]> sigrok.org Git - libsigrok.git/blame - src/hardware/kingst-la2016/protocol.c
kingst-la2016: coding style, separate declaration from instructions
[libsigrok.git] / src / hardware / kingst-la2016 / protocol.c
CommitLineData
f2cd2deb
FS
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2020 Florian Schmidt <schmidt_florian@gmx.de>
5 * Copyright (C) 2013 Marcus Comstedt <marcus@mc.pp.se>
6 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
7 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <config.h>
a7740b06 24
f2cd2deb 25#include <libsigrok/libsigrok.h>
a7740b06
GS
26#include <string.h>
27
f2cd2deb
FS
28#include "libsigrok-internal.h"
29#include "protocol.h"
30
f2cd2deb 31#define UC_FIRMWARE "kingst-la-%04x.fw"
9de389b1
KG
32#define FPGA_FW_LA2016 "kingst-la2016-fpga.bitstream"
33#define FPGA_FW_LA2016A "kingst-la2016a1-fpga.bitstream"
8b172e78
KG
34#define FPGA_FW_LA1016 "kingst-la1016-fpga.bitstream"
35#define FPGA_FW_LA1016A "kingst-la1016a1-fpga.bitstream"
f2cd2deb 36
852c7d14 37/* Maximum device capabilities. May differ between models. */
8b172e78
KG
38#define MAX_SAMPLE_RATE_LA2016 SR_MHZ(200)
39#define MAX_SAMPLE_RATE_LA1016 SR_MHZ(100)
e9430410
GS
40#define MAX_SAMPLE_DEPTH 10e9
41#define MAX_PWM_FREQ SR_MHZ(20)
42#define PWM_CLOCK SR_MHZ(200) /* 200MHz for both LA2016 and LA1016 */
f2cd2deb 43
852c7d14
GS
44/*
45 * Default device configuration. Must be applicable to any of the
46 * supported devices (no model specific default values yet). Specific
47 * firmware implementation details unfortunately won't let us detect
48 * and keep using previously configured values.
49 */
50#define LA2016_DFLT_SAMPLERATE SR_MHZ(100)
51#define LA2016_DFLT_SAMPLEDEPTH (5 * 1000 * 1000)
52#define LA2016_DFLT_CAPT_RATIO 5 /* Capture ratio, in percent. */
53
54/* TODO
55 * What is the origin and motivation of that 128Mi literal? What is its
56 * unit? How does it relate to a device's hardware capabilities? How to
57 * map the 1GiB of RAM of an LA2016 (at 16 channels) to the 128Mi value?
58 * It cannot be sample count. Is it memory size in bytes perhaps?
59 */
60#define LA2016_PRE_MEM_LIMIT_BASE (128 * 1024 * 1024)
61
96dc954e 62/* USB vendor class control requests, executed by the Cypress FX2 MCU. */
84fe94bd 63#define CMD_FPGA_ENABLE 0x10
96dc954e
GS
64#define CMD_FPGA_SPI 0x20 /* R/W access to FPGA registers via SPI. */
65#define CMD_BULK_START 0x30 /* Start sample data download via USB EP6 IN. */
66#define CMD_BULK_RESET 0x38 /* Flush FIFO of FX2 USB EP6 IN. */
67#define CMD_FPGA_INIT 0x50 /* Used before and after FPGA bitstream upload. */
68#define CMD_KAUTH 0x60 /* Communicate to auth IC (U10). Not used. */
69#define CMD_EEPROM 0xa2 /* R/W access to EEPROM content. */
00849545 70
42f6dd55 71/*
96dc954e
GS
72 * FPGA register addresses (base addresses when registers span multiple
73 * bytes, in that case data is kept in little endian format). Passed to
74 * CMD_FPGA_SPI requests. The FX2 MCU transparently handles the detail
75 * of SPI transfers encoding the read (1) or write (0) direction in the
76 * MSB of the address field. There are some 60 byte-wide FPGA registers.
d6f89d4b
GS
77 *
78 * Unfortunately the FPGA registers change their meaning between the
79 * read and write directions of access, or exclusively provide one of
80 * these directions and not the other. This is an arbitrary vendor's
81 * choice, there is nothing which the sigrok driver could do about it.
82 * Values written to registers typically cannot get read back, neither
83 * verified after writing a configuration, nor queried upon startup for
84 * automatic detection of the current configuration. Neither appear to
85 * be there echo registers for presence and communication checks, nor
86 * version identifying registers, as far as we know.
42f6dd55 87 */
96dc954e
GS
88#define REG_RUN 0x00 /* Read capture status, write start capture. */
89#define REG_PWM_EN 0x02 /* User PWM channels on/off. */
90#define REG_CAPT_MODE 0x03 /* Write 0x00 capture to SDRAM, 0x01 streaming. */
91#define REG_BULK 0x08 /* Write start addr, byte count to download samples. */
92#define REG_SAMPLING 0x10 /* Write capture config, read capture SDRAM location. */
93#define REG_TRIGGER 0x20 /* write level and edge trigger config. */
94#define REG_THRESHOLD 0x68 /* Write PWM config to setup input threshold DAC. */
95#define REG_PWM1 0x70 /* Write config for user PWM1. */
96#define REG_PWM2 0x78 /* Write config for user PWM2. */
f2cd2deb 97
852c7d14
GS
98/* Bit patterns to write to REG_RUN, setup run mode. */
99#define RUNMODE_HALT 0x00
100#define RUNMODE_RUN 0x03
101
b711fd8e
GS
102/* Bit patterns when reading from REG_RUN, get run state. */
103#define RUNSTATE_IDLE_BIT (1UL << 0)
104#define RUNSTATE_DRAM_BIT (1UL << 1)
105#define RUNSTATE_TRGD_BIT (1UL << 2)
106#define RUNSTATE_POST_BIT (1UL << 3)
107
f2cd2deb 108static int ctrl_in(const struct sr_dev_inst *sdi,
1ed93110
GS
109 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
110 void *data, uint16_t wLength)
f2cd2deb
FS
111{
112 struct sr_usb_dev_inst *usb;
113 int ret;
114
115 usb = sdi->conn;
116
411ad77c
GS
117 ret = libusb_control_transfer(usb->devhdl,
118 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
119 bRequest, wValue, wIndex, data, wLength,
120 DEFAULT_TIMEOUT_MS);
121 if (ret != wLength) {
91f73872
GS
122 sr_dbg("USB ctrl in: %d bytes, req %d val %#x idx %d: %s.",
123 wLength, bRequest, wValue, wIndex,
124 libusb_error_name(ret));
125 sr_err("Cannot read %d bytes from USB: %s.",
126 wLength, libusb_error_name(ret));
f2cd2deb
FS
127 return SR_ERR;
128 }
129
130 return SR_OK;
131}
132
133static int ctrl_out(const struct sr_dev_inst *sdi,
1ed93110
GS
134 uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
135 void *data, uint16_t wLength)
f2cd2deb
FS
136{
137 struct sr_usb_dev_inst *usb;
138 int ret;
139
140 usb = sdi->conn;
141
411ad77c
GS
142 ret = libusb_control_transfer(usb->devhdl,
143 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
144 bRequest, wValue, wIndex, data, wLength,
145 DEFAULT_TIMEOUT_MS);
146 if (ret != wLength) {
91f73872
GS
147 sr_dbg("USB ctrl out: %d bytes, req %d val %#x idx %d: %s.",
148 wLength, bRequest, wValue, wIndex,
149 libusb_error_name(ret));
150 sr_err("Cannot write %d bytes to USB: %s.",
151 wLength, libusb_error_name(ret));
f2cd2deb
FS
152 return SR_ERR;
153 }
154
155 return SR_OK;
156}
157
d6f89d4b
GS
158/*
159 * Check the necessity for FPGA bitstream upload, because another upload
160 * would take some 600ms which is undesirable after program startup. Try
161 * to access some FPGA registers and check the values' plausibility. The
162 * check should fail on the safe side, request another upload when in
163 * doubt. A positive response (the request to continue operation with the
164 * currently active bitstream) should be conservative. Accessing multiple
165 * registers is considered cheap compared to the cost of bitstream upload.
