss, es, self.out_python, data)
169
170 def putbin(self, rxtx, data):
171 s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
172 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_binary, data)
173
174 def __init__(self):
175 self.reset()
176
177 def reset(self):
178 self.samplerate = None
179 self.samplenum = 0
180 self.frame_start = [-1, -1]
181 self.startbit = [-1, -1]
182 self.cur_data_bit = [0, 0]
183 self.datavalue = [0, 0]
184 self.paritybit = [-1, -1]
185 self.stopbit1 = [-1, -1]
186 self.startsample = [-1, -1]
187 self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
188 self.databits = [[], []]
189 self.break_start = [None, None]
190
191 def start(self):
192 self.out_python = self.register(srd.OUTPUT_PYTHON)
193 self.out_binary = self.register(srd.OUTPUT_BINARY)
194 self.out_ann = self.register(srd.OUTPUT_ANN)
195 self.bw = (self.options['num_data_bits'] + 7) // 8
196
197 def metadata(self, key, value):
198 if key == srd.SRD_CONF_SAMPLERATE:
199 self.samplerate = value
200 # The width of one UART bit in number of samples.
201 self.bit_width = float(self.samplerate) / float(self.options['baudrate'])
202
203 def get_sample_point(self, rxtx, bitnum):
204 # Determine absolute sample number of a bit slot's sample point.
205 # bitpos is the samplenumber which is in the middle of the
206 # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
207 # (if used) or the first stop bit, and so on).
208 # The samples within bit are 0, 1, ..., (bit_width - 1), therefore
209 # index of the middle sample within bit window is (bit_width - 1) / 2.
210 bitpos = self.frame_start[rxtx] + (self.bit_width - 1) / 2.0
211 bitpos += bitnum * self.bit_width
212 return bitpos
213
214 def wait_for_start_bit(self, rxtx, signal):
215 # Save the sample number where the start bit begins.
216 self.frame_start[rxtx] = self.samplenum
217
218 self.state[rxtx] = 'GET START BIT'
219
220 def get_start_bit(self, rxtx, signal):
221 self.startbit[rxtx] = signal
222
223 # The startbit must be 0. If not, we report an error and wait
224 # for the next start bit (assuming this one was spurious).
225 if self.startbit[rxtx] != 0:
226 self.putp(['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
227 self.putg([rxtx + 10, ['Frame error', 'Frame err', 'FE']])
228 self.state[rxtx] = 'WAIT FOR START BIT'
229 return
230
231 self.cur_data_bit[rxtx] = 0
232 self.datavalue[rxtx] = 0
233 self.startsample[rxtx] = -1
234
235 self.putp(['STARTBIT', rxtx, self.startbit[rxtx]])
236 self.putg([rxtx + 2, ['Start bit', 'Start', 'S']])
237
238 self.state[rxtx] = 'GET DATA BITS'
239
240 def get_data_bits(self, rxtx, signal):
241 # Save the sample number of the middle of the first data bit.
242 if self.startsample[rxtx] == -1:
243 self.startsample[rxtx] = self.samplenum
244
245 self.putg([rxtx + 12, ['%d' % signal]])
246
247 # Store individual data bits and their start/end samplenumbers.
248 s, halfbit = self.samplenum, int(self.bit_width / 2)
249 self.databits[rxtx].append([signal, s - halfbit, s + halfbit])
250
251 # Return here, unless we already received all data bits.
252 self.cur_data_bit[rxtx] += 1
253 if self.cur_data_bit[rxtx] < self.options['num_data_bits']:
254 return
255
256 # Convert accumulated data bits to a data value.
257 bits = [b[0] for b in self.databits[rxtx]]
258 if self.options['bit_order'] == 'msb-first':
259 bits.reverse()
260 self.datavalue[rxtx] = bitpack(bits)
261 self.putpx(rxtx, ['DATA', rxtx,
262 (self.datavalue[rxtx], self.databits[rxtx])])
263
264 b = self.datavalue[rxtx]
265 formatted = self.format_value(b)
266 if formatted is not None:
267 self.putx(rxtx, [rxtx, [formatted]])
268
269 bdata = b.to_bytes(self.bw, byteorder='big')
270 self.putbin(rxtx, [rxtx, bdata])
271 self.putbin(rxtx, [2, bdata])
272
273 self.databits[rxtx] = []
274
275 # Advance to either reception of the parity bit, or reception of
276 # the STOP bits if parity is not applicable.
