]> sigrok.org Git - libsigrok.git/blame - src/hardware/kingst-la2016/protocol.c
kingst-la2016: use symbolic names for device run state
[libsigrok.git] / src / hardware / kingst-la2016 / protocol.c
CommitLineData
f2cd2deb
FS
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2020 Florian Schmidt <schmidt_florian@gmx.de>
5 * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
6 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
7 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <config.h>
a7740b06 24
f2cd2deb 25#include <libsigrok/libsigrok.h>
a7740b06
GS
26#include <string.h>
27
f2cd2deb
FS
28#include "libsigrok-internal.h"
29#include "protocol.h"
30
f2cd2deb 31#define UC_FIRMWARE "kingst-la-%04x.fw"
9de389b1
KG
32#define FPGA_FW_LA2016 "kingst-la2016-fpga.bitstream"
33#define FPGA_FW_LA2016A "kingst-la2016a1-fpga.bitstream"
8b172e78
KG
34#define FPGA_FW_LA1016 "kingst-la1016-fpga.bitstream"
35#define FPGA_FW_LA1016A "kingst-la1016a1-fpga.bitstream"
f2cd2deb 36
852c7d14 37/* Maximum device capabilities. May differ between models. */
8b172e78
KG
38#define MAX_SAMPLE_RATE_LA2016 SR_MHZ(200)
39#define MAX_SAMPLE_RATE_LA1016 SR_MHZ(100)
e9430410
GS
40#define MAX_SAMPLE_DEPTH 10e9
41#define MAX_PWM_FREQ SR_MHZ(20)
42#define PWM_CLOCK SR_MHZ(200) /* 200MHz for both LA2016 and LA1016 */
f2cd2deb 43
852c7d14
GS
44/*
45 * Default device configuration. Must be applicable to any of the
46 * supported devices (no model specific default values yet). Specific
47 * firmware implementation details unfortunately won't let us detect
48 * and keep using previously configured values.
49 */
50#define LA2016_DFLT_SAMPLERATE SR_MHZ(100)
51#define LA2016_DFLT_SAMPLEDEPTH (5 * 1000 * 1000)
52#define LA2016_DFLT_CAPT_RATIO 5 /* Capture ratio, in percent. */
53
54/* TODO
55 * What is the origin and motivation of that 128Mi literal? What is its
56 * unit? How does it relate to a device's hardware capabilities? How to
57 * map the 1GiB of RAM of an LA2016 (at 16 channels) to the 128Mi value?
58 * It cannot be sample count. Is it memory size in bytes perhaps?
59 */
60#define LA2016_PRE_MEM_LIMIT_BASE (128 * 1024 * 1024)
61
96dc954e 62/* USB vendor class control requests, executed by the Cypress FX2 MCU. */
84fe94bd 63#define CMD_FPGA_ENABLE 0x10
96dc954e
GS
64#define CMD_FPGA_SPI 0x20 /* R/W access to FPGA registers via SPI. */
65#define CMD_BULK_START 0x30 /* Start sample data download via USB EP6 IN. */
66#define CMD_BULK_RESET 0x38 /* Flush FIFO of FX2 USB EP6 IN. */
67#define CMD_FPGA_INIT 0x50 /* Used before and after FPGA bitstream upload. */
68#define CMD_KAUTH 0x60 /* Communicate to auth IC (U10). Not used. */
69#define CMD_EEPROM 0xa2 /* R/W access to EEPROM content. */
00849545 70
42f6dd55 71/*
96dc954e
GS
72 * FPGA register addresses (base addresses when registers span multiple
73 * bytes, in that case data is kept in little endian format). Passed to
74 * CMD_FPGA_SPI requests. The FX2 MCU transparently handles the detail
75 * of SPI transfers encoding the read (1) or write (0) direction in the
76 * MSB of the address field. There are some 60 byte-wide FPGA registers.
d6f89d4b
GS
77 *
78 * Unfortunately the FPGA registers change their meaning between the
79 * read and write directions of access, or exclusively provide one of
80 * these directions and not the other. This is an arbitrary vendor's
81 * choice, there is nothing which the sigrok driver could do about it.
82 * Values written to registers typically cannot get read back, neither
83 * verified after writing a configuration, nor queried upon startup for
84 * automatic detection of the current configuration. Neither appear to
85 * be there echo registers for presence and communication checks, nor
86 * version identifying registers, as far as we know.
42f6dd55 87 */
96dc954e
GS
88#define REG_RUN 0x00 /* Read capture status, write start capture. */
89#define REG_PWM_EN 0x02 /* User PWM channels on/off. */
90#define REG_CAPT_MODE 0x03 /* Write 0x00 capture to SDRAM, 0x01 streaming. */
91#define REG_BULK 0x08 /* Write start addr, byte count to download samples. */
92#define REG_SAMPLING 0x10 /* Write capture config, read capture SDRAM location. */
93#define REG_TRIGGER 0x20 /* write level and edge trigger config. */
94#define REG_THRESHOLD 0x68 /* Write PWM config to setup input threshold DAC. */
95#define REG_PWM1 0x70 /* Write config for user PWM1. */
96#define REG_PWM2 0x78 /* Write config for user PWM2. */
f2cd2deb 97
852c7d14
GS
98/* Bit patterns to write to REG_RUN, setup run mode. */
99#define RUNMODE_HALT 0x00
100#define RUNMODE_RUN 0x03
101
b711fd8e
GS
102/* Bit patterns when reading from REG_RUN, get run state. */
103#define RUNSTATE_IDLE_BIT (1UL << 0)
104#define RUNSTATE_DRAM_BIT (1UL << 1)
105#define RUNSTATE_TRGD_BIT (1UL << 2)
106#define RUNSTATE_POST_BIT (1UL << 3)
107
f2cd2deb 108static int ctrl_in(const struct sr_dev_inst *sdi,
1ed93110
GS
109 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
110 void *data, uint16_t wLength)
f2cd2deb
FS
111{
112 struct sr_usb_dev_inst *usb;
113 int ret;
114
115 usb = sdi->conn;
116
852c7d14
GS
117 if ((ret = libusb_control_transfer(usb->devhdl,
118 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
f2cd2deb
FS
119 bRequest, wValue, wIndex, (unsigned char *)data, wLength,
120 DEFAULT_TIMEOUT_MS)) != wLength) {
91f73872
GS
121 sr_dbg("USB ctrl in: %d bytes, req %d val %#x idx %d: %s.",
122 wLength, bRequest, wValue, wIndex,
123 libusb_error_name(ret));
124 sr_err("Cannot read %d bytes from USB: %s.",
125 wLength, libusb_error_name(ret));
f2cd2deb
FS
126 return SR_ERR;
127 }
128
129 return SR_OK;
130}
131
132static int ctrl_out(const struct sr_dev_inst *sdi,
1ed93110
GS
133 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
134 void *data, uint16_t wLength)
f2cd2deb
FS
135{
136 struct sr_usb_dev_inst *usb;
137 int ret;
138
139 usb = sdi->conn;
140
852c7d14
GS
141 if ((ret = libusb_control_transfer(usb->devhdl,
142 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
f2cd2deb
FS
143 bRequest, wValue, wIndex, (unsigned char*)data, wLength,
144 DEFAULT_TIMEOUT_MS)) != wLength) {
91f73872
GS
145 sr_dbg("USB ctrl out: %d bytes, req %d val %#x idx %d: %s.",
146 wLength, bRequest, wValue, wIndex,
147 libusb_error_name(ret));
148 sr_err("Cannot write %d bytes to USB: %s.",
149 wLength, libusb_error_name(ret));
f2cd2deb
FS
150 return SR_ERR;
151 }
152
153 return SR_OK;
154}
155
d6f89d4b
GS
156/*
157 * Check the necessity for FPGA bitstream upload, because another upload
158 * would take some 600ms which is undesirable after program startup. Try
159 * to access some FPGA registers and check the values' plausibility. The
160 * check should fail on the safe side, request another upload when in
161 * doubt. A positive response (the request to continue operation with the
162 * currently active bitstream) should be conservative. Accessing multiple
163 * registers is considered cheap compared to the cost of bitstream upload.