166 *
167 * It helps though that both the vendor software and the sigrok driver
168 * use the same bundle of MCU firmware and FPGA bitstream for any of the
169 * supported models. We don't expect to successfully communicate to the
170 * device yet disagree on its protocol. Ideally we would access version
171 * identifying registers for improved robustness, but are not aware of
172 * any. A bitstream reload can always be forced by a power cycle.
173 */
174static int check_fpga_bitstream(const struct sr_dev_inst *sdi)
175{
176 uint8_t init_rsp;
177 int ret;
178 uint16_t run_state;
179 uint8_t pwm_en;
180 size_t read_len;
181 uint8_t buff[sizeof(run_state)];
182 const uint8_t *rdptr;
183
184 sr_dbg("Checking operation of the FPGA bitstream.");
185
852c7d14 186 init_rsp = ~0;
d6f89d4b
GS
187 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &init_rsp, sizeof(init_rsp));
188 if (ret != SR_OK || init_rsp != 0) {
189 sr_dbg("FPGA init query failed, or unexpected response.");
190 return SR_ERR_IO;
191 }
192
193 read_len = sizeof(run_state);
194 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, read_len);
195 if (ret != SR_OK) {
196 sr_dbg("FPGA register access failed (run state).");
197 return SR_ERR_IO;
198 }
199 rdptr = buff;
200 run_state = read_u16le_inc(&rdptr);
201 sr_spew("FPGA register: run state 0x%04x.", run_state);
202 if (run_state && (run_state & 0x3) != 0x1) {
203 sr_dbg("Unexpected FPGA register content (run state).");
204 return SR_ERR_DATA;
205 }
206 if (run_state && (run_state & ~0xf) != 0x85e0) {
207 sr_dbg("Unexpected FPGA register content (run state).");
208 return SR_ERR_DATA;
209 }
210
211 read_len = sizeof(pwm_en);
212 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, buff, read_len);
213 if (ret != SR_OK) {
214 sr_dbg("FPGA register access failed (PWM enable).");
215 return SR_ERR_IO;
216 }
217 rdptr = buff;
218 pwm_en = read_u8_inc(&rdptr);
219 sr_spew("FPGA register: PWM enable 0x%02x.", pwm_en);
220 if ((pwm_en & 0x3) != 0x0) {
221 sr_dbg("Unexpected FPGA register content (PWM enable).");
222 return SR_ERR_DATA;
223 }
224
225 sr_info("Could re-use current FPGA bitstream. No upload required.");
226 return SR_OK;
227}
228
1ed93110
GS
229static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
230 const char *bitstream_fname)
f2cd2deb
FS
231{
232 struct drv_context *drvc;
233 struct sr_usb_dev_inst *usb;
234 struct sr_resource bitstream;
b0d0131e 235 uint32_t bitstream_size;
c3d40037
HK
236 uint8_t buffer[sizeof(uint32_t)];
237 uint8_t *wrptr;
f2cd2deb 238 uint8_t block[4096];
3f48ab02
FS
239 int len, act_len;
240 unsigned int pos;
f2cd2deb 241 int ret;
b0d0131e 242 unsigned int zero_pad_to;
f2cd2deb
FS
243
244 drvc = sdi->driver->context;
245 usb = sdi->conn;
246
9de389b1 247 sr_info("Uploading FPGA bitstream '%s'.", bitstream_fname);
f2cd2deb 248
411ad77c
GS
249 ret = sr_resource_open(drvc->sr_ctx, &bitstream,
250 SR_RESOURCE_FIRMWARE, bitstream_fname);
f2cd2deb 251 if (ret != SR_OK) {
91f73872 252 sr_err("Cannot find FPGA bitstream %s.", bitstream_fname);
f2cd2deb
FS
253 return ret;
254 }
255
b0d0131e 256 bitstream_size = (uint32_t)bitstream.size;
c3d40037 257 wrptr = buffer;
b0d0131e 258 write_u32le_inc(&wrptr, bitstream_size);
411ad77c
GS
259 ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer);
260 if (ret != SR_OK) {
91f73872 261 sr_err("Cannot initiate FPGA bitstream upload.");
f2cd2deb
FS
262 sr_resource_close(drvc->sr_ctx, &bitstream);
263 return ret;
264 }
b0d0131e
GS
265 zero_pad_to = bitstream_size;
266 zero_pad_to += LA2016_EP2_PADDING - 1;
267 zero_pad_to /= LA2016_EP2_PADDING;
268 zero_pad_to *= LA2016_EP2_PADDING;
f2cd2deb
FS
269
270 pos = 0;
271 while (1) {
3f48ab02 272 if (pos < bitstream.size) {
411ad77c
GS
273 len = (int)sr_resource_read(drvc->sr_ctx, &bitstream,
274 block, sizeof(block));
3f48ab02 275 if (len < 0) {
91f73872 276 sr_err("Cannot read FPGA bitstream.");
3f48ab02
FS
277 sr_resource_close(drvc->sr_ctx, &bitstream);
278 return SR_ERR;
279 }
280 } else {
96dc954e 281 /* Zero-pad until 'zero_pad_to'. */
3f48ab02
FS
282 len = zero_pad_to - pos;
283 if ((unsigned)len > sizeof(block))
284 len = sizeof(block);
285 memset(&block, 0, len);
f2cd2deb
FS
286 }
287 if (len == 0)
288 break;
289
852c7d14 290 ret = libusb_bulk_transfer(usb->devhdl, USB_EP_FPGA_BITSTREAM,
1ed93110 291 &block[0], len, &act_len, DEFAULT_TIMEOUT_MS);
f2cd2deb 292 if (ret != 0) {
91f73872
GS
293 sr_dbg("Cannot write FPGA bitstream, block %#x len %d: %s.",
294 pos, (int)len, libusb_error_name(ret));
f2cd2deb
FS
295 ret = SR_ERR;
296 break;
297 }
298 if (act_len != len) {
91f73872
GS
299 sr_dbg("Short write for FPGA bitstream, block %#x len %d: got %d.",
300 pos, (int)len, act_len);
f2cd2deb
FS
301 ret = SR_ERR;
302 break;
303 }
304 pos += len;
305 }
306 sr_resource_close(drvc->sr_ctx, &bitstream);
307 if (ret != 0)
308 return ret;
91f73872
GS
309 sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.",
310 bitstream.size);
f2cd2deb 311
d6f89d4b
GS
312 return SR_OK;
313}
314
315static int enable_fpga_bitstream(const struct sr_dev_inst *sdi)
316{
317 int ret;
411ad77c 318 uint8_t resp;
d6f89d4b 319
411ad77c
GS
320 ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &resp, sizeof(resp));
321 if (ret != SR_OK) {
91f73872 322 sr_err("Cannot read response after FPGA bitstream upload.");
f2cd2deb
FS
323 return ret;
324 }
411ad77c 325 if (resp != 0) {
91f73872 326 sr_err("Unexpected FPGA bitstream upload response, got 0x%02x, want 0.",
411ad77c 327 resp);
3f48ab02
FS
328 return SR_ERR;
329 }
852c7d14 330 g_usleep(30 * 1000);
f2cd2deb 331
411ad77c
GS
332 ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0);
333 if (ret != SR_OK) {
91f73872 334 sr_err("Cannot enable FPGA after bitstream upload.");
f2cd2deb
FS
335 return ret;
336 }
852c7d14 337 g_usleep(40 * 1000);
d6f89d4b 338
f2cd2deb
FS
339 return SR_OK;
340}
341
342static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage)
343{
344 struct dev_context *devc;
f2cd2deb 345 int ret;
1ed93110 346 uint16_t duty_R79, duty_R56;
f2ad79d1
KG
347 uint8_t buf[2 * sizeof(uint16_t)];
348 uint8_t *wrptr;
349
084d6b92
GS
350 devc = sdi->priv;
351
96dc954e 352 /* Clamp threshold setting to valid range for LA2016. */
f2ad79d1
KG
353 if (voltage > 4.0) {
354 voltage = 4.0;
1ed93110 355 } else if (voltage < -4.0) {
f2ad79d1
KG
356 voltage = -4.0;
357 }
358
359 /*
96dc954e
GS
360 * Two PWM output channels feed one DAC which generates a bias
361 * voltage, which offsets the input probe's voltage level, and
362 * in combination with the FPGA pins' fixed threshold result in
363 * a programmable input threshold from the user's perspective.