277 self.state[rxtx] = 'GET PARITY BIT'
278 if self.options['parity_type'] == 'none':
279 self.state[rxtx] = 'GET STOP BITS'
280
281 def format_value(self, v):
282 # Format value 'v' according to configured options.
283 # Reflects the user selected kind of representation, as well as
284 # the number of data bits in the UART frames.
285
286 fmt, bits = self.options['format'], self.options['num_data_bits']
287
288 # Assume "is printable" for values from 32 to including 126,
289 # below 32 is "control" and thus not printable, above 127 is
290 # "not ASCII" in its strict sense, 127 (DEL) is not printable,
291 # fall back to hex representation for non-printables.
292 if fmt == 'ascii':
293 if v in range(32, 126 + 1):
294 return chr(v)
295 hexfmt = "[{:02X}]" if bits <= 8 else "[{:03X}]"
296 return hexfmt.format(v)
297
298 # Mere number to text conversion without prefix and padding
299 # for the "decimal" output format.
300 if fmt == 'dec':
301 return "{:d}".format(v)
302
303 # Padding with leading zeroes for hex/oct/bin formats, but
304 # without a prefix for density -- since the format is user
305 # specified, there is no ambiguity.
306 if fmt == 'hex':
307 digits = (bits + 4 - 1) // 4
308 fmtchar = "X"
309 elif fmt == 'oct':
310 digits = (bits + 3 - 1) // 3
311 fmtchar = "o"
312 elif fmt == 'bin':
313 digits = bits
314 fmtchar = "b"
315 else:
316 fmtchar = None
317 if fmtchar is not None:
318 fmt = "{{:0{:d}{:s}}}".format(digits, fmtchar)
319 return fmt.format(v)
320
321 return None
322
323 def get_parity_bit(self, rxtx, signal):
324 self.paritybit[rxtx] = signal
325
326 if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
327 self.datavalue[rxtx], self.options['num_data_bits']):
328 self.putp(['PARITYBIT', rxtx, self.paritybit[rxtx]])
329 self.putg([rxtx + 4, ['Parity bit', 'Parity', 'P']])
330 else:
331 # TODO: Return expected/actual parity values.
332 self.putp(['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
333 self.putg([rxtx + 6, ['Parity error', 'Parity err', 'PE']])
334
335 self.state[rxtx] = 'GET STOP BITS'
336
337 # TODO: Currently only supports 1 stop bit.
338 def get_stop_bits(self, rxtx, signal):
339 self.stopbit1[rxtx] = signal
340
341 # Stop bits must be 1. If not, we report an error.
342 if self.stopbit1[rxtx] != 1:
343 self.putp(['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
344 self.putg([rxtx + 10, ['Frame error', 'Frame err', 'FE']])
345 # TODO: Abort? Ignore the frame? Other?
346
347 self.putp(['STOPBIT', rxtx, self.stopbit1[rxtx]])
348 self.putg([rxtx + 4, ['Stop bit', 'Stop', 'T']])
349
350 self.state[rxtx] = 'WAIT FOR START BIT'
351
352 def handle_break(self, rxtx):
353 self.putpse(self.frame_start[rxtx], self.samplenum,
354 ['BREAK', rxtx, 0])
355 self.putgse(self.frame_start[rxtx], self.samplenum,
356 [rxtx + 14, ['Break condition', 'Break', 'Brk', 'B']])
357 self.state[rxtx] = 'WAIT FOR START BIT'
358
359 def get_wait_cond(self, rxtx, inv):
360 # Return condititions that are suitable for Decoder.wait(). Those
361 # conditions either match the falling edge of the START bit, or
362 # the sample point of the next bit time.