164 *
165 * It helps though that both the vendor software and the sigrok driver
166 * use the same bundle of MCU firmware and FPGA bitstream for any of the
167 * supported models. We don't expect to successfully communicate to the
168 * device yet disagree on its protocol. Ideally we would access version
169 * identifying registers for improved robustness, but are not aware of
170 * any. A bitstream reload can always be forced by a power cycle.
171 */
172static int check_fpga_bitstream(const struct sr_dev_inst *sdi)
173{
174 uint8_t init_rsp;
175 int ret;
176 uint16_t run_state;
177 uint8_t pwm_en;
178 size_t read_len;
179 uint8_t buff[sizeof(run_state)];
180 const uint8_t *rdptr;
181
182 sr_dbg("Checking operation of the FPGA bitstream.");
183
852c7d14 184 init_rsp = ~0;
d6f89d4b
GS
185 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &init_rsp, sizeof(init_rsp));
186 if (ret != SR_OK || init_rsp != 0) {
187 sr_dbg("FPGA init query failed, or unexpected response.");
188 return SR_ERR_IO;
189 }
190
191 read_len = sizeof(run_state);
192 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, read_len);
193 if (ret != SR_OK) {
194 sr_dbg("FPGA register access failed (run state).");
195 return SR_ERR_IO;
196 }
197 rdptr = buff;
198 run_state = read_u16le_inc(&rdptr);
199 sr_spew("FPGA register: run state 0x%04x.", run_state);
200 if (run_state && (run_state & 0x3) != 0x1) {
201 sr_dbg("Unexpected FPGA register content (run state).");
202 return SR_ERR_DATA;
203 }
204 if (run_state && (run_state & ~0xf) != 0x85e0) {
205 sr_dbg("Unexpected FPGA register content (run state).");
206 return SR_ERR_DATA;
207 }
208
209 read_len = sizeof(pwm_en);
210 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, buff, read_len);
211 if (ret != SR_OK) {
212 sr_dbg("FPGA register access failed (PWM enable).");
213 return SR_ERR_IO;
214 }
215 rdptr = buff;
216 pwm_en = read_u8_inc(&rdptr);
217 sr_spew("FPGA register: PWM enable 0x%02x.", pwm_en);
218 if ((pwm_en & 0x3) != 0x0) {
219 sr_dbg("Unexpected FPGA register content (PWM enable).");
220 return SR_ERR_DATA;
221 }
222
223 sr_info("Could re-use current FPGA bitstream. No upload required.");
224 return SR_OK;
225}
226
1ed93110
GS
227static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
228 const char *bitstream_fname)
f2cd2deb
FS
229{
230 struct drv_context *drvc;
231 struct sr_usb_dev_inst *usb;
232 struct sr_resource bitstream;
b0d0131e 233 uint32_t bitstream_size;
c3d40037
HK
234 uint8_t buffer[sizeof(uint32_t)];
235 uint8_t *wrptr;
f2cd2deb 236 uint8_t block[4096];
3f48ab02
FS
237 int len, act_len;
238 unsigned int pos;
f2cd2deb 239 int ret;
b0d0131e 240 unsigned int zero_pad_to;
f2cd2deb
FS
241
242 drvc = sdi->driver->context;
243 usb = sdi->conn;
244
9de389b1 245 sr_info("Uploading FPGA bitstream '%s'.", bitstream_fname);
f2cd2deb 246
9de389b1 247 ret = sr_resource_open(drvc->sr_ctx, &bitstream, SR_RESOURCE_FIRMWARE, bitstream_fname);
f2cd2deb 248 if (ret != SR_OK) {
91f73872 249 sr_err("Cannot find FPGA bitstream %s.", bitstream_fname);
f2cd2deb
FS
250 return ret;
251 }
252
b0d0131e 253 bitstream_size = (uint32_t)bitstream.size;
c3d40037 254 wrptr = buffer;
b0d0131e 255 write_u32le_inc(&wrptr, bitstream_size);
00849545 256 if ((ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer)) != SR_OK) {
91f73872 257 sr_err("Cannot initiate FPGA bitstream upload.");
f2cd2deb
FS
258 sr_resource_close(drvc->sr_ctx, &bitstream);
259 return ret;
260 }
b0d0131e
GS
261 zero_pad_to = bitstream_size;
262 zero_pad_to += LA2016_EP2_PADDING - 1;
263 zero_pad_to /= LA2016_EP2_PADDING;
264 zero_pad_to *= LA2016_EP2_PADDING;
f2cd2deb
FS
265
266 pos = 0;
267 while (1) {
3f48ab02
FS
268 if (pos < bitstream.size) {
269 len = (int)sr_resource_read(drvc->sr_ctx, &bitstream, &block, sizeof(block));
270 if (len < 0) {
91f73872 271 sr_err("Cannot read FPGA bitstream.");
3f48ab02
FS
272 sr_resource_close(drvc->sr_ctx, &bitstream);
273 return SR_ERR;
274 }
275 } else {
96dc954e 276 /* Zero-pad until 'zero_pad_to'. */
3f48ab02
FS
277 len = zero_pad_to - pos;
278 if ((unsigned)len > sizeof(block))
279 len = sizeof(block);
280 memset(&block, 0, len);
f2cd2deb
FS
281 }
282 if (len == 0)
283 break;
284
852c7d14 285 ret = libusb_bulk_transfer(usb->devhdl, USB_EP_FPGA_BITSTREAM,
1ed93110 286 &block[0], len, &act_len, DEFAULT_TIMEOUT_MS);
f2cd2deb 287 if (ret != 0) {
91f73872
GS
288 sr_dbg("Cannot write FPGA bitstream, block %#x len %d: %s.",
289 pos, (int)len, libusb_error_name(ret));
f2cd2deb
FS
290 ret = SR_ERR;
291 break;
292 }
293 if (act_len != len) {
91f73872
GS
294 sr_dbg("Short write for FPGA bitstream, block %#x len %d: got %d.",
295 pos, (int)len, act_len);
f2cd2deb
FS
296 ret = SR_ERR;
297 break;
298 }
299 pos += len;
300 }
301 sr_resource_close(drvc->sr_ctx, &bitstream);
302 if (ret != 0)
303 return ret;
91f73872
GS
304 sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.",
305 bitstream.size);
f2cd2deb 306
d6f89d4b
GS
307 return SR_OK;
308}
309
310static int enable_fpga_bitstream(const struct sr_dev_inst *sdi)
311{
312 int ret;
313 uint8_t cmd_resp;
314
00849545 315 if ((ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &cmd_resp, sizeof(cmd_resp))) != SR_OK) {
91f73872 316 sr_err("Cannot read response after FPGA bitstream upload.");
f2cd2deb
FS
317 return ret;
318 }
3f48ab02 319 if (cmd_resp != 0) {
91f73872
GS
320 sr_err("Unexpected FPGA bitstream upload response, got 0x%02x, want 0.",
321 cmd_resp);
3f48ab02
FS
322 return SR_ERR;
323 }
852c7d14 324 g_usleep(30 * 1000);
f2cd2deb 325
00849545 326 if ((ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0)) != SR_OK) {
91f73872 327 sr_err("Cannot enable FPGA after bitstream upload.");
f2cd2deb
FS
328 return ret;
329 }
852c7d14 330 g_usleep(40 * 1000);
d6f89d4b 331
f2cd2deb
FS
332 return SR_OK;
333}
334
335static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage)
336{
337 struct dev_context *devc;
f2cd2deb
FS
338 int ret;
339
340 devc = sdi->priv;
f2cd2deb 341
1ed93110 342 uint16_t duty_R79, duty_R56;
f2ad79d1
KG
343 uint8_t buf[2 * sizeof(uint16_t)];
344 uint8_t *wrptr;
345
96dc954e 346 /* Clamp threshold setting to valid range for LA2016. */
f2ad79d1
KG
347 if (voltage > 4.0) {
348 voltage = 4.0;
1ed93110 349 } else if (voltage < -4.0) {
f2ad79d1
KG
350 voltage = -4.0;
351 }
352
353 /*
96dc954e
GS
354 * Two PWM output channels feed one DAC which generates a bias
355 * voltage, which offsets the input probe's voltage level, and
356 * in combination with the FPGA pins' fixed threshold result in
357 * a programmable input threshold from the user's perspective.
