]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/i2c/pd.py
i2c: more idiomatic use of Python list, reduces redundancy, comments
[libsigrokdecode.git] / decoders / i2c / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2010-2016 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, see <http://www.gnu.org/licenses/>.
18##
19
20# TODO: Look into arbitration, collision detection, clock synchronisation, etc.
21# TODO: Implement support for inverting SDA/SCL levels (0->1 and 1->0).
22# TODO: Implement support for detecting various bus errors.
23
24from common.srdhelper import bitpack_msb
25import sigrokdecode as srd
26
27'''
28OUTPUT_PYTHON format:
29
30Packet:
31[<ptype>, <pdata>]
32
33<ptype>:
34 - 'START' (START condition)
35 - 'START REPEAT' (Repeated START condition)
36 - 'ADDRESS READ' (Slave address, read)
37 - 'ADDRESS WRITE' (Slave address, write)
38 - 'DATA READ' (Data, read)
39 - 'DATA WRITE' (Data, write)
40 - 'STOP' (STOP condition)
41 - 'ACK' (ACK bit)
42 - 'NACK' (NACK bit)
43 - 'BITS' (<pdata>: list of data/address bits and their ss/es numbers)
44
45<pdata> is the data or address byte associated with the 'ADDRESS*' and 'DATA*'
46command. Slave addresses do not include bit 0 (the READ/WRITE indication bit).
47For example, a slave address field could be 0x51 (instead of 0xa2).
48For 'START', 'START REPEAT', 'STOP', 'ACK', and 'NACK' <pdata> is None.
49'''
50
51# CMD: [annotation-type-index, long annotation, short annotation]
52proto = {
53 'START': [0, 'Start', 'S'],
54 'START REPEAT': [1, 'Start repeat', 'Sr'],
55 'STOP': [2, 'Stop', 'P'],
56 'ACK': [3, 'ACK', 'A'],
57 'NACK': [4, 'NACK', 'N'],
58 'BIT': [5, 'Bit', 'B'],
59 'ADDRESS READ': [6, 'Address read', 'AR'],
60 'ADDRESS WRITE': [7, 'Address write', 'AW'],
61 'DATA READ': [8, 'Data read', 'DR'],
62 'DATA WRITE': [9, 'Data write', 'DW'],
63}
64
65class Decoder(srd.Decoder):
66 api_version = 3
67 id = 'i2c'
68 name = 'I²C'
69 longname = 'Inter-Integrated Circuit'
70 desc = 'Two-wire, multi-master, serial bus.'
71 license = 'gplv2+'
72 inputs = ['logic']
73 outputs = ['i2c']
74 tags = ['Embedded/industrial']
75 channels = (
76 {'id': 'scl', 'name': 'SCL', 'desc': 'Serial clock line'},
77 {'id': 'sda', 'name': 'SDA', 'desc': 'Serial data line'},
78 )
79 options = (
80 {'id': 'address_format', 'desc': 'Displayed slave address format',
81 'default': 'shifted', 'values': ('shifted', 'unshifted')},
82 )
83 annotations = (
84 ('start', 'Start condition'),
85 ('repeat-start', 'Repeat start condition'),
86 ('stop', 'Stop condition'),
87 ('ack', 'ACK'),
88 ('nack', 'NACK'),
89 ('bit', 'Data/address bit'),
90 ('address-read', 'Address read'),
91 ('address-write', 'Address write'),
92 ('data-read', 'Data read'),
93 ('data-write', 'Data write'),
94 ('warning', 'Warning'),
95 )
96 annotation_rows = (
97 ('bits', 'Bits', (5,)),
98 ('addr-data', 'Address/data', (0, 1, 2, 3, 4, 6, 7, 8, 9)),
99 ('warnings', 'Warnings', (10,)),
100 )
101 binary = (
102 ('address-read', 'Address read'),
103 ('address-write', 'Address write'),
104 ('data-read', 'Data read'),
105 ('data-write', 'Data write'),
106 )
107
108 def __init__(self):
109 self.reset()
110
111 def reset(self):
112 self.samplerate = None
113 self.ss = self.es = self.ss_byte = -1
114 self.is_write = None
115 self.rem_addr_bytes = None
116 self.is_repeat_start = False
117 self.state = 'FIND START'
118 self.pdu_start = None
119 self.pdu_bits = 0
120 self.data_bits = []
121
122 def metadata(self, key, value):
123 if key == srd.SRD_CONF_SAMPLERATE:
124 self.samplerate = value
125
126 def start(self):
127 self.out_python = self.register(srd.OUTPUT_PYTHON)
128 self.out_ann = self.register(srd.OUTPUT_ANN)