364 * The PWM outputs can be seen on R79 and R56 respectively, the
365 * frequency is 100kHz and the duty cycle varies. The R79 PWM
366 * uses three discrete settings. The R56 PWM varies with desired
367 * thresholds and depends on the R79 PWM configuration. See the
368 * schematics comments which discuss the formulae.
f2ad79d1
KG
369 */
370 if (voltage >= 2.9) {
96dc954e 371 duty_R79 = 0; /* PWM off (0V). */
f2ad79d1 372 duty_R56 = (uint16_t)(302 * voltage - 363);
c34f4a89 373 } else if (voltage > -0.4) {
96dc954e 374 duty_R79 = 0x00f2; /* 25% duty cycle. */
f2ad79d1 375 duty_R56 = (uint16_t)(302 * voltage + 121);
c34f4a89
GS
376 } else {
377 duty_R79 = 0x02d7; /* 72% duty cycle. */
378 duty_R56 = (uint16_t)(302 * voltage + 1090);
f2ad79d1
KG
379 }
380
96dc954e 381 /* Clamp duty register values to sensible limits. */
f2ad79d1
KG
382 if (duty_R56 < 10) {
383 duty_R56 = 10;
1ed93110 384 } else if (duty_R56 > 1100) {
f2ad79d1
KG
385 duty_R56 = 1100;
386 }
387
91f73872
GS
388 sr_dbg("Set threshold voltage %.2fV.", voltage);
389 sr_dbg("Duty cycle values: R56 0x%04x, R79 0x%04x.", duty_R56, duty_R79);
f2ad79d1
KG
390
391 wrptr = buf;
392 write_u16le_inc(&wrptr, duty_R56);
393 write_u16le_inc(&wrptr, duty_R79);
394
395 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_THRESHOLD, 0, buf, wrptr - buf);
f2cd2deb 396 if (ret != SR_OK) {
91f73872 397 sr_err("Cannot set threshold voltage %.2fV.", voltage);
f2cd2deb
FS
398 return ret;
399 }
400 devc->threshold_voltage = voltage;
401
402 return SR_OK;
403}
404
86d77b75 405static int enable_pwm(const struct sr_dev_inst *sdi, gboolean p1, gboolean p2)
f2cd2deb
FS
406{
407 struct dev_context *devc;
408 uint8_t cfg;
409 int ret;
410
411 devc = sdi->priv;
f2cd2deb 412
86d77b75
GS
413 cfg = 0;
414 if (p1)
415 cfg |= 1U << 0;
416 if (p2)
417 cfg |= 1U << 1;
91f73872 418 sr_dbg("Set PWM enable %d %d. Config 0x%02x.", p1, p2, cfg);
86d77b75 419
42f6dd55 420 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, &cfg, sizeof(cfg));
f2cd2deb 421 if (ret != SR_OK) {
91f73872 422 sr_err("Cannot setup PWM enabled state.");
f2cd2deb
FS
423 return ret;
424 }
86d77b75 425
f2cd2deb
FS
426 devc->pwm_setting[0].enabled = (p1) ? 1 : 0;
427 devc->pwm_setting[1].enabled = (p2) ? 1 : 0;
428
429 return SR_OK;
430}
431
86d77b75 432static int configure_pwm(const struct sr_dev_inst *sdi, uint8_t which,
1ed93110 433 float freq, float duty)
f2cd2deb 434{
86d77b75
GS
435 static uint8_t ctrl_reg_tab[] = { REG_PWM1, REG_PWM2, };
436
f2cd2deb 437 struct dev_context *devc;
86d77b75
GS
438 uint8_t ctrl_reg;
439 struct pwm_setting_dev cfg;
440 struct pwm_setting *setting;
f2cd2deb 441 int ret;
c3d40037
HK
442 uint8_t buf[2 * sizeof(uint32_t)];
443 uint8_t *wrptr;
f2cd2deb
FS
444
445 devc = sdi->priv;
446
86d77b75 447 if (which < 1 || which > ARRAY_SIZE(ctrl_reg_tab)) {
91f73872 448 sr_err("Invalid PWM channel: %d.", which);
f2cd2deb
FS
449 return SR_ERR;
450 }
86d77b75 451 if (freq < 0 || freq > MAX_PWM_FREQ) {
91f73872 452 sr_err("Too high a PWM frequency: %.1f.", freq);
f2cd2deb
FS
453 return SR_ERR;
454 }
86d77b75 455 if (duty < 0 || duty > 100) {
91f73872 456 sr_err("Invalid PWM duty cycle: %f.", duty);
f2cd2deb
FS
457 return SR_ERR;
458 }
459
86d77b75 460 memset(&cfg, 0, sizeof(cfg));
f2cd2deb
FS
461 cfg.period = (uint32_t)(PWM_CLOCK / freq);
462 cfg.duty = (uint32_t)(0.5f + (cfg.period * duty / 100.));
91f73872 463 sr_dbg("Set PWM%d period %d, duty %d.", which, cfg.period, cfg.duty);
f2cd2deb 464
86d77b75 465 ctrl_reg = ctrl_reg_tab[which - 1];
c3d40037
HK
466 wrptr = buf;
467 write_u32le_inc(&wrptr, cfg.period);
468 write_u32le_inc(&wrptr, cfg.duty);
86d77b75 469 ret = ctrl_out(sdi, CMD_FPGA_SPI, ctrl_reg, 0, buf, wrptr - buf);
f2cd2deb 470 if (ret != SR_OK) {
91f73872
GS
471 sr_err("Cannot setup PWM%d configuration %d %d.",
472 which, cfg.period, cfg.duty);
f2cd2deb
FS
473 return ret;
474 }
86d77b75 475
f2cd2deb
FS
476 setting = &devc->pwm_setting[which - 1];
477 setting->freq = freq;
478 setting->duty = duty;
f2cd2deb
FS
479
480 return SR_OK;
481}
482
483static int set_defaults(const struct sr_dev_inst *sdi)
484{
485 struct dev_context *devc;
486 int ret;
487
488 devc = sdi->priv;
489
852c7d14 490 devc->capture_ratio = LA2016_DFLT_CAPT_RATIO;
852c7d14
GS
491 devc->limit_samples = LA2016_DFLT_SAMPLEDEPTH;
492 devc->cur_samplerate = LA2016_DFLT_SAMPLERATE;
f2cd2deb
FS
493
494 ret = set_threshold_voltage(sdi, devc->threshold_voltage);
495 if (ret)
496 return ret;
497
86d77b75 498 ret = enable_pwm(sdi, FALSE, FALSE);
f2cd2deb
FS
499 if (ret)
500 return ret;
501
86d77b75 502 ret = configure_pwm(sdi, 1, SR_KHZ(1), 50);
f2cd2deb
FS
503 if (ret)
504 return ret;
505
86d77b75 506 ret = configure_pwm(sdi, 2, SR_KHZ(100), 50);
f2cd2deb
FS
507 if (ret)