358 * The PWM outputs can be seen on R79 and R56 respectively, the
359 * frequency is 100kHz and the duty cycle varies. The R79 PWM
360 * uses three discrete settings. The R56 PWM varies with desired
361 * thresholds and depends on the R79 PWM configuration. See the
362 * schematics comments which discuss the formulae.
f2ad79d1
KG
363 */
364 if (voltage >= 2.9) {
96dc954e 365 duty_R79 = 0; /* PWM off (0V). */
f2ad79d1 366 duty_R56 = (uint16_t)(302 * voltage - 363);
c34f4a89 367 } else if (voltage > -0.4) {
96dc954e 368 duty_R79 = 0x00f2; /* 25% duty cycle. */
f2ad79d1 369 duty_R56 = (uint16_t)(302 * voltage + 121);
c34f4a89
GS
370 } else {
371 duty_R79 = 0x02d7; /* 72% duty cycle. */
372 duty_R56 = (uint16_t)(302 * voltage + 1090);
f2ad79d1
KG
373 }
374
96dc954e 375 /* Clamp duty register values to sensible limits. */
f2ad79d1
KG
376 if (duty_R56 < 10) {
377 duty_R56 = 10;
1ed93110 378 } else if (duty_R56 > 1100) {
f2ad79d1
KG
379 duty_R56 = 1100;
380 }
381
91f73872
GS
382 sr_dbg("Set threshold voltage %.2fV.", voltage);
383 sr_dbg("Duty cycle values: R56 0x%04x, R79 0x%04x.", duty_R56, duty_R79);
f2ad79d1
KG
384
385 wrptr = buf;
386 write_u16le_inc(&wrptr, duty_R56);
387 write_u16le_inc(&wrptr, duty_R79);
388
389 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_THRESHOLD, 0, buf, wrptr - buf);
f2cd2deb 390 if (ret != SR_OK) {
91f73872 391 sr_err("Cannot set threshold voltage %.2fV.", voltage);
f2cd2deb
FS
392 return ret;
393 }
394 devc->threshold_voltage = voltage;
395
396 return SR_OK;
397}
398
399static int enable_pwm(const struct sr_dev_inst *sdi, uint8_t p1, uint8_t p2)
400{
401 struct dev_context *devc;
402 uint8_t cfg;
403 int ret;
404
405 devc = sdi->priv;
406 cfg = 0;
407
408 if (p1) cfg |= 1 << 0;
409 if (p2) cfg |= 1 << 1;
410
91f73872 411 sr_dbg("Set PWM enable %d %d. Config 0x%02x.", p1, p2, cfg);
42f6dd55 412 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, &cfg, sizeof(cfg));
f2cd2deb 413 if (ret != SR_OK) {
91f73872 414 sr_err("Cannot setup PWM enabled state.");
f2cd2deb
FS
415 return ret;
416 }
417 devc->pwm_setting[0].enabled = (p1) ? 1 : 0;
418 devc->pwm_setting[1].enabled = (p2) ? 1 : 0;
419
420 return SR_OK;
421}
422
1ed93110
GS
423static int set_pwm(const struct sr_dev_inst *sdi, uint8_t which,
424 float freq, float duty)
f2cd2deb 425{
42f6dd55 426 int CTRL_PWM[] = { REG_PWM1, REG_PWM2 };
f2cd2deb
FS
427 struct dev_context *devc;
428 pwm_setting_dev_t cfg;
429 pwm_setting_t *setting;
430 int ret;
c3d40037
HK
431 uint8_t buf[2 * sizeof(uint32_t)];
432 uint8_t *wrptr;
f2cd2deb
FS
433
434 devc = sdi->priv;
435
852c7d14 436 if (which < 1 || which > ARRAY_SIZE(CTRL_PWM)) {
91f73872 437 sr_err("Invalid PWM channel: %d.", which);
f2cd2deb
FS
438 return SR_ERR;
439 }
440 if (freq > MAX_PWM_FREQ) {
91f73872 441 sr_err("Too high a PWM frequency: %.1f.", freq);
f2cd2deb
FS
442 return SR_ERR;
443 }
444 if (duty > 100 || duty < 0) {
91f73872 445 sr_err("Invalid PWM duty cycle: %f.", duty);
f2cd2deb
FS
446 return SR_ERR;
447 }
448
449 cfg.period = (uint32_t)(PWM_CLOCK / freq);
450 cfg.duty = (uint32_t)(0.5f + (cfg.period * duty / 100.));
91f73872 451 sr_dbg("Set PWM%d period %d, duty %d.", which, cfg.period, cfg.duty);
f2cd2deb 452
c3d40037
HK
453 wrptr = buf;
454 write_u32le_inc(&wrptr, cfg.period);
455 write_u32le_inc(&wrptr, cfg.duty);
00849545 456 ret = ctrl_out(sdi, CMD_FPGA_SPI, CTRL_PWM[which - 1], 0, buf, wrptr - buf);
f2cd2deb 457 if (ret != SR_OK) {
91f73872
GS
458 sr_err("Cannot setup PWM%d configuration %d %d.",
459 which, cfg.period, cfg.duty);
f2cd2deb
FS
460 return ret;
461 }
462 setting = &devc->pwm_setting[which - 1];
463 setting->freq = freq;
464 setting->duty = duty;
f2cd2deb
FS
465
466 return SR_OK;
467}
468
469static int set_defaults(const struct sr_dev_inst *sdi)
470{
471 struct dev_context *devc;
472 int ret;
473
474 devc = sdi->priv;
475
852c7d14 476 devc->capture_ratio = LA2016_DFLT_CAPT_RATIO;
f2cd2deb 477 devc->cur_channels = 0xffff;
852c7d14
GS
478 devc->limit_samples = LA2016_DFLT_SAMPLEDEPTH;
479 devc->cur_samplerate = LA2016_DFLT_SAMPLERATE;
f2cd2deb
FS
480
481 ret = set_threshold_voltage(sdi, devc->threshold_voltage);
482 if (ret)
483 return ret;
484
485 ret = enable_pwm(sdi, 0, 0);
486 if (ret)
487 return ret;
488
852c7d14 489 ret = set_pwm(sdi, 1, SR_KHZ(1), 50);
f2cd2deb
FS
490 if (ret)
491 return ret;
492
852c7d14 493 ret = set_pwm(sdi, 2, SR_KHZ(100), 50);
f2cd2deb
FS
494 if (ret)
495 return ret;
496
497 ret = enable_pwm(sdi, 1, 1);
498 if (ret)
499 return ret;
500
501 return SR_OK;
502}
503
504static int set_trigger_config(const struct sr_dev_inst *sdi)
505{
506 struct dev_context *devc;
507 struct sr_trigger *trigger;
508 trigger_cfg_t cfg;
509 GSList *stages;
510 GSList *channel;
511 struct sr_trigger_stage *stage1;
512 struct sr_trigger_match *match;
513 uint16_t ch_mask;
514 int ret;
c3d40037
HK
515 uint8_t buf[4 * sizeof(uint32_t)];
