]> sigrok.org Git - libsigrok.git/blame - src/hardware/kingst-la2016/protocol.c
tests: cover u24le and u40le in endianess conversion tests
[libsigrok.git] / src / hardware / kingst-la2016 / protocol.c
CommitLineData
f2cd2deb
FS
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2020 Florian Schmidt <schmidt_florian@gmx.de>
5 * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
6 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
7 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <config.h>
a7740b06 24
f2cd2deb 25#include <libsigrok/libsigrok.h>
a7740b06
GS
26#include <string.h>
27
f2cd2deb
FS
28#include "libsigrok-internal.h"
29#include "protocol.h"
30
f2cd2deb 31#define UC_FIRMWARE "kingst-la-%04x.fw"
9de389b1
KG
32#define FPGA_FW_LA2016 "kingst-la2016-fpga.bitstream"
33#define FPGA_FW_LA2016A "kingst-la2016a1-fpga.bitstream"
8b172e78
KG
34#define FPGA_FW_LA1016 "kingst-la1016-fpga.bitstream"
35#define FPGA_FW_LA1016A "kingst-la1016a1-fpga.bitstream"
f2cd2deb 36
852c7d14 37/* Maximum device capabilities. May differ between models. */
8b172e78
KG
38#define MAX_SAMPLE_RATE_LA2016 SR_MHZ(200)
39#define MAX_SAMPLE_RATE_LA1016 SR_MHZ(100)
e9430410
GS
40#define MAX_SAMPLE_DEPTH 10e9
41#define MAX_PWM_FREQ SR_MHZ(20)
42#define PWM_CLOCK SR_MHZ(200) /* 200MHz for both LA2016 and LA1016 */
f2cd2deb 43
852c7d14
GS
44/*
45 * Default device configuration. Must be applicable to any of the
46 * supported devices (no model specific default values yet). Specific
47 * firmware implementation details unfortunately won't let us detect
48 * and keep using previously configured values.
49 */
50#define LA2016_DFLT_SAMPLERATE SR_MHZ(100)
51#define LA2016_DFLT_SAMPLEDEPTH (5 * 1000 * 1000)
52#define LA2016_DFLT_CAPT_RATIO 5 /* Capture ratio, in percent. */
53
54/* TODO
55 * What is the origin and motivation of that 128Mi literal? What is its
56 * unit? How does it relate to a device's hardware capabilities? How to
57 * map the 1GiB of RAM of an LA2016 (at 16 channels) to the 128Mi value?
58 * It cannot be sample count. Is it memory size in bytes perhaps?
59 */
60#define LA2016_PRE_MEM_LIMIT_BASE (128 * 1024 * 1024)
61
96dc954e 62/* USB vendor class control requests, executed by the Cypress FX2 MCU. */
84fe94bd 63#define CMD_FPGA_ENABLE 0x10
96dc954e
GS
64#define CMD_FPGA_SPI 0x20 /* R/W access to FPGA registers via SPI. */
65#define CMD_BULK_START 0x30 /* Start sample data download via USB EP6 IN. */
66#define CMD_BULK_RESET 0x38 /* Flush FIFO of FX2 USB EP6 IN. */
67#define CMD_FPGA_INIT 0x50 /* Used before and after FPGA bitstream upload. */
68#define CMD_KAUTH 0x60 /* Communicate to auth IC (U10). Not used. */
69#define CMD_EEPROM 0xa2 /* R/W access to EEPROM content. */
00849545 70
42f6dd55 71/*
96dc954e
GS
72 * FPGA register addresses (base addresses when registers span multiple
73 * bytes, in that case data is kept in little endian format). Passed to
74 * CMD_FPGA_SPI requests. The FX2 MCU transparently handles the detail
75 * of SPI transfers encoding the read (1) or write (0) direction in the
76 * MSB of the address field. There are some 60 byte-wide FPGA registers.
d6f89d4b
GS
77 *
78 * Unfortunately the FPGA registers change their meaning between the
79 * read and write directions of access, or exclusively provide one of
80 * these directions and not the other. This is an arbitrary vendor's
81 * choice, there is nothing which the sigrok driver could do about it.
82 * Values written to registers typically cannot get read back, neither
83 * verified after writing a configuration, nor queried upon startup for
84 * automatic detection of the current configuration. Neither appear to
85 * be there echo registers for presence and communication checks, nor
86 * version identifying registers, as far as we know.
42f6dd55 87 */
96dc954e
GS
88#define REG_RUN 0x00 /* Read capture status, write start capture. */
89#define REG_PWM_EN 0x02 /* User PWM channels on/off. */
90#define REG_CAPT_MODE 0x03 /* Write 0x00 capture to SDRAM, 0x01 streaming. */
91#define REG_BULK 0x08 /* Write start addr, byte count to download samples. */
92#define REG_SAMPLING 0x10 /* Write capture config, read capture SDRAM location. */
93#define REG_TRIGGER 0x20 /* write level and edge trigger config. */
94#define REG_THRESHOLD 0x68 /* Write PWM config to setup input threshold DAC. */
95#define REG_PWM1 0x70 /* Write config for user PWM1. */
96#define REG_PWM2 0x78 /* Write config for user PWM2. */
f2cd2deb 97
852c7d14
GS
98/* Bit patterns to write to REG_RUN, setup run mode. */
99#define RUNMODE_HALT 0x00
100#define RUNMODE_RUN 0x03
101
f2cd2deb 102static int ctrl_in(const struct sr_dev_inst *sdi,
1ed93110
GS
103 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
104 void *data, uint16_t wLength)
f2cd2deb
FS
105{
106 struct sr_usb_dev_inst *usb;
107 int ret;
108
109 usb = sdi->conn;
110
852c7d14
GS
111 if ((ret = libusb_control_transfer(usb->devhdl,
112 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
f2cd2deb
FS
113 bRequest, wValue, wIndex, (unsigned char *)data, wLength,
114 DEFAULT_TIMEOUT_MS)) != wLength) {
91f73872
GS
115 sr_dbg("USB ctrl in: %d bytes, req %d val %#x idx %d: %s.",
116 wLength, bRequest, wValue, wIndex,
117 libusb_error_name(ret));
118 sr_err("Cannot read %d bytes from USB: %s.",
119 wLength, libusb_error_name(ret));
f2cd2deb
FS
120 return SR_ERR;
121 }
122
123 return SR_OK;
124}
125
126static int ctrl_out(const struct sr_dev_inst *sdi,
1ed93110
GS
127 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
128 void *data, uint16_t wLength)
f2cd2deb
FS
129{
130 struct sr_usb_dev_inst *usb;
131 int ret;
132
133 usb = sdi->conn;
134
852c7d14
GS
135 if ((ret = libusb_control_transfer(usb->devhdl,
136 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
f2cd2deb
FS
137 bRequest, wValue, wIndex, (unsigned char*)data, wLength,
138 DEFAULT_TIMEOUT_MS)) != wLength) {
91f73872
GS
139 sr_dbg("USB ctrl out: %d bytes, req %d val %#x idx %d: %s.",
140 wLength, bRequest, wValue, wIndex,
141 libusb_error_name(ret));
142 sr_err("Cannot write %d bytes to USB: %s.",
143 wLength, libusb_error_name(ret));
f2cd2deb
FS
144 return SR_ERR;
145 }
146
147 return SR_OK;
148}
149
d6f89d4b
GS
150/*
151 * Check the necessity for FPGA bitstream upload, because another upload
152 * would take some 600ms which is undesirable after program startup. Try
153 * to access some FPGA registers and check the values' plausibility. The
154 * check should fail on the safe side, request another upload when in
155 * doubt. A positive response (the request to continue operation with the
156 * currently active bitstream) should be conservative. Accessing multiple
157 * registers is considered cheap compared to the cost of bitstream upload.