508 return ret;
509
86d77b75 510 ret = enable_pwm(sdi, TRUE, TRUE);
f2cd2deb
FS
511 if (ret)
512 return ret;
513
514 return SR_OK;
515}
516
517static int set_trigger_config(const struct sr_dev_inst *sdi)
518{
519 struct dev_context *devc;
520 struct sr_trigger *trigger;
66f5f697 521 struct trigger_cfg cfg;
f2cd2deb
FS
522 GSList *stages;
523 GSList *channel;
524 struct sr_trigger_stage *stage1;
525 struct sr_trigger_match *match;
526 uint16_t ch_mask;
527 int ret;
c3d40037
HK
528 uint8_t buf[4 * sizeof(uint32_t)];
529 uint8_t *wrptr;
f2cd2deb
FS
530
531 devc = sdi->priv;
532 trigger = sr_session_trigger_get(sdi->session);
533
534 memset(&cfg, 0, sizeof(cfg));
535
536 cfg.channels = devc->cur_channels;
537
538 if (trigger && trigger->stages) {
539 stages = trigger->stages;
540 stage1 = stages->data;
541 if (stages->next) {
542 sr_err("Only one trigger stage supported for now.");
543 return SR_ERR;
544 }
545 channel = stage1->matches;
546 while (channel) {
547 match = channel->data;
cf057ac4 548 ch_mask = 1UL << match->channel->index;
f2cd2deb
FS
549
550 switch (match->match) {
551 case SR_TRIGGER_ZERO:
552 cfg.level |= ch_mask;
553 cfg.high_or_falling &= ~ch_mask;
554 break;
555 case SR_TRIGGER_ONE:
556 cfg.level |= ch_mask;
557 cfg.high_or_falling |= ch_mask;
558 break;
559 case SR_TRIGGER_RISING:
560 if ((cfg.enabled & ~cfg.level)) {
91f73872 561 sr_err("Device only supports one edge trigger.");
f2cd2deb
FS
562 return SR_ERR;
563 }
564 cfg.level &= ~ch_mask;
565 cfg.high_or_falling &= ~ch_mask;
566 break;
567 case SR_TRIGGER_FALLING:
568 if ((cfg.enabled & ~cfg.level)) {
91f73872 569 sr_err("Device only supports one edge trigger.");
f2cd2deb
FS
570 return SR_ERR;
571 }
572 cfg.level &= ~ch_mask;
573 cfg.high_or_falling |= ch_mask;
574 break;
575 default:
91f73872 576 sr_err("Unknown trigger condition.");
f2cd2deb
FS
577 return SR_ERR;
578 }
579 cfg.enabled |= ch_mask;
580 channel = channel->next;
581 }
582 }
91f73872
GS
583 sr_dbg("Set trigger config: "
584 "channels 0x%04x, trigger-enabled 0x%04x, "
585 "level-triggered 0x%04x, high/falling 0x%04x.",
586 cfg.channels, cfg.enabled, cfg.level, cfg.high_or_falling);
f2cd2deb 587
cf057ac4 588 devc->trigger_involved = cfg.enabled != 0;
f2cd2deb 589
c3d40037
HK
590 wrptr = buf;
591 write_u32le_inc(&wrptr, cfg.channels);
592 write_u32le_inc(&wrptr, cfg.enabled);
593 write_u32le_inc(&wrptr, cfg.level);
594 write_u32le_inc(&wrptr, cfg.high_or_falling);
852c7d14
GS
595 /* TODO
596 * Comment on this literal 16. Origin, meaning? Cannot be the
597 * register offset, nor the transfer length. Is it a channels
598 * count that is relevant for 16 and 32 channel models? Is it
599 * an obsolete experiment?
600 */
42f6dd55 601 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_TRIGGER, 16, buf, wrptr - buf);
f2cd2deb 602 if (ret != SR_OK) {
91f73872 603 sr_err("Cannot setup trigger configuration.");
f2cd2deb
FS
604 return ret;
605 }
606
607 return SR_OK;
608}
609
610static int set_sample_config(const struct sr_dev_inst *sdi)
611{
612 struct dev_context *devc;
f2cd2deb 613 double clock_divisor;
adab4d91
GS
614 uint16_t divider_u16;
615 uint64_t pre_trigger_samples;
616 uint64_t pre_trigger_memory;
617 uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
c3d40037 618 uint8_t *wrptr;
adab4d91 619 int ret;
f2cd2deb
FS
620
621 devc = sdi->priv;
f2cd2deb 622
8b172e78 623 if (devc->cur_samplerate > devc->max_samplerate) {
91f73872
GS
624 sr_err("Too high a sample rate: %" PRIu64 ".",
625 devc->cur_samplerate);
f2cd2deb
FS
626 return SR_ERR;
627 }
628
8b172e78 629 clock_divisor = devc->max_samplerate / (double)devc->cur_samplerate;
adab4d91
GS
630 if (clock_divisor > 65535)
631 return SR_ERR_ARG;
632 divider_u16 = (uint16_t)(clock_divisor + 0.5);
633 devc->cur_samplerate = devc->max_samplerate / divider_u16;
f2cd2deb
FS
634
635 if (devc->limit_samples > MAX_SAMPLE_DEPTH) {
91f73872
GS
636 sr_err("Too high a sample depth: %" PRIu64 ".",
637 devc->limit_samples);
f2cd2deb
FS
638 return SR_ERR;
639 }
f2cd2deb 640
adab4d91
GS
641 /*
642 * The acquisition configuration communicates "pre-trigger"
643 * specs in several formats. sigrok users provide a percentage
644 * (0-100%), which translates to a pre-trigger samples count
645 * (assuming that a total samples count limit was specified).
646 * The device supports hardware compression, which depends on
647 * slowly changing input data to be effective. Fast changing
648 * input data may occupy more space in sample memory than its
649 * uncompressed form would. This is why a third parameter can
650 * limit the amount of sample memory to use for pre-trigger
651 * data. Only the upper 24 bits of that memory size spec get
652 * communicated to the device (written to its FPGA register).