363 state = self.state[rxtx]
364 if state == 'WAIT FOR START BIT':
365 return {rxtx: 'r' if inv else 'f'}
366 if state == 'GET START BIT':
367 bitnum = 0
368 elif state == 'GET DATA BITS':
369 bitnum = 1 + self.cur_data_bit[rxtx]
370 elif state == 'GET PARITY BIT':
371 bitnum = 1 + self.options['num_data_bits']
372 elif state == 'GET STOP BITS':
373 bitnum = 1 + self.options['num_data_bits']
374 bitnum += 0 if self.options['parity_type'] == 'none' else 1
375 want_num = ceil(self.get_sample_point(rxtx, bitnum))
376 return {'skip': want_num - self.samplenum}
377
378 def inspect_sample(self, rxtx, signal, inv):
379 # Inspect a sample returned by .wait() for the specified UART line.
380 if inv:
381 signal = not signal
382
383 state = self.state[rxtx]
384 if state == 'WAIT FOR START BIT':
385 self.wait_for_start_bit(rxtx, signal)
386 elif state == 'GET START BIT':
387 self.get_start_bit(rxtx, signal)
388 elif state == 'GET DATA BITS':
389 self.get_data_bits(rxtx, signal)
390 elif state == 'GET PARITY BIT':
391 self.get_parity_bit(rxtx, signal)
392 elif state == 'GET STOP BITS':
393 self.get_stop_bits(rxtx, signal)
394
395 def inspect_edge(self, rxtx, signal, inv):
396 # Inspect edges, independently from traffic, to detect break conditions.
397 if inv:
398 signal = not signal
399 if not signal:
400 # Signal went low. Start another interval.
401 self.break_start[rxtx] = self.samplenum
402 return
403 # Signal went high. Was there an extended period with low signal?
404 if self.break_start[rxtx] is None:
405 return
406 diff = self.samplenum - self.break_start[rxtx]
407 if diff >= self.break_min_sample_count:
408 self.handle_break(rxtx)
409 self.break_start[rxtx] = None
410
411 def decode(self):
412 if not self.samplerate:
413 raise SamplerateError('Cannot decode without samplerate.')
414
415 has_pin = [self.has_channel(ch) for ch in (RX, TX)]
416 if has_pin == [False, False]:
417 raise ChannelError('Either TX or RX (or both) pins required.')
418
419 opt = self.options
420 inv = [opt['invert_rx'] == 'yes', opt['invert_tx'] == 'yes']
421 cond_data_idx = [None] * len(has_pin)
422
423 # Determine the number of samples for a complete frame's time span.
424 # A period of low signal (at least) that long is a break condition.
425 frame_samples = 1 # START
426 frame_samples += self.options['num_data_bits']
427 frame_samples += 0 if self.options['parity_type'] == 'none' else 1
428 frame_samples += self.options['num_stop_bits']
429 frame_samples *= self.bit_width
430 self.break_min_sample_count = ceil(frame_samples)
431 cond_edge_idx = [None] * len(has_pin)
432
433 while True:
434 conds = []
435 if has_pin[RX]:
436 cond_data_idx[RX] = len(conds)
437 conds.append(self.get_wait_cond(RX, inv[RX]))
438 cond_edge_idx[RX] = len(conds)
439 conds.append({RX: 'e'})
440 if has_pin[TX]:
441 cond_data_idx[TX] = len(conds)
442 conds.append(self.get_wait_cond(TX, inv[TX]))
443 cond_edge_idx[TX] = len(conds)
444 conds.append({TX: 'e'})
445 (rx, tx) = self.wait(conds)
446 if cond_data_idx[RX] is not None and self.matched[cond_data_idx[RX]]:
447 self.inspect_sample(RX, rx, inv[RX])
448 if cond_edge_idx[RX] is not None and self.matched[cond_edge_idx[RX]]:
449 self.inspect_edge(RX, rx, inv[RX])
450 if cond_data_idx[TX] is not None and self.matched[cond_data_idx[TX]]:
451 self.inspect_sample(TX, tx, inv[TX])
452 if cond_edge_idx[TX] is not None and self.matched[cond_edge_idx[TX]]:
453 self.inspect_edge(TX, tx, inv[TX])