158 *
159 * It helps though that both the vendor software and the sigrok driver
160 * use the same bundle of MCU firmware and FPGA bitstream for any of the
161 * supported models. We don't expect to successfully communicate to the
162 * device yet disagree on its protocol. Ideally we would access version
163 * identifying registers for improved robustness, but are not aware of
164 * any. A bitstream reload can always be forced by a power cycle.
165 */
166static int check_fpga_bitstream(const struct sr_dev_inst *sdi)
167{
168 uint8_t init_rsp;
169 int ret;
170 uint16_t run_state;
171 uint8_t pwm_en;
172 size_t read_len;
173 uint8_t buff[sizeof(run_state)];
174 const uint8_t *rdptr;
175
176 sr_dbg("Checking operation of the FPGA bitstream.");
177
852c7d14 178 init_rsp = ~0;
d6f89d4b
GS
179 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &init_rsp, sizeof(init_rsp));
180 if (ret != SR_OK || init_rsp != 0) {
181 sr_dbg("FPGA init query failed, or unexpected response.");
182 return SR_ERR_IO;
183 }
184
185 read_len = sizeof(run_state);
186 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, read_len);
187 if (ret != SR_OK) {
188 sr_dbg("FPGA register access failed (run state).");
189 return SR_ERR_IO;
190 }
191 rdptr = buff;
192 run_state = read_u16le_inc(&rdptr);
193 sr_spew("FPGA register: run state 0x%04x.", run_state);
194 if (run_state && (run_state & 0x3) != 0x1) {
195 sr_dbg("Unexpected FPGA register content (run state).");
196 return SR_ERR_DATA;
197 }
198 if (run_state && (run_state & ~0xf) != 0x85e0) {
199 sr_dbg("Unexpected FPGA register content (run state).");
200 return SR_ERR_DATA;
201 }
202
203 read_len = sizeof(pwm_en);
204 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, buff, read_len);
205 if (ret != SR_OK) {
206 sr_dbg("FPGA register access failed (PWM enable).");
207 return SR_ERR_IO;
208 }
209 rdptr = buff;
210 pwm_en = read_u8_inc(&rdptr);
211 sr_spew("FPGA register: PWM enable 0x%02x.", pwm_en);
212 if ((pwm_en & 0x3) != 0x0) {
213 sr_dbg("Unexpected FPGA register content (PWM enable).");
214 return SR_ERR_DATA;
215 }
216
217 sr_info("Could re-use current FPGA bitstream. No upload required.");
218 return SR_OK;
219}
220
1ed93110
GS
221static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
222 const char *bitstream_fname)
f2cd2deb
FS
223{
224 struct drv_context *drvc;
225 struct sr_usb_dev_inst *usb;
226 struct sr_resource bitstream;
b0d0131e 227 uint32_t bitstream_size;
c3d40037
HK
228 uint8_t buffer[sizeof(uint32_t)];
229 uint8_t *wrptr;
f2cd2deb 230 uint8_t block[4096];
3f48ab02
FS
231 int len, act_len;
232 unsigned int pos;
f2cd2deb 233 int ret;
b0d0131e 234 unsigned int zero_pad_to;
f2cd2deb
FS
235
236 drvc = sdi->driver->context;
237 usb = sdi->conn;
238
9de389b1 239 sr_info("Uploading FPGA bitstream '%s'.", bitstream_fname);
f2cd2deb 240
9de389b1 241 ret = sr_resource_open(drvc->sr_ctx, &bitstream, SR_RESOURCE_FIRMWARE, bitstream_fname);
f2cd2deb 242 if (ret != SR_OK) {
91f73872 243 sr_err("Cannot find FPGA bitstream %s.", bitstream_fname);
f2cd2deb
FS
244 return ret;
245 }
246
b0d0131e 247 bitstream_size = (uint32_t)bitstream.size;
c3d40037 248 wrptr = buffer;
b0d0131e 249 write_u32le_inc(&wrptr, bitstream_size);
00849545 250 if ((ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer)) != SR_OK) {
91f73872 251 sr_err("Cannot initiate FPGA bitstream upload.");
f2cd2deb
FS
252 sr_resource_close(drvc->sr_ctx, &bitstream);
253 return ret;
254 }
b0d0131e
GS
255 zero_pad_to = bitstream_size;
256 zero_pad_to += LA2016_EP2_PADDING - 1;
257 zero_pad_to /= LA2016_EP2_PADDING;
258 zero_pad_to *= LA2016_EP2_PADDING;
f2cd2deb
FS
259
260 pos = 0;
261 while (1) {
3f48ab02
FS
262 if (pos < bitstream.size) {
263 len = (int)sr_resource_read(drvc->sr_ctx, &bitstream, &block, sizeof(block));
264 if (len < 0) {
91f73872 265 sr_err("Cannot read FPGA bitstream.");
3f48ab02
FS
266 sr_resource_close(drvc->sr_ctx, &bitstream);
267 return SR_ERR;
268 }
269 } else {
96dc954e 270 /* Zero-pad until 'zero_pad_to'. */
3f48ab02
FS
271 len = zero_pad_to - pos;
272 if ((unsigned)len > sizeof(block))
273 len = sizeof(block);
274 memset(&block, 0, len);
f2cd2deb
FS
275 }
276 if (len == 0)
277 break;
278
852c7d14 279 ret = libusb_bulk_transfer(usb->devhdl, USB_EP_FPGA_BITSTREAM,
1ed93110 280 &block[0], len, &act_len, DEFAULT_TIMEOUT_MS);
f2cd2deb 281 if (ret != 0) {
91f73872
GS
282 sr_dbg("Cannot write FPGA bitstream, block %#x len %d: %s.",
283 pos, (int)len, libusb_error_name(ret));
f2cd2deb
FS
284 ret = SR_ERR;
285 break;
286 }
287 if (act_len != len) {
91f73872
GS
288 sr_dbg("Short write for FPGA bitstream, block %#x len %d: got %d.",
289 pos, (int)len, act_len);
f2cd2deb
FS
290 ret = SR_ERR;
291 break;
292 }
293 pos += len;
294 }
295 sr_resource_close(drvc->sr_ctx, &bitstream);
296 if (ret != 0)
297 return ret;
91f73872
GS
298 sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.",
299 bitstream.size);
f2cd2deb 300
d6f89d4b
GS
301 return SR_OK;
302}
303
304static int enable_fpga_bitstream(const struct sr_dev_inst *sdi)
305{
306 int ret;
307 uint8_t cmd_resp;
308
00849545 309 if ((ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &cmd_resp, sizeof(cmd_resp))) != SR_OK) {
91f73872 310 sr_err("Cannot read response after FPGA bitstream upload.");
f2cd2deb
FS
311 return ret;
312 }
3f48ab02 313 if (cmd_resp != 0) {
91f73872
GS
314 sr_err("Unexpected FPGA bitstream upload response, got 0x%02x, want 0.",
315 cmd_resp);
3f48ab02
FS
316 return SR_ERR;
317 }
852c7d14 318 g_usleep(30 * 1000);
f2cd2deb 319
00849545 320 if ((ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0)) != SR_OK) {
91f73872 321 sr_err("Cannot enable FPGA after bitstream upload.");
f2cd2deb
FS
322 return ret;
323 }
852c7d14 324 g_usleep(40 * 1000);
d6f89d4b 325
f2cd2deb
FS
326 return SR_OK;
327}
328
329static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage)
330{
331 struct dev_context *devc;
f2cd2deb
FS
332 int ret;
333
334 devc = sdi->priv;
f2cd2deb 335
1ed93110 336 uint16_t duty_R79, duty_R56;
f2ad79d1
KG
337 uint8_t buf[2 * sizeof(uint16_t)];
338 uint8_t *wrptr;
339
96dc954e 340 /* Clamp threshold setting to valid range for LA2016. */
f2ad79d1
KG
341 if (voltage > 4.0) {
342 voltage = 4.0;
1ed93110 343 } else if (voltage < -4.0) {
f2ad79d1
KG
344 voltage = -4.0;
345 }
346
347 /*
96dc954e
GS
348 * Two PWM output channels feed one DAC which generates a bias
349 * voltage, which offsets the input probe's voltage level, and
350 * in combination with the FPGA pins' fixed threshold result in
351 * a programmable input threshold from the user's perspective.