129 self.out_binary = self.register(srd.OUTPUT_BINARY)
130 self.out_bitrate = self.register(srd.OUTPUT_META,
131 meta=(int, 'Bitrate', 'Bitrate from Start bit to Stop bit'))
132
133 def putx(self, data):
134 self.put(self.ss, self.es, self.out_ann, data)
135
136 def putp(self, data):
137 self.put(self.ss, self.es, self.out_python, data)
138
139 def putb(self, data):
140 self.put(self.ss, self.es, self.out_binary, data)
141
142 def handle_start(self, pins):
143 self.ss, self.es = self.samplenum, self.samplenum
144 self.pdu_start = self.samplenum
145 self.pdu_bits = 0
146 cmd = 'START REPEAT' if self.is_repeat_start else 'START'
147 self.putp([cmd, None])
148 self.putx([proto[cmd][0], proto[cmd][1:]])
149 self.state = 'FIND ADDRESS'
150 self.is_repeat_start = True
151 self.is_write = None
152 self.rem_addr_bytes = None
153 self.data_bits.clear()
154
155 # Gather 8 bits of data plus the ACK/NACK bit.
156 def handle_address_or_data(self, pins):
157 scl, sda = pins
158 self.pdu_bits += 1
159
160 # Accumulate a byte's bits, including its start position.
161 # Accumulate individual bits and their start/end sample numbers
162 # as we see them. Get the start sample number at the time when
163 # the bit value gets sampled. Assume the start of the next bit
164 # as the end sample number of the previous bit. Guess the last
165 # bit's end sample number from the second last bit's width.
166 # (gsi: Shouldn't falling SCL be the end of the bit value?)
167 # Keep the bits in receive order (MSB first) during accumulation.
168 if not self.data_bits:
169 self.ss_byte = self.samplenum
170 if self.data_bits:
171 self.data_bits[-1][2] = self.samplenum
172 self.data_bits.append([sda, self.samplenum, self.samplenum])
173 if len(self.data_bits) < 8:
174 return
175 self.bitwidth = self.data_bits[-2][2] - self.data_bits[-3][2]
176 self.data_bits[-1][2] += self.bitwidth
177
178 # Get the byte value. Address and data are transmitted MSB-first.
179 d = bitpack_msb(self.data_bits, 0)
180 if self.state == 'FIND ADDRESS':
181 # The READ/WRITE bit is only in the first address byte, not
182 # in data bytes. Address bit pattern 0b1111_0xxx means that
183 # this is a 10bit slave address, another byte follows. Get
184 # the R/W direction and the address bytes count from the
185 # first byte in the I2C transfer.
186 addr_byte = d
187 if self.rem_addr_bytes is None:
188 if (addr_byte & 0xf8) == 0xf0:
189 self.rem_addr_bytes = 2
190 self.slave_addr_7 = None
191 self.slave_addr_10 = addr_byte & 0x06
192 self.slave_addr_10 <<= 7
193 else:
194 self.rem_addr_bytes = 1
195 self.slave_addr_7 = addr_byte >> 1
196 self.slave_addr_10 = None
197 is_seven = self.slave_addr_7 is not None
198 if self.is_write is None:
199 read_bit = bool(addr_byte & 1)
200 shift_seven = self.options['address_format'] == 'shifted'
201 if is_seven and shift_seven:
202 d = d >> 1
203 self.is_write = False if read_bit else True
204 else:
205 self.slave_addr_10 |= addr_byte
206
207 bin_class = -1
208 if self.state == 'FIND ADDRESS' and self.is_write:
209 cmd = 'ADDRESS WRITE'
210 bin_class = 1
211 elif self.state == 'FIND ADDRESS' and not self.is_write:
212 cmd = 'ADDRESS READ'
213 bin_class = 0
214 elif self.state == 'FIND DATA' and self.is_write:
215 cmd = 'DATA WRITE'
216 bin_class = 3
217 elif self.state == 'FIND DATA' and not self.is_write:
218 cmd = 'DATA READ'
219 bin_class = 2
220
221 self.ss, self.es = self.ss_byte, self.samplenum + self.bitwidth
222
223 # Reverse the list of bits to LSB first order before emitting
224 # annotations and passing bits to upper layers. This may be
225 # unexpected because the protocol is MSB first, but it keeps
226 # backwards compatibility.