653 */
654 pre_trigger_samples = devc->limit_samples * devc->capture_ratio / 100;
655 pre_trigger_memory = LA2016_PRE_MEM_LIMIT_BASE;
656 pre_trigger_memory *= devc->capture_ratio;
657 pre_trigger_memory /= 100;
f2cd2deb 658
adab4d91
GS
659 sr_dbg("Set sample config: %" PRIu64 "kHz, %" PRIu64 " samples.",
660 devc->cur_samplerate / 1000, devc->limit_samples);
661 sr_dbg("Capture ratio %" PRIu64 "%%, count %" PRIu64 ", mem %" PRIu64 ".",
662 devc->capture_ratio, pre_trigger_samples, pre_trigger_memory);
f2cd2deb 663
b1a17c1a
GS
664 /*
665 * The acquisition configuration occupies a total of 16 bytes:
666 * - A 34bit total samples count limit (up to 10 billions) that
667 * is kept in a 40bit register.
668 * - A 34bit pre-trigger samples count limit (up to 10 billions)
669 * in another 40bit register.
670 * - A 32bit pre-trigger memory space limit (in bytes) of which
671 * the upper 24bits are kept in an FPGA register.
672 * - A 16bit clock divider which gets applied to the maximum
673 * samplerate of the device.
674 * - An 8bit register of unknown meaning. Currently always 0.
675 */
c3d40037 676 wrptr = buf;
b1a17c1a
GS
677 write_u40le_inc(&wrptr, devc->limit_samples);
678 write_u40le_inc(&wrptr, pre_trigger_samples);
679 write_u24le_inc(&wrptr, pre_trigger_memory >> 8);
adab4d91 680 write_u16le_inc(&wrptr, divider_u16);
0d8e1ffc 681 write_u8_inc(&wrptr, 0);
42f6dd55 682 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, wrptr - buf);
f2cd2deb 683 if (ret != SR_OK) {
91f73872 684 sr_err("Cannot setup acquisition configuration.");
f2cd2deb
FS
685 return ret;
686 }
687
688 return SR_OK;
689}
690
96dc954e
GS
691/*
692 * FPGA register REG_RUN holds the run state (u16le format). Bit fields
693 * of interest:
694 * bit 0: value 1 = idle
695 * bit 1: value 1 = writing to SDRAM
696 * bit 2: value 0 = waiting for trigger, 1 = trigger seen
697 * bit 3: value 0 = pretrigger sampling, 1 = posttrigger sampling
698 * The meaning of other bit fields is unknown.
7601dca7 699 *
96dc954e 700 * Typical values in order of appearance during execution:
b711fd8e
GS
701 * 0x85e1: idle, no acquisition pending
702 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
703 * "In idle state." Takes precedence over all others.
96dc954e
GS
704 * 0x85e2: pre-sampling, samples before the trigger position,
705 * when capture ratio > 0%
b711fd8e
GS
706 * IDLE clear, TRGD clear, POST clear; DRAM don't care
707 * "Not idle any more, no post yet, not triggered yet."
96dc954e
GS
708 * 0x85ea: pre-sampling complete, now waiting for the trigger
709 * (whilst sampling continuously)
b711fd8e
GS
710 * IDLE clear, TRGD clear, POST set; DRAM don't care
711 * "Post set thus after pre, not triggered yet"
96dc954e 712 * 0x85ee: trigger seen, capturing post-trigger samples, running
b711fd8e
GS
713 * IDLE clear, TRGD set, POST set; DRAM don't care
714 * "Triggered and in post, not idle yet."
96dc954e 715 * 0x85ed: idle
b711fd8e
GS
716 * IDLE set, TRGD don't care, POST don't care; DRAM don't care
717 * "In idle state." TRGD/POST don't care, same meaning as above.
f2cd2deb 718 */
b711fd8e
GS
719static const uint16_t runstate_mask_idle = RUNSTATE_IDLE_BIT;
720static const uint16_t runstate_patt_idle = RUNSTATE_IDLE_BIT;
721static const uint16_t runstate_mask_step =
722 RUNSTATE_IDLE_BIT | RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
723static const uint16_t runstate_patt_pre_trig = 0;
724static const uint16_t runstate_patt_wait_trig = RUNSTATE_POST_BIT;
725static const uint16_t runstate_patt_post_trig =
726 RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
727
f2cd2deb
FS
728static uint16_t run_state(const struct sr_dev_inst *sdi)
729{
21d68fd9
GS
730 static uint16_t previous_state;
731
f2cd2deb 732 int ret;
21d68fd9
GS
733 uint16_t state;
734 uint8_t buff[sizeof(state)];
735 const uint8_t *rdptr;
736 const char *label;
f2cd2deb 737
411ad77c
GS
738 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, sizeof(state));
739 if (ret != SR_OK) {
91f73872 740 sr_err("Cannot read run state.");
f2cd2deb
FS
741 return ret;
742 }
21d68fd9
GS
743 rdptr = buff;
744 state = read_u16le_inc(&rdptr);
7601dca7 745
96dc954e
GS
746 /*
747 * Avoid flooding the log, only dump values as they change.
748 * The routine is called about every 50ms.
7601dca7 749 */
b711fd8e
GS
750 if (state == previous_state)
751 return state;
752
753 previous_state = state;
754 label = NULL;
755 if ((state & runstate_mask_idle) == runstate_patt_idle)
756 label = "idle";
757 if ((state & runstate_mask_step) == runstate_patt_pre_trig)
758 label = "pre-trigger sampling";
759 if ((state & runstate_mask_step) == runstate_patt_wait_trig)
760 label = "sampling, waiting for trigger";
761 if ((state & runstate_mask_step) == runstate_patt_post_trig)
762 label = "post-trigger sampling";
763 if (label && *label)
764 sr_dbg("Run state: 0x%04x (%s).", state, label);
765 else
766 sr_dbg("Run state: 0x%04x.", state);
f2cd2deb
FS
767
768 return state;
769}
770
cf057ac4 771static int la2016_is_idle(const struct sr_dev_inst *sdi)
c34f4a89
GS
772{
773 uint16_t state;
774
775 state = run_state(sdi);
b711fd8e 776 if ((state & runstate_mask_idle) == runstate_patt_idle)
c34f4a89
GS
777 return 1;
778
779 return 0;
780}
781
782static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t mode)
f2cd2deb
FS
783{
784 int ret;
785
411ad77c
GS
786 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &mode, sizeof(mode));
787 if (ret != SR_OK) {
c34f4a89 788 sr_err("Cannot configure run mode %d.", mode);
f2cd2deb
FS
789 return ret;
790 }
791
792 return SR_OK;
793}
794
795static int get_capture_info(const struct sr_dev_inst *sdi)
796{
797 struct dev_context *devc;
798 int ret;
c3d40037
HK
799 uint8_t buf[3 * sizeof(uint32_t)];
800 const uint8_t *rdptr;
f2cd2deb
FS
801
802 devc = sdi->priv;
803
411ad77c
GS
804 ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf));
805 if (ret != SR_OK) {
91f73872 806 sr_err("Cannot read capture info.");
f2cd2deb
FS
807 return ret;