352 * The PWM outputs can be seen on R79 and R56 respectively, the
353 * frequency is 100kHz and the duty cycle varies. The R79 PWM
354 * uses three discrete settings. The R56 PWM varies with desired
355 * thresholds and depends on the R79 PWM configuration. See the
356 * schematics comments which discuss the formulae.
f2ad79d1
KG
357 */
358 if (voltage >= 2.9) {
96dc954e 359 duty_R79 = 0; /* PWM off (0V). */
f2ad79d1 360 duty_R56 = (uint16_t)(302 * voltage - 363);
c34f4a89 361 } else if (voltage > -0.4) {
96dc954e 362 duty_R79 = 0x00f2; /* 25% duty cycle. */
f2ad79d1 363 duty_R56 = (uint16_t)(302 * voltage + 121);
c34f4a89
GS
364 } else {
365 duty_R79 = 0x02d7; /* 72% duty cycle. */
366 duty_R56 = (uint16_t)(302 * voltage + 1090);
f2ad79d1
KG
367 }
368
96dc954e 369 /* Clamp duty register values to sensible limits. */
f2ad79d1
KG
370 if (duty_R56 < 10) {
371 duty_R56 = 10;
1ed93110 372 } else if (duty_R56 > 1100) {
f2ad79d1
KG
373 duty_R56 = 1100;
374 }
375
91f73872
GS
376 sr_dbg("Set threshold voltage %.2fV.", voltage);
377 sr_dbg("Duty cycle values: R56 0x%04x, R79 0x%04x.", duty_R56, duty_R79);
f2ad79d1
KG
378
379 wrptr = buf;
380 write_u16le_inc(&wrptr, duty_R56);
381 write_u16le_inc(&wrptr, duty_R79);
382
383 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_THRESHOLD, 0, buf, wrptr - buf);
f2cd2deb 384 if (ret != SR_OK) {
91f73872 385 sr_err("Cannot set threshold voltage %.2fV.", voltage);
f2cd2deb
FS
386 return ret;
387 }
388 devc->threshold_voltage = voltage;
389
390 return SR_OK;
391}
392
393static int enable_pwm(const struct sr_dev_inst *sdi, uint8_t p1, uint8_t p2)
394{
395 struct dev_context *devc;
396 uint8_t cfg;
397 int ret;
398
399 devc = sdi->priv;
400 cfg = 0;
401
402 if (p1) cfg |= 1 << 0;
403 if (p2) cfg |= 1 << 1;
404
91f73872 405 sr_dbg("Set PWM enable %d %d. Config 0x%02x.", p1, p2, cfg);
42f6dd55 406 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, &cfg, sizeof(cfg));
f2cd2deb 407 if (ret != SR_OK) {
91f73872 408 sr_err("Cannot setup PWM enabled state.");
f2cd2deb
FS
409 return ret;
410 }
411 devc->pwm_setting[0].enabled = (p1) ? 1 : 0;
412 devc->pwm_setting[1].enabled = (p2) ? 1 : 0;
413
414 return SR_OK;
415}
416
1ed93110
GS
417static int set_pwm(const struct sr_dev_inst *sdi, uint8_t which,
418 float freq, float duty)
f2cd2deb 419{
42f6dd55 420 int CTRL_PWM[] = { REG_PWM1, REG_PWM2 };
f2cd2deb
FS
421 struct dev_context *devc;
422 pwm_setting_dev_t cfg;
423 pwm_setting_t *setting;
424 int ret;
c3d40037
HK
425 uint8_t buf[2 * sizeof(uint32_t)];
426 uint8_t *wrptr;
f2cd2deb
FS
427
428 devc = sdi->priv;
429
852c7d14 430 if (which < 1 || which > ARRAY_SIZE(CTRL_PWM)) {
91f73872 431 sr_err("Invalid PWM channel: %d.", which);
f2cd2deb
FS
432 return SR_ERR;
433 }
434 if (freq > MAX_PWM_FREQ) {
91f73872 435 sr_err("Too high a PWM frequency: %.1f.", freq);
f2cd2deb
FS
436 return SR_ERR;
437 }
438 if (duty > 100 || duty < 0) {
91f73872 439 sr_err("Invalid PWM duty cycle: %f.", duty);
f2cd2deb
FS
440 return SR_ERR;
441 }
442
443 cfg.period = (uint32_t)(PWM_CLOCK / freq);
444 cfg.duty = (uint32_t)(0.5f + (cfg.period * duty / 100.));
91f73872 445 sr_dbg("Set PWM%d period %d, duty %d.", which, cfg.period, cfg.duty);
f2cd2deb 446
c3d40037
HK
447 wrptr = buf;
448 write_u32le_inc(&wrptr, cfg.period);
449 write_u32le_inc(&wrptr, cfg.duty);
00849545 450 ret = ctrl_out(sdi, CMD_FPGA_SPI, CTRL_PWM[which - 1], 0, buf, wrptr - buf);
f2cd2deb 451 if (ret != SR_OK) {
91f73872
GS
452 sr_err("Cannot setup PWM%d configuration %d %d.",
453 which, cfg.period, cfg.duty);
f2cd2deb
FS
454 return ret;
455 }
456 setting = &devc->pwm_setting[which - 1];
457 setting->freq = freq;
458 setting->duty = duty;
f2cd2deb
FS
459
460 return SR_OK;
461}
462
463static int set_defaults(const struct sr_dev_inst *sdi)
464{
465 struct dev_context *devc;
466 int ret;
467
468 devc = sdi->priv;
469
852c7d14 470 devc->capture_ratio = LA2016_DFLT_CAPT_RATIO;
f2cd2deb 471 devc->cur_channels = 0xffff;
852c7d14
GS
472 devc->limit_samples = LA2016_DFLT_SAMPLEDEPTH;
473 devc->cur_samplerate = LA2016_DFLT_SAMPLERATE;
f2cd2deb
FS
474
475 ret = set_threshold_voltage(sdi, devc->threshold_voltage);
476 if (ret)
477 return ret;
478
479 ret = enable_pwm(sdi, 0, 0);
480 if (ret)
481 return ret;
482
852c7d14 483 ret = set_pwm(sdi, 1, SR_KHZ(1), 50);
f2cd2deb
FS
484 if (ret)
485 return ret;
486
852c7d14 487 ret = set_pwm(sdi, 2, SR_KHZ(100), 50);
f2cd2deb
FS
488 if (ret)
489 return ret;
490
491 ret = enable_pwm(sdi, 1, 1);
492 if (ret)
493 return ret;
494
495 return SR_OK;
496}
497