516 uint8_t *wrptr;
f2cd2deb
FS
517
518 devc = sdi->priv;
519 trigger = sr_session_trigger_get(sdi->session);
520
521 memset(&cfg, 0, sizeof(cfg));
522
523 cfg.channels = devc->cur_channels;
524
525 if (trigger && trigger->stages) {
526 stages = trigger->stages;
527 stage1 = stages->data;
528 if (stages->next) {
529 sr_err("Only one trigger stage supported for now.");
530 return SR_ERR;
531 }
532 channel = stage1->matches;
533 while (channel) {
534 match = channel->data;
535 ch_mask = 1 << match->channel->index;
536
537 switch (match->match) {
538 case SR_TRIGGER_ZERO:
539 cfg.level |= ch_mask;
540 cfg.high_or_falling &= ~ch_mask;
541 break;
542 case SR_TRIGGER_ONE:
543 cfg.level |= ch_mask;
544 cfg.high_or_falling |= ch_mask;
545 break;
546 case SR_TRIGGER_RISING:
547 if ((cfg.enabled & ~cfg.level)) {
91f73872 548 sr_err("Device only supports one edge trigger.");
f2cd2deb
FS
549 return SR_ERR;
550 }
551 cfg.level &= ~ch_mask;
552 cfg.high_or_falling &= ~ch_mask;
553 break;
554 case SR_TRIGGER_FALLING:
555 if ((cfg.enabled & ~cfg.level)) {
91f73872 556 sr_err("Device only supports one edge trigger.");
f2cd2deb
FS
557 return SR_ERR;
558 }
559 cfg.level &= ~ch_mask;
560 cfg.high_or_falling |= ch_mask;
561 break;
562 default:
91f73872 563 sr_err("Unknown trigger condition.");
f2cd2deb
FS
564 return SR_ERR;
565 }
566 cfg.enabled |= ch_mask;
567 channel = channel->next;
568 }
569 }
91f73872
GS
570 sr_dbg("Set trigger config: "
571 "channels 0x%04x, trigger-enabled 0x%04x, "
572 "level-triggered 0x%04x, high/falling 0x%04x.",
573 cfg.channels, cfg.enabled, cfg.level, cfg.high_or_falling);
f2cd2deb
FS
574
575 devc->had_triggers_configured = cfg.enabled != 0;
576
c3d40037
HK
577 wrptr = buf;
578 write_u32le_inc(&wrptr, cfg.channels);
579 write_u32le_inc(&wrptr, cfg.enabled);
580 write_u32le_inc(&wrptr, cfg.level);
581 write_u32le_inc(&wrptr, cfg.high_or_falling);
852c7d14
GS
582 /* TODO
583 * Comment on this literal 16. Origin, meaning? Cannot be the
584 * register offset, nor the transfer length. Is it a channels
585 * count that is relevant for 16 and 32 channel models? Is it
586 * an obsolete experiment?
587 */
42f6dd55 588 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_TRIGGER, 16, buf, wrptr - buf);
f2cd2deb 589 if (ret != SR_OK) {
91f73872 590 sr_err("Cannot setup trigger configuration.");
f2cd2deb
FS
591 return ret;
592 }
593
594 return SR_OK;
595}
596
597static int set_sample_config(const struct sr_dev_inst *sdi)
598{
599 struct dev_context *devc;
f2cd2deb 600 double clock_divisor;
adab4d91
GS
601 uint16_t divider_u16;
602 uint64_t pre_trigger_samples;
603 uint64_t pre_trigger_memory;
604 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 605 uint8_t *wrptr;
adab4d91 606 int ret;
f2cd2deb
FS
607
608 devc = sdi->priv;
f2cd2deb 609
8b172e78 610 if (devc->cur_samplerate > devc->max_samplerate) {
91f73872
GS
611 sr_err("Too high a sample rate: %" PRIu64 ".",
612 devc->cur_samplerate);
f2cd2deb
FS
613 return SR_ERR;
614 }
615
8b172e78 616 clock_divisor = devc->max_samplerate / (double)devc->cur_samplerate;
adab4d91
GS
617 if (clock_divisor > 65535)
618 return SR_ERR_ARG;
619 divider_u16 = (uint16_t)(clock_divisor + 0.5);
620 devc->cur_samplerate = devc->max_samplerate / divider_u16;
f2cd2deb
FS
621
622 if (devc->limit_samples > MAX_SAMPLE_DEPTH) {
91f73872
GS
623 sr_err("Too high a sample depth: %" PRIu64 ".",
624 devc->limit_samples);
f2cd2deb
FS
625 return SR_ERR;
626 }
f2cd2deb 627
adab4d91
GS
628 /*
629 * The acquisition configuration communicates "pre-trigger"
630 * specs in several formats. sigrok users provide a percentage
631 * (0-100%), which translates to a pre-trigger samples count
632 * (assuming that a total samples count limit was specified).
633 * The device supports hardware compression, which depends on
634 * slowly changing input data to be effective. Fast changing
635 * input data may occupy more space in sample memory than its
636 * uncompressed form would. This is why a third parameter can
637 * limit the amount of sample memory to use for pre-trigger
638 * data. Only the upper 24 bits of that memory size spec get
639 * communicated to the device (written to its FPGA register).
640 */
641 pre_trigger_samples = devc->limit_samples * devc->capture_ratio / 100;
642 pre_trigger_memory = LA2016_PRE_MEM_LIMIT_BASE;
643 pre_trigger_memory *= devc->capture_ratio;
644 pre_trigger_memory /= 100;
f2cd2deb 645
adab4d91
GS
646 sr_dbg("Set sample config: %" PRIu64 "kHz, %" PRIu64 " samples.",
647 devc->cur_samplerate / 1000, devc->limit_samples);
648 sr_dbg("Capture ratio %" PRIu64 "%%, count %" PRIu64 ", mem %" PRIu64 ".",
649 devc->capture_ratio, pre_trigger_samples, pre_trigger_memory);
f2cd2deb 650
b1a17c1a
GS
651 /*
652 * The acquisition configuration occupies a total of 16 bytes:
653 * - A 34bit total samples count limit (up to 10 billions) that
654 * is kept in a 40bit register.