808 }
c3d40037
HK
809
810 rdptr = buf;
811 devc->info.n_rep_packets = read_u32le_inc(&rdptr);
812 devc->info.n_rep_packets_before_trigger = read_u32le_inc(&rdptr);
813 devc->info.write_pos = read_u32le_inc(&rdptr);
f2cd2deb 814
cf057ac4 815 sr_dbg("Capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x/%d.",
1ed93110
GS
816 devc->info.n_rep_packets, devc->info.n_rep_packets,
817 devc->info.n_rep_packets_before_trigger,
818 devc->info.n_rep_packets_before_trigger,
819 devc->info.write_pos, devc->info.write_pos);
f2cd2deb 820
852c7d14
GS
821 if (devc->info.n_rep_packets % NUM_PACKETS_IN_CHUNK) {
822 sr_warn("Unexpected packets count %lu, not a multiple of %d.",
823 (unsigned long)devc->info.n_rep_packets,
824 NUM_PACKETS_IN_CHUNK);
91f73872 825 }
f2cd2deb
FS
826
827 return SR_OK;
828}
829
1ed93110
GS
830SR_PRIV int la2016_upload_firmware(struct sr_context *sr_ctx,
831 libusb_device *dev, uint16_t product_id)
f2cd2deb
FS
832{
833 char fw_file[1024];
834 snprintf(fw_file, sizeof(fw_file) - 1, UC_FIRMWARE, product_id);
40a0b2f4 835 return ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw_file);
f2cd2deb
FS
836}
837
838SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi)
839{
840 struct dev_context *devc;
841 int ret;
842 uint8_t cmd;
843
844 devc = sdi->priv;
845
846 ret = set_threshold_voltage(sdi, devc->threshold_voltage);
847 if (ret != SR_OK)
848 return ret;
849
850 cmd = 0;
411ad77c
GS
851 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd));
852 if (ret != SR_OK) {
91f73872 853 sr_err("Cannot send command to stop sampling.");
f2cd2deb
FS
854 return ret;
855 }
856
857 ret = set_trigger_config(sdi);
858 if (ret != SR_OK)
859 return ret;
860
861 ret = set_sample_config(sdi);
862 if (ret != SR_OK)
863 return ret;
864
865 return SR_OK;
866}
867
868SR_PRIV int la2016_start_acquisition(const struct sr_dev_inst *sdi)
869{
3ebc1cb2
GS
870 int ret;
871
852c7d14 872 ret = set_run_mode(sdi, RUNMODE_RUN);
3ebc1cb2
GS
873 if (ret != SR_OK)
874 return ret;
875
876 return SR_OK;
f2cd2deb
FS
877}
878
3ebc1cb2 879static int la2016_stop_acquisition(const struct sr_dev_inst *sdi)
f2cd2deb 880{
3ebc1cb2
GS
881 int ret;
882
852c7d14 883 ret = set_run_mode(sdi, RUNMODE_HALT);
3ebc1cb2
GS
884 if (ret != SR_OK)
885 return ret;
886
887 return SR_OK;
f2cd2deb
FS
888}
889
890SR_PRIV int la2016_abort_acquisition(const struct sr_dev_inst *sdi)
891{
3ebc1cb2
GS
892 int ret;
893 struct dev_context *devc;
894
895 ret = la2016_stop_acquisition(sdi);
896 if (ret != SR_OK)
897 return ret;
898
899 devc = sdi ? sdi->priv : NULL;
900 if (devc && devc->transfer)
901 libusb_cancel_transfer(devc->transfer);
902
903 return SR_OK;
f2cd2deb
FS
904}
905
cf057ac4 906static int la2016_start_download(const struct sr_dev_inst *sdi,
1ed93110 907 libusb_transfer_cb_fn cb)
f2cd2deb
FS
908{
909 struct dev_context *devc;
910 struct sr_usb_dev_inst *usb;
911 int ret;
c3d40037
HK
912 uint8_t wrbuf[2 * sizeof(uint32_t)];
913 uint8_t *wrptr;
f2cd2deb
FS
914 uint32_t to_read;
915 uint8_t *buffer;
916
917 devc = sdi->priv;
918 usb = sdi->conn;
919
411ad77c
GS
920 ret = get_capture_info(sdi);
921 if (ret != SR_OK)
f2cd2deb
FS
922 return ret;
923
c3d40037
HK
924 devc->n_transfer_packets_to_read = devc->info.n_rep_packets / NUM_PACKETS_IN_CHUNK;
925 devc->n_bytes_to_read = devc->n_transfer_packets_to_read * TRANSFER_PACKET_LENGTH;
f2cd2deb
FS
926 devc->read_pos = devc->info.write_pos - devc->n_bytes_to_read;
927 devc->n_reps_until_trigger = devc->info.n_rep_packets_before_trigger;
928
91f73872 929 sr_dbg("Want to read %u xfer-packets starting from pos %" PRIu32 ".",
1ed93110 930 devc->n_transfer_packets_to_read, devc->read_pos);
f2cd2deb 931
411ad77c
GS
932 ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
933 if (ret != SR_OK) {
91f73872 934 sr_err("Cannot reset USB bulk state.");
f2cd2deb
FS
935 return ret;
936 }
91f73872
GS
937 sr_dbg("Will read from 0x%08lx, 0x%08x bytes.",
938 (unsigned long)devc->read_pos, devc->n_bytes_to_read);
c3d40037
HK
939 wrptr = wrbuf;
940 write_u32le_inc(&wrptr, devc->read_pos);
941 write_u32le_inc(&wrptr, devc->n_bytes_to_read);
411ad77c
GS
942 ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf);
943 if (ret != SR_OK) {
91f73872 944 sr_err("Cannot send USB bulk config.");
f2cd2deb
FS
945 return ret;
946 }
411ad77c
GS
947 ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0);
948 if (ret != SR_OK) {
91f73872 949 sr_err("Cannot unblock USB bulk transfers.");
f2cd2deb
FS
950 return ret;
951 }
952
96dc954e
GS
953 /*
954 * Pick a buffer size for all USB transfers. The buffer size
955 * must be a multiple of the endpoint packet size. And cannot
956 * exceed a maximum value.
957 */
f2cd2deb 958 to_read = devc->n_bytes_to_read;
96dc954e
GS
959 if (to_read >= LA2016_USB_BUFSZ) /* Multiple transfers. */
960 to_read = LA2016_USB_BUFSZ;
961 else /* One transfer. */
e847645b 962 to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
f2cd2deb
FS
963 buffer = g_try_malloc(to_read);
964 if (!buffer) {
91f73872
GS
965 sr_dbg("USB bulk transfer size %d bytes.", (int)to_read);
966 sr_err("Cannot allocate buffer for USB bulk transfer.");
f2cd2deb
FS
967 return SR_ERR_MALLOC;
968 }
969
970 devc->transfer = libusb_alloc_transfer(0);
852c7d14
GS
971 libusb_fill_bulk_transfer(devc->transfer,
972 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
411ad77c 973 buffer, to_read, cb, (void *)sdi, DEFAULT_TIMEOUT_MS);
f2cd2deb 974
411ad77c
GS
975 ret = libusb_submit_transfer(devc->transfer);
976 if (ret != 0) {
91f73872 977 sr_err("Cannot submit USB transfer: %s.", libusb_error_name(ret));
f2cd2deb
FS
978 libusb_free_transfer(devc->transfer);
979 devc->transfer = NULL;
980 g_free(buffer);
981 return SR_ERR;
982 }
983
984 return SR_OK;
985}
986
480efba2
GS
987/*
988 * A chunk (received via USB) contains a number of transfers (USB length
989 * divided by 16) which contain a number of packets (5 per transfer) which
990 * contain a number of samples (8bit repeat count per 16bit sample data).