498static int set_trigger_config(const struct sr_dev_inst *sdi)
499{
500 struct dev_context *devc;
501 struct sr_trigger *trigger;
502 trigger_cfg_t cfg;
503 GSList *stages;
504 GSList *channel;
505 struct sr_trigger_stage *stage1;
506 struct sr_trigger_match *match;
507 uint16_t ch_mask;
508 int ret;
c3d40037
HK
509 uint8_t buf[4 * sizeof(uint32_t)];
510 uint8_t *wrptr;
f2cd2deb
FS
511
512 devc = sdi->priv;
513 trigger = sr_session_trigger_get(sdi->session);
514
515 memset(&cfg, 0, sizeof(cfg));
516
517 cfg.channels = devc->cur_channels;
518
519 if (trigger && trigger->stages) {
520 stages = trigger->stages;
521 stage1 = stages->data;
522 if (stages->next) {
523 sr_err("Only one trigger stage supported for now.");
524 return SR_ERR;
525 }
526 channel = stage1->matches;
527 while (channel) {
528 match = channel->data;
529 ch_mask = 1 << match->channel->index;
530
531 switch (match->match) {
532 case SR_TRIGGER_ZERO:
533 cfg.level |= ch_mask;
534 cfg.high_or_falling &= ~ch_mask;
535 break;
536 case SR_TRIGGER_ONE:
537 cfg.level |= ch_mask;
538 cfg.high_or_falling |= ch_mask;
539 break;
540 case SR_TRIGGER_RISING:
541 if ((cfg.enabled & ~cfg.level)) {
91f73872 542 sr_err("Device only supports one edge trigger.");
f2cd2deb
FS
543 return SR_ERR;
544 }
545 cfg.level &= ~ch_mask;
546 cfg.high_or_falling &= ~ch_mask;
547 break;
548 case SR_TRIGGER_FALLING:
549 if ((cfg.enabled & ~cfg.level)) {
91f73872 550 sr_err("Device only supports one edge trigger.");
f2cd2deb
FS
551 return SR_ERR;
552 }
553 cfg.level &= ~ch_mask;
554 cfg.high_or_falling |= ch_mask;
555 break;
556 default:
91f73872 557 sr_err("Unknown trigger condition.");
f2cd2deb
FS
558 return SR_ERR;
559 }
560 cfg.enabled |= ch_mask;
561 channel = channel->next;
562 }
563 }
91f73872
GS
564 sr_dbg("Set trigger config: "
565 "channels 0x%04x, trigger-enabled 0x%04x, "
566 "level-triggered 0x%04x, high/falling 0x%04x.",
567 cfg.channels, cfg.enabled, cfg.level, cfg.high_or_falling);
f2cd2deb
FS
568
569 devc->had_triggers_configured = cfg.enabled != 0;
570
c3d40037
HK
571 wrptr = buf;
572 write_u32le_inc(&wrptr, cfg.channels);
573 write_u32le_inc(&wrptr, cfg.enabled);
574 write_u32le_inc(&wrptr, cfg.level);
575 write_u32le_inc(&wrptr, cfg.high_or_falling);
852c7d14
GS
576 /* TODO
577 * Comment on this literal 16. Origin, meaning? Cannot be the
578 * register offset, nor the transfer length. Is it a channels
579 * count that is relevant for 16 and 32 channel models? Is it
580 * an obsolete experiment?
581 */
42f6dd55 582 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_TRIGGER, 16, buf, wrptr - buf);
f2cd2deb 583 if (ret != SR_OK) {
91f73872 584 sr_err("Cannot setup trigger configuration.");
f2cd2deb
FS
585 return ret;
586 }
587
588 return SR_OK;
589}
590
591static int set_sample_config(const struct sr_dev_inst *sdi)
592{
593 struct dev_context *devc;
f2cd2deb 594 double clock_divisor;
adab4d91
GS
595 uint16_t divider_u16;
596 uint64_t pre_trigger_samples;
597 uint64_t pre_trigger_memory;
598 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 599 uint8_t *wrptr;
adab4d91 600 int ret;
f2cd2deb
FS
601
602 devc = sdi->priv;
f2cd2deb 603
8b172e78 604 if (devc->cur_samplerate > devc->max_samplerate) {
91f73872
GS
605 sr_err("Too high a sample rate: %" PRIu64 ".",
606 devc->cur_samplerate);
f2cd2deb
FS
607 return SR_ERR;
608 }
609
8b172e78 610 clock_divisor = devc->max_samplerate / (double)devc->cur_samplerate;
adab4d91
GS
611 if (clock_divisor > 65535)
612 return SR_ERR_ARG;
613 divider_u16 = (uint16_t)(clock_divisor + 0.5);
614 devc->cur_samplerate = devc->max_samplerate / divider_u16;
f2cd2deb
FS
615
616 if (devc->limit_samples > MAX_SAMPLE_DEPTH) {
91f73872
GS
617 sr_err("Too high a sample depth: %" PRIu64 ".",
618 devc->limit_samples);
f2cd2deb
FS
619 return SR_ERR;
620 }
f2cd2deb 621
adab4d91
GS
622 /*
623 * The acquisition configuration communicates "pre-trigger"
624 * specs in several formats. sigrok users provide a percentage
625 * (0-100%), which translates to a pre-trigger samples count
626 * (assuming that a total samples count limit was specified).
627 * The device supports hardware compression, which depends on
628 * slowly changing input data to be effective. Fast changing
629 * input data may occupy more space in sample memory than its
630 * uncompressed form would. This is why a third parameter can
631 * limit the amount of sample memory to use for pre-trigger
632 * data. Only the upper 24 bits of that memory size spec get
633 * communicated to the device (written to its FPGA register).