655 * - A 34bit pre-trigger samples count limit (up to 10 billions)
656 * in another 40bit register.
657 * - A 32bit pre-trigger memory space limit (in bytes) of which
658 * the upper 24bits are kept in an FPGA register.
659 * - A 16bit clock divider which gets applied to the maximum
660 * samplerate of the device.
661 * - An 8bit register of unknown meaning. Currently always 0.
662 */
c3d40037 663 wrptr = buf;
b1a17c1a
GS
664 write_u40le_inc(&wrptr, devc->limit_samples);
665 write_u40le_inc(&wrptr, pre_trigger_samples);
666 write_u24le_inc(&wrptr, pre_trigger_memory >> 8);
adab4d91 667 write_u16le_inc(&wrptr, divider_u16);
0d8e1ffc 668 write_u8_inc(&wrptr, 0);
42f6dd55 669 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, wrptr - buf);
f2cd2deb 670 if (ret != SR_OK) {
91f73872 671 sr_err("Cannot setup acquisition configuration.");
f2cd2deb
FS
672 return ret;
673 }
674
675 return SR_OK;
676}
677
96dc954e
GS
678/*
679 * FPGA register REG_RUN holds the run state (u16le format). Bit fields
680 * of interest:
681 * bit 0: value 1 = idle
682 * bit 1: value 1 = writing to SDRAM
683 * bit 2: value 0 = waiting for trigger, 1 = trigger seen
684 * bit 3: value 0 = pretrigger sampling, 1 = posttrigger sampling
685 * The meaning of other bit fields is unknown.
7601dca7 686 *
96dc954e 687 * Typical values in order of appearance during execution:
b711fd8e
GS
688 * 0x85e1: idle, no acquisition pending
689 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
690 * "In idle state." Takes precedence over all others.
96dc954e
GS
691 * 0x85e2: pre-sampling, samples before the trigger position,
692 * when capture ratio > 0%
b711fd8e
GS
693 * IDLE clear, TRGD clear, POST clear; DRAM don't care
694 * "Not idle any more, no post yet, not triggered yet."
96dc954e
GS
695 * 0x85ea: pre-sampling complete, now waiting for the trigger
696 * (whilst sampling continuously)
b711fd8e
GS
697 * IDLE clear, TRGD clear, POST set; DRAM don't care
698 * "Post set thus after pre, not triggered yet"
96dc954e 699 * 0x85ee: trigger seen, capturing post-trigger samples, running
b711fd8e
GS
700 * IDLE clear, TRGD set, POST set; DRAM don't care
701 * "Triggered and in post, not idle yet."
96dc954e 702 * 0x85ed: idle
b711fd8e
GS
703 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
704 * "In idle state." TRGD/POST don't care, same meaning as above.
f2cd2deb 705 */
b711fd8e
GS
706static const uint16_t runstate_mask_idle = RUNSTATE_IDLE_BIT;
707static const uint16_t runstate_patt_idle = RUNSTATE_IDLE_BIT;
708static const uint16_t runstate_mask_step =
709 RUNSTATE_IDLE_BIT | RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
710static const uint16_t runstate_patt_pre_trig = 0;
711static const uint16_t runstate_patt_wait_trig = RUNSTATE_POST_BIT;
712static const uint16_t runstate_patt_post_trig =
713 RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
714
f2cd2deb
FS
715static uint16_t run_state(const struct sr_dev_inst *sdi)
716{
21d68fd9
GS
717 static uint16_t previous_state;
718
f2cd2deb 719 int ret;
21d68fd9
GS
720 uint16_t state;
721 uint8_t buff[sizeof(state)];
722 const uint8_t *rdptr;
723 const char *label;
f2cd2deb 724
21d68fd9 725 if ((ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, sizeof(state))) != SR_OK) {
91f73872 726 sr_err("Cannot read run state.");
f2cd2deb
FS
727 return ret;
728 }
21d68fd9
GS
729 rdptr = buff;
730 state = read_u16le_inc(&rdptr);
7601dca7 731
96dc954e
GS
732 /*
733 * Avoid flooding the log, only dump values as they change.
734 * The routine is called about every 50ms.
7601dca7 735 */
b711fd8e
GS
736 if (state == previous_state)
737 return state;
738
739 previous_state = state;
740 label = NULL;
741 if ((state & runstate_mask_idle) == runstate_patt_idle)
742 label = "idle";
743 if ((state & runstate_mask_step) == runstate_patt_pre_trig)
744 label = "pre-trigger sampling";
745 if ((state & runstate_mask_step) == runstate_patt_wait_trig)
746 label = "sampling, waiting for trigger";
747 if ((state & runstate_mask_step) == runstate_patt_post_trig)
748 label = "post-trigger sampling";
749 if (label && *label)
750 sr_dbg("Run state: 0x%04x (%s).", state, label);
751 else
752 sr_dbg("Run state: 0x%04x.", state);
f2cd2deb
FS
753
754 return state;
755}
756
c34f4a89
GS
757static int la2016_has_triggered(const struct sr_dev_inst *sdi)
758{
759 uint16_t state;
760
761 state = run_state(sdi);
b711fd8e 762 if ((state & runstate_mask_idle) == runstate_patt_idle)
c34f4a89
GS
763 return 1;
764
765 return 0;
766}
767
768static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t mode)
f2cd2deb
FS
769{
770 int ret;
771
c34f4a89
GS
772 if ((ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &mode, sizeof(mode))) != SR_OK) {
773 sr_err("Cannot configure run mode %d.", mode);
f2cd2deb
FS
774 return ret;
775 }
776
777 return SR_OK;
778}
779
780static int get_capture_info(const struct sr_dev_inst *sdi)
781{
782 struct dev_context *devc;
783 int ret;
c3d40037
HK
784 uint8_t buf[3 * sizeof(uint32_t)];
785 const uint8_t *rdptr;
f2cd2deb
FS
786
787 devc = sdi->priv;
788
42f6dd55 789 if ((ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf))) != SR_OK) {
91f73872 790 sr_err("Cannot read capture info.");
f2cd2deb
FS
791 return ret;
792 }
c3d40037
HK
793
794 rdptr = buf;
795 devc->info.n_rep_packets = read_u32le_inc(&rdptr);
796 devc->info.n_rep_packets_before_trigger = read_u32le_inc(&rdptr);
797 devc->info.write_pos = read_u32le_inc(&rdptr);
f2cd2deb 798
91f73872 799 sr_dbg("Capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x%d.",
1ed93110
GS
800 devc->info.n_rep_packets, devc->info.n_rep_packets,
801 devc->info.n_rep_packets_before_trigger,
802 devc->info.n_rep_packets_before_trigger,
803 devc->info.write_pos, devc->info.write_pos);
f2cd2deb 804
852c7d14
GS
805 if (devc->info.n_rep_packets % NUM_PACKETS_IN_CHUNK) {
806 sr_warn("Unexpected packets count %lu, not a multiple of %d.",