991 */
dfac9592 992static void send_chunk(struct sr_dev_inst *sdi,
480efba2 993 const uint8_t *packets, size_t num_xfers)
dfac9592
GS
994{
995 struct dev_context *devc;
996 struct sr_datafeed_logic logic;
997 struct sr_datafeed_packet sr_packet;
998 unsigned int max_samples, n_samples, total_samples, free_n_samples;
480efba2 999 size_t num_pkts;
cf057ac4 1000 gboolean do_signal_trigger;
fe953391 1001 uint8_t *wp;
dfac9592 1002 const uint8_t *rp;
480efba2
GS
1003 uint16_t sample_value;
1004 size_t repetitions;
1005 uint8_t sample_buff[sizeof(sample_value)];
dfac9592
GS
1006
1007 devc = sdi->priv;
1008
fe953391 1009 logic.unitsize = sizeof(sample_buff);
dfac9592
GS
1010 logic.data = devc->convbuffer;
1011
1012 sr_packet.type = SR_DF_LOGIC;
1013 sr_packet.payload = &logic;
1014
fe953391 1015 max_samples = devc->convbuffer_size / sizeof(sample_buff);
dfac9592 1016 n_samples = 0;
fe953391 1017 wp = devc->convbuffer;
dfac9592 1018 total_samples = 0;
cf057ac4 1019 do_signal_trigger = FALSE;
dfac9592 1020
cf057ac4 1021 if (devc->trigger_involved && !devc->trigger_marked && devc->info.n_rep_packets_before_trigger == 0) {
dfac9592 1022 std_session_send_df_trigger(sdi);
cf057ac4 1023 devc->trigger_marked = TRUE;
dfac9592
GS
1024 }
1025
1026 rp = packets;
480efba2
GS
1027 while (num_xfers--) {
1028 num_pkts = NUM_PACKETS_IN_CHUNK;
1029 while (num_pkts--) {
1030 /*
1031 * Flush the conversion buffer when a trigger
1032 * location needs to get communicated, or when
1033 * an to-get-expected sample repetition count
1034 * would no longer fit into the buffer.
1035 */
dfac9592
GS
1036 free_n_samples = max_samples - n_samples;
1037 if (free_n_samples < 256 || do_signal_trigger) {
480efba2 1038 logic.length = n_samples * sizeof(sample_buff);;
dfac9592
GS
1039 sr_session_send(sdi, &sr_packet);
1040 n_samples = 0;
fe953391 1041 wp = devc->convbuffer;
dfac9592
GS
1042 if (do_signal_trigger) {
1043 std_session_send_df_trigger(sdi);
cf057ac4 1044 do_signal_trigger = FALSE;
dfac9592
GS
1045 }
1046 }
1047
480efba2 1048 sample_value = read_u16le_inc(&rp);
dfac9592 1049 repetitions = read_u8_inc(&rp);
dfac9592
GS
1050
1051 n_samples += repetitions;
1052 total_samples += repetitions;
1053 devc->total_samples += repetitions;
480efba2
GS
1054
1055 write_u16le(sample_buff, sample_value);
1056 while (repetitions--) {
1057 memcpy(wp, sample_buff, logic.unitsize);
1058 wp += logic.unitsize;
1059 }
1060
cf057ac4
GS
1061 if (devc->trigger_involved && !devc->trigger_marked) {
1062 if (!--devc->n_reps_until_trigger) {
1063 devc->trigger_marked = TRUE;
1064 do_signal_trigger = TRUE;
91f73872 1065 sr_dbg("Trigger position after %" PRIu64 " samples, %.6fms.",
1ed93110
GS
1066 devc->total_samples,
1067 (double)devc->total_samples / devc->cur_samplerate * 1e3);
dfac9592
GS
1068 }
1069 }
1070 }
1071 (void)read_u8_inc(&rp); /* Skip sequence number. */
1072 }
1073 if (n_samples) {
fe953391 1074 logic.length = n_samples * logic.unitsize;
dfac9592
GS
1075 sr_session_send(sdi, &sr_packet);
1076 if (do_signal_trigger) {
1077 std_session_send_df_trigger(sdi);
1078 }
1079 }
91f73872 1080 sr_dbg("Send_chunk done after %u samples.", total_samples);
dfac9592
GS
1081}
1082
1083static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
1084{
1085 struct sr_dev_inst *sdi;
1086 struct dev_context *devc;
1087 struct sr_usb_dev_inst *usb;
1088 int ret;
1089
1090 sdi = transfer->user_data;
1091 devc = sdi->priv;
1092 usb = sdi->conn;
1093
1094 sr_dbg("receive_transfer(): status %s received %d bytes.",
1ed93110 1095 libusb_error_name(transfer->status), transfer->actual_length);
dfac9592
GS
1096
1097 if (transfer->status == LIBUSB_TRANSFER_TIMED_OUT) {
91f73872 1098 sr_err("USB bulk transfer timeout.");
cf057ac4 1099 devc->download_finished = TRUE;
dfac9592
GS
1100 }
1101 send_chunk(sdi, transfer->buffer, transfer->actual_length / TRANSFER_PACKET_LENGTH);
1102
1103 devc->n_bytes_to_read -= transfer->actual_length;
1104 if (devc->n_bytes_to_read) {
1105 uint32_t to_read = devc->n_bytes_to_read;
96dc954e
GS
1106 /*
1107 * Determine read size for the next USB transfer. Make
1108 * the buffer size a multiple of the endpoint packet
1109 * size. Don't exceed a maximum value.
1110 */
dfac9592
GS
1111 if (to_read >= LA2016_USB_BUFSZ)
1112 to_read = LA2016_USB_BUFSZ;
96dc954e 1113 else
dfac9592 1114 to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
852c7d14
GS
1115 libusb_fill_bulk_transfer(transfer,
1116 usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
1117 transfer->buffer, to_read,
dfac9592
GS
1118 receive_transfer, (void *)sdi, DEFAULT_TIMEOUT_MS);
1119
411ad77c
GS
1120 ret = libusb_submit_transfer(transfer);
1121 if (ret == 0)
dfac9592 1122 return;
91f73872
GS
1123 sr_err("Cannot submit another USB transfer: %s.",
1124 libusb_error_name(ret));
dfac9592
GS
1125 }
1126
1127 g_free(transfer->buffer);
1128 libusb_free_transfer(transfer);
cf057ac4 1129 devc->download_finished = TRUE;
dfac9592
GS
1130}
1131
1132SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data)
1133{
1134 const struct sr_dev_inst *sdi;
1135 struct dev_context *devc;
1136 struct drv_context *drvc;
1137 struct timeval tv;
1138
1139 (void)fd;
1140 (void)revents;
1141
1142 sdi = cb_data;
1143 devc = sdi->priv;
1144 drvc = sdi->driver->context;
1145
cf057ac4
GS
1146 if (!devc->completion_seen) {
1147 if (!la2016_is_idle(sdi)) {
96dc954e 1148 /* Not yet ready for sample data download. */
dfac9592
GS
1149 return TRUE;
1150 }
cf057ac4
GS
1151 devc->completion_seen = TRUE;
1152 devc->download_finished = FALSE;
1153 devc->trigger_marked = FALSE;
dfac9592 1154 devc->total_samples = 0;
96dc954e 1155 /* We can start downloading sample data. */
cf057ac4 1156 if (la2016_start_download(sdi, receive_transfer) != SR_OK) {
91f73872 1157 sr_err("Cannot start acquisition data download.");
dfac9592
GS
1158 return FALSE;
1159 }
91f73872 1160 sr_dbg("Acquisition data download started.");
dfac9592
GS
1161 std_session_send_df_frame_begin(sdi);
1162
1163 return TRUE;
1164 }
1165
1166 tv.tv_sec = tv.tv_usec = 0;
1167 libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
1168
cf057ac4 1169 if (devc->download_finished) {
91f73872 1170 sr_dbg("Download finished, post processing.");
dfac9592
GS
1171 std_session_send_df_frame_end(sdi);
1172
1173 usb_source_remove(sdi->session, drvc->sr_ctx);
1174 std_session_send_df_end(sdi);
1175
1176 la2016_stop_acquisition(sdi);
1177
1178 g_free(devc->convbuffer);
1179 devc->convbuffer = NULL;
1180
1181 devc->transfer = NULL;
1182
91f73872 1183 sr_dbg("Download finished, done post processing.");
dfac9592
GS
1184 }
1185
1186 return TRUE;
1187}
1188
f2cd2deb
FS
1189SR_PRIV int la2016_init_device(const struct sr_dev_inst *sdi)
1190{
8b172e78 1191 struct dev_context *devc;
f2cd2deb 1192 uint16_t state;
9de389b1 1193 uint8_t buf[8];
43d2e52f
GS
1194 const uint8_t *rdptr;
1195 uint8_t date_yy, date_mm;
1196 uint8_t dinv_yy, dinv_mm;
9de389b1 1197 uint8_t magic;
d6f89d4b 1198 const char *bitstream_fn;
9de389b1 1199 int ret;
f2cd2deb 1200
8b172e78
KG
1201 devc = sdi->priv;
1202
96dc954e 1203 /*
43d2e52f
GS
1204 * Four EEPROM bytes at offset 0x20 are the manufacturing date,
1205 * year and month in BCD format, followed by inverted values for
1206 * consistency checks. For example bytes 20 04 df fb translate
1207 * to 2020-04. This information can help identify the vintage of
1208 * devices when unknown magic numbers are seen.