634 */
635 pre_trigger_samples = devc->limit_samples * devc->capture_ratio / 100;
636 pre_trigger_memory = LA2016_PRE_MEM_LIMIT_BASE;
637 pre_trigger_memory *= devc->capture_ratio;
638 pre_trigger_memory /= 100;
639 pre_trigger_memory &= 0xffffff00ul; /* Funny register layout. */
f2cd2deb 640
adab4d91
GS
641 sr_dbg("Set sample config: %" PRIu64 "kHz, %" PRIu64 " samples.",
642 devc->cur_samplerate / 1000, devc->limit_samples);
643 sr_dbg("Capture ratio %" PRIu64 "%%, count %" PRIu64 ", mem %" PRIu64 ".",
644 devc->capture_ratio, pre_trigger_samples, pre_trigger_memory);
f2cd2deb 645
c3d40037
HK
646 wrptr = buf;
647 write_u32le_inc(&wrptr, devc->limit_samples);
0d8e1ffc 648 write_u8_inc(&wrptr, 0);
adab4d91
GS
649 write_u32le_inc(&wrptr, pre_trigger_samples);
650 write_u32le_inc(&wrptr, pre_trigger_memory);
651 write_u16le_inc(&wrptr, divider_u16);
0d8e1ffc 652 write_u8_inc(&wrptr, 0);
42f6dd55 653 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, wrptr - buf);
f2cd2deb 654 if (ret != SR_OK) {
91f73872 655 sr_err("Cannot setup acquisition configuration.");
f2cd2deb
FS
656 return ret;
657 }
658
659 return SR_OK;
660}
661
96dc954e
GS
662/*
663 * FPGA register REG_RUN holds the run state (u16le format). Bit fields
664 * of interest:
665 * bit 0: value 1 = idle
666 * bit 1: value 1 = writing to SDRAM
667 * bit 2: value 0 = waiting for trigger, 1 = trigger seen
668 * bit 3: value 0 = pretrigger sampling, 1 = posttrigger sampling
669 * The meaning of other bit fields is unknown.
7601dca7 670 *
96dc954e
GS
671 * Typical values in order of appearance during execution:
672 * 0x85e2: pre-sampling, samples before the trigger position,
673 * when capture ratio > 0%
674 * 0x85ea: pre-sampling complete, now waiting for the trigger
675 * (whilst sampling continuously)
676 * 0x85ee: trigger seen, capturing post-trigger samples, running
677 * 0x85ed: idle
f2cd2deb
FS
678 */
679static uint16_t run_state(const struct sr_dev_inst *sdi)
680{
21d68fd9
GS
681 static uint16_t previous_state;
682
f2cd2deb 683 int ret;
21d68fd9
GS
684 uint16_t state;
685 uint8_t buff[sizeof(state)];
686 const uint8_t *rdptr;
687 const char *label;
f2cd2deb 688
21d68fd9 689 if ((ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, sizeof(state))) != SR_OK) {
91f73872 690 sr_err("Cannot read run state.");
f2cd2deb
FS
691 return ret;
692 }
21d68fd9
GS
693 rdptr = buff;
694 state = read_u16le_inc(&rdptr);
7601dca7 695
96dc954e
GS
696 /*
697 * Avoid flooding the log, only dump values as they change.
698 * The routine is called about every 50ms.
7601dca7 699 */
84fe94bd 700 if (state != previous_state) {
7601dca7 701 previous_state = state;
21d68fd9
GS
702 if ((state & 0x3) == 0x1) {
703 label = "idle";
704 } else if ((state & 0xf) == 0x2) {
705 label = "pre-trigger sampling";
706 } else if ((state & 0xf) == 0xa) {
707 label = "sampling, waiting for trigger";
708 } else if ((state & 0xf) == 0xe) {
709 label = "post-trigger sampling";
710 } else {
711 label = NULL;
712 }
713 if (label && *label) {
714 sr_dbg("Run state: 0x%04x (%s).", state, label);
1ed93110 715 } else {
91f73872 716 sr_dbg("Run state: 0x%04x.", state);
7601dca7
KG
717 }
718 }
f2cd2deb
FS
719
720 return state;
721}
722
c34f4a89
GS
723static int la2016_has_triggered(const struct sr_dev_inst *sdi)
724{
725 uint16_t state;
726
727 state = run_state(sdi);
728 if ((state & 0x3) == 0x1)
729 return 1;
730
731 return 0;
732}
733
734static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t mode)
f2cd2deb
FS
735{
736 int ret;
737
c34f4a89
GS
738 if ((ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &mode, sizeof(mode))) != SR_OK) {
739 sr_err("Cannot configure run mode %d.", mode);
f2cd2deb
FS
740 return ret;
741 }
742
743 return SR_OK;
744}
745
746static int get_capture_info(const struct sr_dev_inst *sdi)
747{
748 struct dev_context *devc;
749 int ret;
c3d40037
HK
750 uint8_t buf[3 * sizeof(uint32_t)];
751 const uint8_t *rdptr;
f2cd2deb
FS
752
753 devc = sdi->priv;
754
42f6dd55 755 if ((ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf))) != SR_OK) {
91f73872 756 sr_err("Cannot read capture info.");
f2cd2deb
FS
757 return ret;
758 }
c3d40037
HK
759
760 rdptr = buf;
761 devc->info.n_rep_packets = read_u32le_inc(&rdptr);
762 devc->info.n_rep_packets_before_trigger = read_u32le_inc(&rdptr);
763 devc->info.write_pos = read_u32le_inc(&rdptr);
f2cd2deb 764
91f73872 765 sr_dbg("Capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x%d.",
1ed93110
GS
766 devc->info.n_rep_packets, devc->info.n_rep_packets,
767 devc->info.n_rep_packets_before_trigger,
768 devc->info.n_rep_packets_before_trigger,
769 devc->info.write_pos, devc->info.write_pos);
f2cd2deb 770
852c7d14
GS
771 if (devc->info.n_rep_packets % NUM_PACKETS_IN_CHUNK) {
772 sr_warn("Unexpected packets count %lu, not a multiple of %d.",
773 (unsigned long)devc->info.n_rep_packets,
774 NUM_PACKETS_IN_CHUNK);
91f73872 775 }
f2cd2deb
FS
776
777 return SR_OK;
778}
779
1ed93110
GS
780SR_PRIV int la2016_upload_firmware(struct sr_context *sr_ctx,
781 libusb_device *dev, uint16_t product_id)
f2cd2deb
FS
782{
783 char fw_file[1024];
784 snprintf(fw_file, sizeof(fw_file) - 1, UC_FIRMWARE, product_id);
40a0b2f4 785 return ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw_file);
f2cd2deb
FS
786}
787
788SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi)
789{
790 struct dev_context *devc;
791 int ret;
792 uint8_t cmd;
793
794 devc = sdi->priv;
795
796 ret = set_threshold_voltage(sdi, devc->threshold_voltage);
797 if (ret != SR_OK)
798 return ret;
799