807 (unsigned long)devc->info.n_rep_packets,
808 NUM_PACKETS_IN_CHUNK);
91f73872 809 }
f2cd2deb
FS
810
811 return SR_OK;
812}
813
1ed93110
GS
814SR_PRIV int la2016_upload_firmware(struct sr_context *sr_ctx,
815 libusb_device *dev, uint16_t product_id)
f2cd2deb
FS
816{
817 char fw_file[1024];
818 snprintf(fw_file, sizeof(fw_file) - 1, UC_FIRMWARE, product_id);
40a0b2f4 819 return ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw_file);
f2cd2deb
FS
820}
821
822SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi)
823{
824 struct dev_context *devc;
825 int ret;
826 uint8_t cmd;
827
828 devc = sdi->priv;
829
830 ret = set_threshold_voltage(sdi, devc->threshold_voltage);
831 if (ret != SR_OK)
832 return ret;
833
834 cmd = 0;
42f6dd55 835 if ((ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd))) != SR_OK) {
91f73872 836 sr_err("Cannot send command to stop sampling.");
f2cd2deb
FS
837 return ret;
838 }
839
840 ret = set_trigger_config(sdi);
841 if (ret != SR_OK)
842 return ret;
843
844 ret = set_sample_config(sdi);
845 if (ret != SR_OK)
846 return ret;
847
848 return SR_OK;
849}
850
851SR_PRIV int la2016_start_acquisition(const struct sr_dev_inst *sdi)
852{
3ebc1cb2
GS
853 int ret;
854
852c7d14 855 ret = set_run_mode(sdi, RUNMODE_RUN);
3ebc1cb2
GS
856 if (ret != SR_OK)
857 return ret;
858
859 return SR_OK;
f2cd2deb
FS
860}
861
3ebc1cb2 862static int la2016_stop_acquisition(const struct sr_dev_inst *sdi)
f2cd2deb 863{
3ebc1cb2
GS
864 int ret;
865
852c7d14 866 ret = set_run_mode(sdi, RUNMODE_HALT);
3ebc1cb2
GS
867 if (ret != SR_OK)
868 return ret;
869
870 return SR_OK;
f2cd2deb
FS
871}
872
873SR_PRIV int la2016_abort_acquisition(const struct sr_dev_inst *sdi)
874{
3ebc1cb2
GS
875 int ret;
876 struct dev_context *devc;
877
878 ret = la2016_stop_acquisition(sdi);
879 if (ret != SR_OK)
880 return ret;
881
882 devc = sdi ? sdi->priv : NULL;
883 if (devc && devc->transfer)
884 libusb_cancel_transfer(devc->transfer);
885
886 return SR_OK;
f2cd2deb
FS
887}
888
1ed93110
GS
889static int la2016_start_retrieval(const struct sr_dev_inst *sdi,
890 libusb_transfer_cb_fn cb)
f2cd2deb
FS
891{
892 struct dev_context *devc;
893 struct sr_usb_dev_inst *usb;
894 int ret;
c3d40037
HK
895 uint8_t wrbuf[2 * sizeof(uint32_t)];
896 uint8_t *wrptr;
f2cd2deb
FS
897 uint32_t to_read;
898 uint8_t *buffer;
899
900 devc = sdi->priv;
901 usb = sdi->conn;
902
903 if ((ret = get_capture_info(sdi)) != SR_OK)
904 return ret;
905
c3d40037
HK
906 devc->n_transfer_packets_to_read = devc->info.n_rep_packets / NUM_PACKETS_IN_CHUNK;
907 devc->n_bytes_to_read = devc->n_transfer_packets_to_read * TRANSFER_PACKET_LENGTH;
f2cd2deb
FS
908 devc->read_pos = devc->info.write_pos - devc->n_bytes_to_read;
909 devc->n_reps_until_trigger = devc->info.n_rep_packets_before_trigger;
910
91f73872 911 sr_dbg("Want to read %u xfer-packets starting from pos %" PRIu32 ".",
1ed93110 912 devc->n_transfer_packets_to_read, devc->read_pos);
f2cd2deb 913
00849545 914 if ((ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0)) != SR_OK) {
91f73872 915 sr_err("Cannot reset USB bulk state.");
f2cd2deb
FS
916 return ret;
917 }
91f73872
GS
918 sr_dbg("Will read from 0x%08lx, 0x%08x bytes.",
919 (unsigned long)devc->read_pos, devc->n_bytes_to_read);
c3d40037
HK
920 wrptr = wrbuf;
921 write_u32le_inc(&wrptr, devc->read_pos);
922 write_u32le_inc(&wrptr, devc->n_bytes_to_read);
42f6dd55 923 if ((ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf)) != SR_OK) {
91f73872 924 sr_err("Cannot send USB bulk config.");
f2cd2deb
FS
925 return ret;
926 }
00849545 927 if ((ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0)) != SR_OK) {
91f73872 928 sr_err("Cannot unblock USB bulk transfers.");
f2cd2deb
FS
929 return ret;
930 }
931
96dc954e
GS
932 /*
933 * Pick a buffer size for all USB transfers. The buffer size
934 * must be a multiple of the endpoint packet size. And cannot
935 * exceed a maximum value.
936 */
f2cd2deb 937 to_read = devc->n_bytes_to_read;
96dc954e
GS
938 if (to_read >= LA2016_USB_BUFSZ) /* Multiple transfers. */
939 to_read = LA2016_USB_BUFSZ;
940 else /* One transfer. */
e847645b 941 to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
f2cd2deb
FS
942 buffer = g_try_malloc(to_read);
943 if (!buffer) {
91f73872
GS
944 sr_dbg("USB bulk transfer size %d bytes.", (int)to_read);
945 sr_err("Cannot allocate buffer for USB bulk transfer.");
f2cd2deb
FS
946 return SR_ERR_MALLOC;
947 }
948
949 devc->transfer = libusb_alloc_transfer(0);
852c7d14
GS
950 libusb_fill_bulk_transfer(devc->transfer,
951 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
952 buffer, to_read,
f2cd2deb
FS
953 cb, (void *)sdi, DEFAULT_TIMEOUT_MS);
954
955 if ((ret = libusb_submit_transfer(devc->transfer)) != 0) {
91f73872 956 sr_err("Cannot submit USB transfer: %s.", libusb_error_name(ret));
f2cd2deb
FS
957 libusb_free_transfer(devc->transfer);
958 devc->transfer = NULL;
959 g_free(buffer);
960 return SR_ERR;
961 }
962
963 return SR_OK;
964}
965
dfac9592
GS
966static void send_chunk(struct sr_dev_inst *sdi,
967 const uint8_t *packets, unsigned int num_tfers)
968{
969 struct dev_context *devc;
970 struct sr_datafeed_logic logic;
971 struct sr_datafeed_packet sr_packet;
972 unsigned int max_samples, n_samples, total_samples, free_n_samples;
973 unsigned int i, j, k;
974 int do_signal_trigger;
fe953391 975 uint8_t *wp;
dfac9592
GS
976 const uint8_t *rp;
977 uint16_t state;
978 uint8_t repetitions;
fe953391 979 uint8_t sample_buff[sizeof(state)];
dfac9592
GS
980
981 devc = sdi->priv;
982
fe953391 983 logic.unitsize = sizeof(sample_buff);
dfac9592
GS
984 logic.data = devc->convbuffer;
985
986 sr_packet.type = SR_DF_LOGIC;
987 sr_packet.payload = &logic;
988
fe953391 989 max_samples = devc->convbuffer_size / sizeof(sample_buff);
dfac9592 990 n_samples = 0;
fe953391 991 wp = devc->convbuffer;
dfac9592
GS
992 total_samples = 0;
993 do_signal_trigger = 0;
994