227 self.data_bits.reverse()
228 self.putp(['BITS', self.data_bits])
229 self.putp([cmd, d])
230
231 self.putb([bin_class, bytes([d])])
232
233 for bit in self.data_bits:
234 self.put(bit[1], bit[2], self.out_ann, [5, ['%d' % bit[0]]])
235
236 if cmd.startswith('ADDRESS') and is_seven:
237 self.ss, self.es = self.samplenum, self.samplenum + self.bitwidth
238 w = ['Write', 'Wr', 'W'] if self.is_write else ['Read', 'Rd', 'R']
239 self.putx([proto[cmd][0], w])
240 self.ss, self.es = self.ss_byte, self.samplenum
241
242 self.putx([proto[cmd][0], ['%s: %02X' % (proto[cmd][1], d),
243 '%s: %02X' % (proto[cmd][2], d), '%02X' % d]])
244
245 # Done with this packet.
246 self.data_bits.clear()
247 self.state = 'FIND ACK'
248
249 def get_ack(self, pins):
250 scl, sda = pins
251 self.ss, self.es = self.samplenum, self.samplenum + self.bitwidth
252 cmd = 'NACK' if (sda == 1) else 'ACK'
253 self.putp([cmd, None])
254 self.putx([proto[cmd][0], proto[cmd][1:]])
255 # Slave addresses can span one or two bytes, before data bytes
256 # follow. There can be an arbitrary number of data bytes. Stick
257 # with getting more address bytes if applicable, or enter or
258 # remain in the data phase of the transfer otherwise.
259 if self.rem_addr_bytes:
260 self.rem_addr_bytes -= 1
261 if self.rem_addr_bytes:
262 self.state = 'FIND ADDRESS'
263 else:
264 self.state = 'FIND DATA'
265
266 def handle_stop(self, pins):
267 # Meta bitrate
268 if self.samplerate:
269 elapsed = 1 / float(self.samplerate) * (self.samplenum - self.pdu_start + 1)
270 bitrate = int(1 / elapsed * self.pdu_bits)
271 self.put(self.ss_byte, self.samplenum, self.out_bitrate, bitrate)
272
273 cmd = 'STOP'
274 self.ss, self.es = self.samplenum, self.samplenum
275 self.putp([cmd, None])
276 self.putx([proto[cmd][0], proto[cmd][1:]])
277 self.state = 'FIND START'
278 self.is_repeat_start = False
279 self.is_write = None
280 self.data_bits.clear()
281
282 def decode(self):
283 while True:
284 # State machine.
285 if self.state == 'FIND START':
286 # Wait for a START condition (S): SCL = high, SDA = falling.
287 self.handle_start(self.wait({0: 'h', 1: 'f'}))
288 elif self.state == 'FIND ADDRESS':
289 # Wait for a data bit: SCL = rising.
290 self.handle_address_or_data(self.wait({0: 'r'}))
291 elif self.state == 'FIND DATA':
292 # Wait for any of the following conditions (or combinations):
293 # a) Data sampling of receiver: SCL = rising, and/or
294 # b) START condition (S): SCL = high, SDA = falling, and/or
295 # c) STOP condition (P): SCL = high, SDA = rising
296 pins = self.wait([{0: 'r'}, {0: 'h', 1: 'f'}, {0: 'h', 1: 'r'}])
297
298 # Check which of the condition(s) matched and handle them.
299 if self.matched[0]:
300 self.handle_address_or_data(pins)
301 elif self.matched[1]:
302 self.handle_start(pins)
303 elif self.matched[2]:
304 self.handle_stop(pins)
305 elif self.state == 'FIND ACK':
306 # Wait for a data/ack bit: SCL = rising.
307 self.get_ack(self.wait({0: 'r'}))