800 cmd = 0;
42f6dd55 801 if ((ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd))) != SR_OK) {
91f73872 802 sr_err("Cannot send command to stop sampling.");
f2cd2deb
FS
803 return ret;
804 }
805
806 ret = set_trigger_config(sdi);
807 if (ret != SR_OK)
808 return ret;
809
810 ret = set_sample_config(sdi);
811 if (ret != SR_OK)
812 return ret;
813
814 return SR_OK;
815}
816
817SR_PRIV int la2016_start_acquisition(const struct sr_dev_inst *sdi)
818{
3ebc1cb2
GS
819 int ret;
820
852c7d14 821 ret = set_run_mode(sdi, RUNMODE_RUN);
3ebc1cb2
GS
822 if (ret != SR_OK)
823 return ret;
824
825 return SR_OK;
f2cd2deb
FS
826}
827
3ebc1cb2 828static int la2016_stop_acquisition(const struct sr_dev_inst *sdi)
f2cd2deb 829{
3ebc1cb2
GS
830 int ret;
831
852c7d14 832 ret = set_run_mode(sdi, RUNMODE_HALT);
3ebc1cb2
GS
833 if (ret != SR_OK)
834 return ret;
835
836 return SR_OK;
f2cd2deb
FS
837}
838
839SR_PRIV int la2016_abort_acquisition(const struct sr_dev_inst *sdi)
840{
3ebc1cb2
GS
841 int ret;
842 struct dev_context *devc;
843
844 ret = la2016_stop_acquisition(sdi);
845 if (ret != SR_OK)
846 return ret;
847
848 devc = sdi ? sdi->priv : NULL;
849 if (devc && devc->transfer)
850 libusb_cancel_transfer(devc->transfer);
851
852 return SR_OK;
f2cd2deb
FS
853}
854
1ed93110
GS
855static int la2016_start_retrieval(const struct sr_dev_inst *sdi,
856 libusb_transfer_cb_fn cb)
f2cd2deb
FS
857{
858 struct dev_context *devc;
859 struct sr_usb_dev_inst *usb;
860 int ret;
c3d40037
HK
861 uint8_t wrbuf[2 * sizeof(uint32_t)];
862 uint8_t *wrptr;
f2cd2deb
FS
863 uint32_t to_read;
864 uint8_t *buffer;
865
866 devc = sdi->priv;
867 usb = sdi->conn;
868
869 if ((ret = get_capture_info(sdi)) != SR_OK)
870 return ret;
871
c3d40037
HK
872 devc->n_transfer_packets_to_read = devc->info.n_rep_packets / NUM_PACKETS_IN_CHUNK;
873 devc->n_bytes_to_read = devc->n_transfer_packets_to_read * TRANSFER_PACKET_LENGTH;
f2cd2deb
FS
874 devc->read_pos = devc->info.write_pos - devc->n_bytes_to_read;
875 devc->n_reps_until_trigger = devc->info.n_rep_packets_before_trigger;
876
91f73872 877 sr_dbg("Want to read %u xfer-packets starting from pos %" PRIu32 ".",
1ed93110 878 devc->n_transfer_packets_to_read, devc->read_pos);
f2cd2deb 879
00849545 880 if ((ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0)) != SR_OK) {
91f73872 881 sr_err("Cannot reset USB bulk state.");
f2cd2deb
FS
882 return ret;
883 }
91f73872
GS
884 sr_dbg("Will read from 0x%08lx, 0x%08x bytes.",
885 (unsigned long)devc->read_pos, devc->n_bytes_to_read);
c3d40037
HK
886 wrptr = wrbuf;
887 write_u32le_inc(&wrptr, devc->read_pos);
888 write_u32le_inc(&wrptr, devc->n_bytes_to_read);
42f6dd55 889 if ((ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf)) != SR_OK) {
91f73872 890 sr_err("Cannot send USB bulk config.");
f2cd2deb
FS
891 return ret;
892 }
00849545 893 if ((ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0)) != SR_OK) {
91f73872 894 sr_err("Cannot unblock USB bulk transfers.");
f2cd2deb
FS
895 return ret;
896 }
897
96dc954e
GS
898 /*
899 * Pick a buffer size for all USB transfers. The buffer size
900 * must be a multiple of the endpoint packet size. And cannot
901 * exceed a maximum value.
902 */
f2cd2deb 903 to_read = devc->n_bytes_to_read;
96dc954e
GS
904 if (to_read >= LA2016_USB_BUFSZ) /* Multiple transfers. */
905 to_read = LA2016_USB_BUFSZ;
906 else /* One transfer. */
e847645b 907 to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
f2cd2deb
FS
908 buffer = g_try_malloc(to_read);
909 if (!buffer) {
91f73872
GS
910 sr_dbg("USB bulk transfer size %d bytes.", (int)to_read);
911 sr_err("Cannot allocate buffer for USB bulk transfer.");
f2cd2deb
FS
912 return SR_ERR_MALLOC;
913 }
914
915 devc->transfer = libusb_alloc_transfer(0);
852c7d14
GS
916 libusb_fill_bulk_transfer(devc->transfer,
917 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
918 buffer, to_read,
f2cd2deb
FS
919 cb, (void *)sdi, DEFAULT_TIMEOUT_MS);
920
921 if ((ret = libusb_submit_transfer(devc->transfer)) != 0) {
91f73872 922 sr_err("Cannot submit USB transfer: %s.", libusb_error_name(ret));
f2cd2deb
FS
923 libusb_free_transfer(devc->transfer);
924 devc->transfer = NULL;
925 g_free(buffer);
926 return SR_ERR;
927 }
928
929 return SR_OK;
930}
931
dfac9592
GS
932static void send_chunk(struct sr_dev_inst *sdi,
933 const uint8_t *packets, unsigned int num_tfers)
934{
935 struct dev_context *devc;
936 struct sr_datafeed_logic logic;
937 struct sr_datafeed_packet sr_packet;
938 unsigned int max_samples, n_samples, total_samples, free_n_samples;
939 unsigned int i, j, k;
940 int do_signal_trigger;
fe953391 941 uint8_t *wp;
dfac9592
GS
942 const uint8_t *rp;
943 uint16_t state;
944 uint8_t repetitions;
fe953391 945 uint8_t sample_buff[sizeof(state)];
dfac9592
GS
946
947 devc = sdi->priv;
948
fe953391 949 logic.unitsize = sizeof(sample_buff);
dfac9592
GS
950 logic.data = devc->convbuffer;
951
952 sr_packet.type = SR_DF_LOGIC;
953 sr_packet.payload = &logic;
954
fe953391 955 max_samples = devc->convbuffer_size / sizeof(sample_buff);
dfac9592 956 n_samples = 0;
fe953391 957 wp = devc->convbuffer;
dfac9592
GS
958 total_samples = 0;
959 do_signal_trigger = 0;
960
961 if (devc->had_triggers_configured && devc->reading_behind_trigger == 0 && devc->info.n_rep_packets_before_trigger == 0) {
962 std_session_send_df_trigger(sdi);
963 devc->reading_behind_trigger = 1;
964 }
965
966 rp = packets;
967 for (i = 0; i < num_tfers; i++) {
968 for (k = 0; k < NUM_PACKETS_IN_CHUNK; k++) {
969 free_n_samples = max_samples - n_samples;