995 if (devc->had_triggers_configured && devc->reading_behind_trigger == 0 && devc->info.n_rep_packets_before_trigger == 0) {
996 std_session_send_df_trigger(sdi);
997 devc->reading_behind_trigger = 1;
998 }
999
1000 rp = packets;
1001 for (i = 0; i < num_tfers; i++) {
1002 for (k = 0; k < NUM_PACKETS_IN_CHUNK; k++) {
1003 free_n_samples = max_samples - n_samples;
1004 if (free_n_samples < 256 || do_signal_trigger) {
1005 logic.length = n_samples * 2;
1006 sr_session_send(sdi, &sr_packet);
1007 n_samples = 0;
fe953391 1008 wp = devc->convbuffer;
dfac9592
GS
1009 if (do_signal_trigger) {
1010 std_session_send_df_trigger(sdi);
1011 do_signal_trigger = 0;
1012 }
1013 }
1014
1015 state = read_u16le_inc(&rp);
1016 repetitions = read_u8_inc(&rp);
fe953391
GS
1017 write_u16le((void *)&sample_buff, state);
1018 for (j = 0; j < repetitions; j++) {
1019 memcpy(wp, sample_buff, logic.unitsize);
1020 wp += logic.unitsize;
1021 }
dfac9592
GS
1022
1023 n_samples += repetitions;
1024 total_samples += repetitions;
1025 devc->total_samples += repetitions;
1026 if (!devc->reading_behind_trigger) {
1027 devc->n_reps_until_trigger--;
1028 if (devc->n_reps_until_trigger == 0) {
1029 devc->reading_behind_trigger = 1;
1030 do_signal_trigger = 1;
91f73872 1031 sr_dbg("Trigger position after %" PRIu64 " samples, %.6fms.",
1ed93110
GS
1032 devc->total_samples,
1033 (double)devc->total_samples / devc->cur_samplerate * 1e3);
dfac9592
GS
1034 }
1035 }
1036 }
1037 (void)read_u8_inc(&rp); /* Skip sequence number. */
1038 }
1039 if (n_samples) {
fe953391 1040 logic.length = n_samples * logic.unitsize;
dfac9592
GS
1041 sr_session_send(sdi, &sr_packet);
1042 if (do_signal_trigger) {
1043 std_session_send_df_trigger(sdi);
1044 }
1045 }
91f73872 1046 sr_dbg("Send_chunk done after %u samples.", total_samples);
dfac9592
GS
1047}
1048
1049static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
1050{
1051 struct sr_dev_inst *sdi;
1052 struct dev_context *devc;
1053 struct sr_usb_dev_inst *usb;
1054 int ret;
1055
1056 sdi = transfer->user_data;
1057 devc = sdi->priv;
1058 usb = sdi->conn;
1059
1060 sr_dbg("receive_transfer(): status %s received %d bytes.",
1ed93110 1061 libusb_error_name(transfer->status), transfer->actual_length);
dfac9592
GS
1062
1063 if (transfer->status == LIBUSB_TRANSFER_TIMED_OUT) {
91f73872 1064 sr_err("USB bulk transfer timeout.");
dfac9592
GS
1065 devc->transfer_finished = 1;
1066 }
1067 send_chunk(sdi, transfer->buffer, transfer->actual_length / TRANSFER_PACKET_LENGTH);
1068
1069 devc->n_bytes_to_read -= transfer->actual_length;
1070 if (devc->n_bytes_to_read) {
1071 uint32_t to_read = devc->n_bytes_to_read;
96dc954e
GS
1072 /*
1073 * Determine read size for the next USB transfer. Make
1074 * the buffer size a multiple of the endpoint packet
1075 * size. Don't exceed a maximum value.
1076 */
dfac9592
GS
1077 if (to_read >= LA2016_USB_BUFSZ)
1078 to_read = LA2016_USB_BUFSZ;
96dc954e 1079 else
dfac9592 1080 to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
852c7d14
GS
1081 libusb_fill_bulk_transfer(transfer,
1082 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
1083 transfer->buffer, to_read,
dfac9592
GS
1084 receive_transfer, (void *)sdi, DEFAULT_TIMEOUT_MS);
1085
1086 if ((ret = libusb_submit_transfer(transfer)) == 0)
1087 return;
91f73872
GS
1088 sr_err("Cannot submit another USB transfer: %s.",
1089 libusb_error_name(ret));
dfac9592
GS
1090 }
1091
1092 g_free(transfer->buffer);
1093 libusb_free_transfer(transfer);
1094 devc->transfer_finished = 1;
1095}
1096
1097SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data)
1098{
1099 const struct sr_dev_inst *sdi;
1100 struct dev_context *devc;
1101 struct drv_context *drvc;
1102 struct timeval tv;
1103
1104 (void)fd;
1105 (void)revents;
1106
1107 sdi = cb_data;
1108 devc = sdi->priv;
1109 drvc = sdi->driver->context;
1110
1111 if (devc->have_trigger == 0) {
1112 if (la2016_has_triggered(sdi) == 0) {
96dc954e 1113 /* Not yet ready for sample data download. */
dfac9592
GS
1114 return TRUE;
1115 }
1116 devc->have_trigger = 1;
1117 devc->transfer_finished = 0;
1118 devc->reading_behind_trigger = 0;
1119 devc->total_samples = 0;
96dc954e 1120 /* We can start downloading sample data. */
dfac9592 1121 if (la2016_start_retrieval(sdi, receive_transfer) != SR_OK) {
91f73872 1122 sr_err("Cannot start acquisition data download.");
dfac9592
GS
1123 return FALSE;
1124 }
91f73872 1125 sr_dbg("Acquisition data download started.");
dfac9592
GS
1126 std_session_send_df_frame_begin(sdi);
1127
1128 return TRUE;
1129 }
1130
1131 tv.tv_sec = tv.tv_usec = 0;
1132 libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
1133
1134 if (devc->transfer_finished) {
91f73872 1135 sr_dbg("Download finished, post processing.");
dfac9592
GS
1136 std_session_send_df_frame_end(sdi);
1137
1138 usb_source_remove(sdi->session, drvc->sr_ctx);
1139 std_session_send_df_end(sdi);
1140
1141 la2016_stop_acquisition(sdi);
1142
1143 g_free(devc->convbuffer);
1144 devc->convbuffer = NULL;
1145
1146 devc->transfer = NULL;
1147
91f73872 1148 sr_dbg("Download finished, done post processing.");
dfac9592
GS
1149 }
1150
1151 return TRUE;
1152}
1153
f2cd2deb
FS
1154SR_PRIV int la2016_init_device(const struct sr_dev_inst *sdi)
1155{
8b172e78 1156 struct dev_context *devc;
f2cd2deb 1157 uint16_t state;
9de389b1 1158 uint8_t buf[8];
43d2e52f
GS
1159 const uint8_t *rdptr;
1160 uint8_t date_yy, date_mm;
1161 uint8_t dinv_yy, dinv_mm;
9de389b1 1162 uint8_t magic;
d6f89d4b 1163 const char *bitstream_fn;
9de389b1 1164 int ret;
f2cd2deb 1165
8b172e78
KG
1166 devc = sdi->priv;
1167
96dc954e 1168 /*
43d2e52f
GS
1169 * Four EEPROM bytes at offset 0x20 are the manufacturing date,
1170 * year and month in BCD format, followed by inverted values for
1171 * consistency checks. For example bytes 20 04 df fb translate
1172 * to 2020-04. This information can help identify the vintage of
1173 * devices when unknown magic numbers are seen.
9de389b1 1174 */
43d2e52f
GS
1175 ret = ctrl_in(sdi, CMD_EEPROM, 0x20, 0, buf, 4 * sizeof(uint8_t));
1176 if (ret != SR_OK) {
1177 sr_err("Cannot read manufacture date in EEPROM.");
1ed93110 1178 } else {
43d2e52f
GS
1179 rdptr = &buf[0];
1180 date_yy = read_u8_inc(&rdptr);
1181 date_mm = read_u8_inc(&rdptr);
1182 dinv_yy = read_u8_inc(&rdptr);
1183 dinv_mm = read_u8_inc(&rdptr);
1184 sr_info("Manufacture date: 20%02hx-%02hx.", date_yy, date_mm);
1185 if ((date_mm ^ dinv_mm) != 0xff || (date_yy ^ dinv_yy) != 0xff)
1186 sr_warn("Manufacture date fails checksum test.");
f2cd2deb 1187 }
f2cd2deb 1188
9de389b1 1189 /*
96dc954e
GS
1190 * Several Kingst logic analyzer devices share the same USB VID
1191 * and PID. The product ID determines which MCU firmware to load.
1192 * The MCU firmware provides access to EEPROM content which then
1193 * allows to identify the device model. Which in turn determines
1194 * which FPGA bitstream to load. Eight bytes at offset 0x08 are
1195 * to get inspected.
9de389b1 1196 *
96dc954e
GS
1197 * EEPROM content for model identification is kept redundantly
1198 * in memory. The values are stored in verbatim and in inverted
1199 * form, multiple copies are kept at different offsets. Example
1200 * data:
9de389b1 1201 *
96dc954e
GS
1202 * magic 0x08
1203 * | ~magic 0xf7
1204 * | |
1205 * 08f7000008f710ef
1206 * | |
1207 * | ~magic backup
1208 * magic backup
9de389b1 1209 *
96dc954e
GS
1210 * Exclusively inspecting the magic byte appears to be sufficient,
1211 * other fields seem to be 'don't care'.
9de389b1 1212 *
96dc954e
GS
1213 * magic 2 == LA2016 using "kingst-la2016-fpga.bitstream"
1214 * magic 3 == LA1016 using "kingst-la1016-fpga.bitstream"
1215 * magic 8 == LA2016a using "kingst-la2016a1-fpga.bitstream"
1216 * (latest v1.3.0 PCB, perhaps others)
1217 * magic 9 == LA1016a using "kingst-la1016a1-fpga.bitstream"
1218 * (latest v1.3.0 PCB, perhaps others)
9de389b1 1219 *
96dc954e
GS
1220 * When EEPROM content does not match the hardware configuration
1221 * (the board layout), the software may load but yield incorrect
1222 * results (like swapped channels). The FPGA bitstream itself
1223 * will authenticate with IC U10 and fail when its capabilities
1224 * do not match the hardware model. An LA1016 won't become a
1225 * LA2016 by faking its EEPROM content.
9de389b1 1226 */
9de389b1 1227 if ((ret = ctrl_in(sdi, CMD_EEPROM, 0x08, 0, &buf, sizeof(buf))) != SR_OK) {
91f73872 1228 sr_err("Cannot read EEPROM device identifier bytes.");
f2cd2deb
FS
1229 return ret;
1230 }
43d2e52f 1231 if ((buf[0] ^ buf[1]) == 0xff) {
96dc954e 1232 /* Primary copy of magic passes complement check. */
43d2e52f 1233 sr_dbg("Using primary copy of device type magic number.");
9de389b1 1234 magic = buf[0];
43d2e52f 1235 } else if ((buf[4] ^ buf[5]) == 0xff) {
96dc954e 1236 /* Backup copy of magic passes complement check. */
91f73872 1237 sr_dbg("Using backup copy of device type magic number.");
9de389b1 1238 magic = buf[4];
43d2e52f
GS
1239 } else {
1240 sr_err("Cannot find consistent device type identification.");
1241 magic = 0;
f2cd2deb 1242 }
91f73872 1243 sr_dbg("Device type: magic number is %hhu.", magic);
9de389b1 1244
96dc954e 1245 /* Select the FPGA bitstream depending on the model. */
9de389b1
KG
1246 switch (magic) {
1247 case 2:
d6f89d4b 1248 bitstream_fn = FPGA_FW_LA2016;
8b172e78
KG
1249 devc->max_samplerate = MAX_SAMPLE_RATE_LA2016;
1250 break;
1251 case 3:
d6f89d4b 1252 bitstream_fn = FPGA_FW_LA1016;
8b172e78 1253 devc->max_samplerate = MAX_SAMPLE_RATE_LA1016;
9de389b1
KG
1254 break;
1255 case 8:
d6f89d4b 1256 bitstream_fn = FPGA_FW_LA2016A;
8b172e78
KG
1257 devc->max_samplerate = MAX_SAMPLE_RATE_LA2016;
1258 break;
1259 case 9:
d6f89d4b 1260 bitstream_fn = FPGA_FW_LA1016A;
8b172e78 1261 devc->max_samplerate = MAX_SAMPLE_RATE_LA1016;
9de389b1
KG
1262 break;
1263 default:
d6f89d4b
GS
1264 bitstream_fn = NULL;
1265 break;
1266 }
1267 if (!bitstream_fn || !*bitstream_fn) {
91f73872 1268 sr_err("Cannot identify as one of the supported models.");
3f48ab02
FS
1269 return SR_ERR;
1270 }
f2cd2deb 1271
d6f89d4b
GS
1272 if (check_fpga_bitstream(sdi) != SR_OK) {
1273 ret = upload_fpga_bitstream(sdi, bitstream_fn);
1274 if (ret != SR_OK) {
1275 sr_err("Cannot upload FPGA bitstream.");
1276 return ret;
1277 }
1278 }
1279 ret = enable_fpga_bitstream(sdi);
9de389b1 1280 if (ret != SR_OK) {
d6f89d4b 1281 sr_err("Cannot enable FPGA bitstream after upload.");
9de389b1
KG
1282 return ret;
1283 }
1284
f2cd2deb 1285 state = run_state(sdi);
9de389b1 1286 if (state != 0x85e9) {
91f73872 1287 sr_warn("Unexpected run state, want 0x85e9, got 0x%04x.", state);
9de389b1 1288 }
f2cd2deb 1289
00849545 1290 if ((ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0)) != SR_OK) {
91f73872 1291 sr_err("Cannot reset USB bulk transfer.");
f2cd2deb
FS
1292 return ret;
1293 }
9de389b1 1294
91f73872 1295 sr_dbg("Device should be initialized.");
f2cd2deb 1296
c34f4a89
GS
1297 ret = set_defaults(sdi);
1298 if (ret != SR_OK)
1299 return ret;
1300
1301 return SR_OK;
f2cd2deb
FS
1302}
1303
1304SR_PRIV int la2016_deinit_device(const struct sr_dev_inst *sdi)
1305{
1306 int ret;
1307
00849545 1308 if ((ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0)) != SR_OK) {
91f73872 1309 sr_err("Cannot deinitialize device's FPGA.");
f2cd2deb
FS
1310 return ret;
1311 }
1312
1313 return SR_OK;
1314}