970 if (free_n_samples < 256 || do_signal_trigger) {
971 logic.length = n_samples * 2;
972 sr_session_send(sdi, &sr_packet);
973 n_samples = 0;
fe953391 974 wp = devc->convbuffer;
dfac9592
GS
975 if (do_signal_trigger) {
976 std_session_send_df_trigger(sdi);
977 do_signal_trigger = 0;
978 }
979 }
980
981 state = read_u16le_inc(&rp);
982 repetitions = read_u8_inc(&rp);
fe953391
GS
983 write_u16le((void *)&sample_buff, state);
984 for (j = 0; j < repetitions; j++) {
985 memcpy(wp, sample_buff, logic.unitsize);
986 wp += logic.unitsize;
987 }
dfac9592
GS
988
989 n_samples += repetitions;
990 total_samples += repetitions;
991 devc->total_samples += repetitions;
992 if (!devc->reading_behind_trigger) {
993 devc->n_reps_until_trigger--;
994 if (devc->n_reps_until_trigger == 0) {
995 devc->reading_behind_trigger = 1;
996 do_signal_trigger = 1;
91f73872 997 sr_dbg("Trigger position after %" PRIu64 " samples, %.6fms.",
1ed93110
GS
998 devc->total_samples,
999 (double)devc->total_samples / devc->cur_samplerate * 1e3);
dfac9592
GS
1000 }
1001 }
1002 }
1003 (void)read_u8_inc(&rp); /* Skip sequence number. */
1004 }
1005 if (n_samples) {
fe953391 1006 logic.length = n_samples * logic.unitsize;
dfac9592
GS
1007 sr_session_send(sdi, &sr_packet);
1008 if (do_signal_trigger) {
1009 std_session_send_df_trigger(sdi);
1010 }
1011 }
91f73872 1012 sr_dbg("Send_chunk done after %u samples.", total_samples);
dfac9592
GS
1013}
1014
1015static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
1016{
1017 struct sr_dev_inst *sdi;
1018 struct dev_context *devc;
1019 struct sr_usb_dev_inst *usb;
1020 int ret;
1021
1022 sdi = transfer->user_data;
1023 devc = sdi->priv;
1024 usb = sdi->conn;
1025
1026 sr_dbg("receive_transfer(): status %s received %d bytes.",
1ed93110 1027 libusb_error_name(transfer->status), transfer->actual_length);
dfac9592
GS
1028
1029 if (transfer->status == LIBUSB_TRANSFER_TIMED_OUT) {
91f73872 1030 sr_err("USB bulk transfer timeout.");
dfac9592
GS
1031 devc->transfer_finished = 1;
1032 }
1033 send_chunk(sdi, transfer->buffer, transfer->actual_length / TRANSFER_PACKET_LENGTH);
1034
1035 devc->n_bytes_to_read -= transfer->actual_length;
1036 if (devc->n_bytes_to_read) {
1037 uint32_t to_read = devc->n_bytes_to_read;
96dc954e
GS
1038 /*
1039 * Determine read size for the next USB transfer. Make
1040 * the buffer size a multiple of the endpoint packet
1041 * size. Don't exceed a maximum value.
1042 */
dfac9592
GS
1043 if (to_read >= LA2016_USB_BUFSZ)
1044 to_read = LA2016_USB_BUFSZ;
96dc954e 1045 else
dfac9592 1046 to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
852c7d14
GS
1047 libusb_fill_bulk_transfer(transfer,
1048 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
1049 transfer->buffer, to_read,
dfac9592
GS
1050 receive_transfer, (void *)sdi, DEFAULT_TIMEOUT_MS);
1051
1052 if ((ret = libusb_submit_transfer(transfer)) == 0)
1053 return;
91f73872
GS
1054 sr_err("Cannot submit another USB transfer: %s.",
1055 libusb_error_name(ret));
dfac9592
GS
1056 }
1057
1058 g_free(transfer->buffer);
1059 libusb_free_transfer(transfer);
1060 devc->transfer_finished = 1;
1061}
1062
1063SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data)
1064{
1065 const struct sr_dev_inst *sdi;
1066 struct dev_context *devc;
1067 struct drv_context *drvc;
1068 struct timeval tv;
1069
1070 (void)fd;
1071 (void)revents;
1072
1073 sdi = cb_data;
1074 devc = sdi->priv;
1075 drvc = sdi->driver->context;
1076
1077 if (devc->have_trigger == 0) {
1078 if (la2016_has_triggered(sdi) == 0) {
96dc954e 1079 /* Not yet ready for sample data download. */
dfac9592
GS
1080 return TRUE;
1081 }
1082 devc->have_trigger = 1;
1083 devc->transfer_finished = 0;
1084 devc->reading_behind_trigger = 0;
1085 devc->total_samples = 0;
96dc954e 1086 /* We can start downloading sample data. */
dfac9592 1087 if (la2016_start_retrieval(sdi, receive_transfer) != SR_OK) {
91f73872 1088 sr_err("Cannot start acquisition data download.");
dfac9592
GS
1089 return FALSE;
1090 }
91f73872 1091 sr_dbg("Acquisition data download started.");
dfac9592
GS
1092 std_session_send_df_frame_begin(sdi);
1093
1094 return TRUE;
1095 }
1096
1097 tv.tv_sec = tv.tv_usec = 0;
1098 libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
1099
1100 if (devc->transfer_finished) {
91f73872 1101 sr_dbg("Download finished, post processing.");
dfac9592
GS
1102 std_session_send_df_frame_end(sdi);
1103
1104 usb_source_remove(sdi->session, drvc->sr_ctx);
1105 std_session_send_df_end(sdi);
1106
1107 la2016_stop_acquisition(sdi);
1108
1109 g_free(devc->convbuffer);
1110 devc->convbuffer = NULL;
1111
1112 devc->transfer = NULL;
1113
91f73872 1114 sr_dbg("Download finished, done post processing.");
dfac9592
GS
1115 }
1116
1117 return TRUE;
1118}
1119
f2cd2deb
FS
1120SR_PRIV int la2016_init_device(const struct sr_dev_inst *sdi)
1121{
8b172e78 1122 struct dev_context *devc;
f2cd2deb 1123 uint16_t state;
9de389b1 1124 uint8_t buf[8];
43d2e52f
GS
1125 const uint8_t *rdptr;
1126 uint8_t date_yy, date_mm;
1127 uint8_t dinv_yy, dinv_mm;
9de389b1 1128 uint8_t magic;
d6f89d4b 1129 const char *bitstream_fn;
9de389b1 1130 int ret;
f2cd2deb 1131
8b172e78
KG
1132 devc = sdi->priv;
1133
96dc954e 1134 /*
43d2e52f
GS
1135 * Four EEPROM bytes at offset 0x20 are the manufacturing date,
1136 * year and month in BCD format, followed by inverted values for
1137 * consistency checks. For example bytes 20 04 df fb translate
1138 * to 2020-04. This information can help identify the vintage of
1139 * devices when unknown magic numbers are seen.
9de389b1 1140 */
43d2e52f
GS
1141 ret = ctrl_in(sdi, CMD_EEPROM, 0x20, 0, buf, 4 * sizeof(uint8_t));
1142 if (ret != SR_OK) {
1143 sr_err("Cannot read manufacture date in EEPROM.");
1ed93110 1144 } else {
43d2e52f
GS
1145 rdptr = &buf[0];
1146 date_yy = read_u8_inc(&rdptr);
1147 date_mm = read_u8_inc(&rdptr);
1148 dinv_yy = read_u8_inc(&rdptr);
1149 dinv_mm = read_u8_inc(&rdptr);
1150 sr_info("Manufacture date: 20%02hx-%02hx.", date_yy, date_mm);
1151 if ((date_mm ^ dinv_mm) != 0xff || (date_yy ^ dinv_yy) != 0xff)
1152 sr_warn("Manufacture date fails checksum test.");
f2cd2deb 1153 }
f2cd2deb 1154
9de389b1 1155 /*
96dc954e
GS
1156 * Several Kingst logic analyzer devices share the same USB VID
1157 * and PID. The product ID determines which MCU firmware to load.
1158 * The MCU firmware provides access to EEPROM content which then
1159 * allows to identify the device model. Which in turn determines
1160 * which FPGA bitstream to load. Eight bytes at offset 0x08 are
1161 * to get inspected.
9de389b1 1162 *
96dc954e
GS
1163 * EEPROM content for model identification is kept redundantly
1164 * in memory. The values are stored in verbatim and in inverted
1165 * form, multiple copies are kept at different offsets. Example
1166 * data:
9de389b1 1167 *
96dc954e
GS
1168 * magic 0x08
1169 * | ~magic 0xf7
1170 * | |
1171 * 08f7000008f710ef
1172 * | |
1173 * | ~magic backup
1174 * magic backup
9de389b1 1175 *
96dc954e
GS
1176 * Exclusively inspecting the magic byte appears to be sufficient,
1177 * other fields seem to be 'don't care'.
9de389b1 1178 *
96dc954e
GS
1179 * magic 2 == LA2016 using "kingst-la2016-fpga.bitstream"
1180 * magic 3 == LA1016 using "kingst-la1016-fpga.bitstream"
1181 * magic 8 == LA2016a using "kingst-la2016a1-fpga.bitstream"
1182 * (latest v1.3.0 PCB, perhaps others)
1183 * magic 9 == LA1016a using "kingst-la1016a1-fpga.bitstream"
1184 * (latest v1.3.0 PCB, perhaps others)
9de389b1 1185 *
96dc954e
GS
1186 * When EEPROM content does not match the hardware configuration
1187 * (the board layout), the software may load but yield incorrect
1188 * results (like swapped channels). The FPGA bitstream itself
1189 * will authenticate with IC U10 and fail when its capabilities
1190 * do not match the hardware model. An LA1016 won't become a
1191 * LA2016 by faking its EEPROM content.
9de389b1 1192 */
9de389b1 1193 if ((ret = ctrl_in(sdi, CMD_EEPROM, 0x08, 0, &buf, sizeof(buf))) != SR_OK) {
91f73872 1194 sr_err("Cannot read EEPROM device identifier bytes.");
f2cd2deb
FS
1195 return ret;
1196 }
43d2e52f 1197 if ((buf[0] ^ buf[1]) == 0xff) {
96dc954e 1198 /* Primary copy of magic passes complement check. */
43d2e52f 1199 sr_dbg("Using primary copy of device type magic number.");
9de389b1 1200 magic = buf[0];
43d2e52f 1201 } else if ((buf[4] ^ buf[5]) == 0xff) {
96dc954e 1202 /* Backup copy of magic passes complement check. */
91f73872 1203 sr_dbg("Using backup copy of device type magic number.");
9de389b1 1204 magic = buf[4];
43d2e52f
GS
1205 } else {
1206 sr_err("Cannot find consistent device type identification.");
1207 magic = 0;
f2cd2deb 1208 }
91f73872 1209 sr_dbg("Device type: magic number is %hhu.", magic);
9de389b1 1210
96dc954e 1211 /* Select the FPGA bitstream depending on the model. */
9de389b1
KG
1212 switch (magic) {
1213 case 2:
d6f89d4b 1214 bitstream_fn = FPGA_FW_LA2016;
8b172e78
KG
1215 devc->max_samplerate = MAX_SAMPLE_RATE_LA2016;
1216 break;
1217 case 3:
d6f89d4b 1218 bitstream_fn = FPGA_FW_LA1016;
8b172e78 1219 devc->max_samplerate = MAX_SAMPLE_RATE_LA1016;
9de389b1
KG
1220 break;
1221 case 8:
d6f89d4b 1222 bitstream_fn = FPGA_FW_LA2016A;
8b172e78
KG
1223 devc->max_samplerate = MAX_SAMPLE_RATE_LA2016;
1224 break;
1225 case 9:
d6f89d4b 1226 bitstream_fn = FPGA_FW_LA1016A;
8b172e78 1227 devc->max_samplerate = MAX_SAMPLE_RATE_LA1016;
9de389b1
KG
1228 break;
1229 default:
d6f89d4b
GS
1230 bitstream_fn = NULL;
1231 break;
1232 }
1233 if (!bitstream_fn || !*bitstream_fn) {
91f73872 1234 sr_err("Cannot identify as one of the supported models.");
3f48ab02
FS
1235 return SR_ERR;
1236 }
f2cd2deb 1237
d6f89d4b
GS
1238 if (check_fpga_bitstream(sdi) != SR_OK) {
1239 ret = upload_fpga_bitstream(sdi, bitstream_fn);
1240 if (ret != SR_OK) {
1241 sr_err("Cannot upload FPGA bitstream.");
1242 return ret;
1243 }
1244 }
1245 ret = enable_fpga_bitstream(sdi);
9de389b1 1246 if (ret != SR_OK) {
d6f89d4b 1247 sr_err("Cannot enable FPGA bitstream after upload.");
9de389b1
KG
1248 return ret;
1249 }
1250
f2cd2deb 1251 state = run_state(sdi);
9de389b1 1252 if (state != 0x85e9) {
91f73872 1253 sr_warn("Unexpected run state, want 0x85e9, got 0x%04x.", state);
9de389b1 1254 }
f2cd2deb 1255
00849545 1256 if ((ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0)) != SR_OK) {
91f73872 1257 sr_err("Cannot reset USB bulk transfer.");
f2cd2deb
FS
1258 return ret;
1259 }
9de389b1 1260
91f73872 1261 sr_dbg("Device should be initialized.");
f2cd2deb 1262
c34f4a89
GS
1263 ret = set_defaults(sdi);
1264 if (ret != SR_OK)
1265 return ret;
1266
1267 return SR_OK;
f2cd2deb
FS
1268}
1269
1270SR_PRIV int la2016_deinit_device(const struct sr_dev_inst *sdi)
1271{
1272 int ret;
1273
00849545 1274 if ((ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0)) != SR_OK) {
91f73872 1275 sr_err("Cannot deinitialize device's FPGA.");
f2cd2deb
FS
1276 return ret;
1277 }
1278
1279 return SR_OK;
1280}