9de389b1 1209 */
43d2e52f
GS
1210 ret = ctrl_in(sdi, CMD_EEPROM, 0x20, 0, buf, 4 * sizeof(uint8_t));
1211 if (ret != SR_OK) {
1212 sr_err("Cannot read manufacture date in EEPROM.");
1ed93110 1213 } else {
43d2e52f
GS
1214 rdptr = &buf[0];
1215 date_yy = read_u8_inc(&rdptr);
1216 date_mm = read_u8_inc(&rdptr);
1217 dinv_yy = read_u8_inc(&rdptr);
1218 dinv_mm = read_u8_inc(&rdptr);
1219 sr_info("Manufacture date: 20%02hx-%02hx.", date_yy, date_mm);
1220 if ((date_mm ^ dinv_mm) != 0xff || (date_yy ^ dinv_yy) != 0xff)
1221 sr_warn("Manufacture date fails checksum test.");
f2cd2deb 1222 }
f2cd2deb 1223
9de389b1 1224 /*
96dc954e
GS
1225 * Several Kingst logic analyzer devices share the same USB VID
1226 * and PID. The product ID determines which MCU firmware to load.
1227 * The MCU firmware provides access to EEPROM content which then
1228 * allows to identify the device model. Which in turn determines
1229 * which FPGA bitstream to load. Eight bytes at offset 0x08 are
1230 * to get inspected.
9de389b1 1231 *
96dc954e
GS
1232 * EEPROM content for model identification is kept redundantly
1233 * in memory. The values are stored in verbatim and in inverted
1234 * form, multiple copies are kept at different offsets. Example
1235 * data:
9de389b1 1236 *
96dc954e
GS
1237 * magic 0x08
1238 * | ~magic 0xf7
1239 * | |
1240 * 08f7000008f710ef
1241 * | |
1242 * | ~magic backup
1243 * magic backup
9de389b1 1244 *
96dc954e
GS
1245 * Exclusively inspecting the magic byte appears to be sufficient,
1246 * other fields seem to be 'don't care'.
9de389b1 1247 *
96dc954e
GS
1248 * magic 2 == LA2016 using "kingst-la2016-fpga.bitstream"
1249 * magic 3 == LA1016 using "kingst-la1016-fpga.bitstream"
1250 * magic 8 == LA2016a using "kingst-la2016a1-fpga.bitstream"
1251 * (latest v1.3.0 PCB, perhaps others)
1252 * magic 9 == LA1016a using "kingst-la1016a1-fpga.bitstream"
1253 * (latest v1.3.0 PCB, perhaps others)
9de389b1 1254 *
96dc954e
GS
1255 * When EEPROM content does not match the hardware configuration
1256 * (the board layout), the software may load but yield incorrect
1257 * results (like swapped channels). The FPGA bitstream itself
1258 * will authenticate with IC U10 and fail when its capabilities
1259 * do not match the hardware model. An LA1016 won't become a
1260 * LA2016 by faking its EEPROM content.
9de389b1 1261 */
9de389b1 1262 if ((ret = ctrl_in(sdi, CMD_EEPROM, 0x08, 0, &buf, sizeof(buf))) != SR_OK) {
91f73872 1263 sr_err("Cannot read EEPROM device identifier bytes.");
f2cd2deb
FS
1264 return ret;
1265 }
43d2e52f 1266 if ((buf[0] ^ buf[1]) == 0xff) {
96dc954e 1267 /* Primary copy of magic passes complement check. */
43d2e52f 1268 sr_dbg("Using primary copy of device type magic number.");
9de389b1 1269 magic = buf[0];
43d2e52f 1270 } else if ((buf[4] ^ buf[5]) == 0xff) {
96dc954e 1271 /* Backup copy of magic passes complement check. */
91f73872 1272 sr_dbg("Using backup copy of device type magic number.");
9de389b1 1273 magic = buf[4];
43d2e52f
GS
1274 } else {
1275 sr_err("Cannot find consistent device type identification.");
1276 magic = 0;
f2cd2deb 1277 }
91f73872 1278 sr_dbg("Device type: magic number is %hhu.", magic);
9de389b1 1279
96dc954e 1280 /* Select the FPGA bitstream depending on the model. */
9de389b1
KG
1281 switch (magic) {
1282 case 2:
d6f89d4b 1283 bitstream_fn = FPGA_FW_LA2016;
8b172e78
KG
1284 devc->max_samplerate = MAX_SAMPLE_RATE_LA2016;
1285 break;
1286 case 3:
d6f89d4b 1287 bitstream_fn = FPGA_FW_LA1016;
8b172e78 1288 devc->max_samplerate = MAX_SAMPLE_RATE_LA1016;
9de389b1
KG
1289 break;
1290 case 8:
d6f89d4b 1291 bitstream_fn = FPGA_FW_LA2016A;
8b172e78
KG
1292 devc->max_samplerate = MAX_SAMPLE_RATE_LA2016;
1293 break;
1294 case 9:
d6f89d4b 1295 bitstream_fn = FPGA_FW_LA1016A;
8b172e78 1296 devc->max_samplerate = MAX_SAMPLE_RATE_LA1016;
9de389b1
KG
1297 break;
1298 default:
d6f89d4b
GS
1299 bitstream_fn = NULL;
1300 break;
1301 }
1302 if (!bitstream_fn || !*bitstream_fn) {
91f73872 1303 sr_err("Cannot identify as one of the supported models.");
3f48ab02
FS
1304 return SR_ERR;
1305 }
f2cd2deb 1306
d6f89d4b
GS
1307 if (check_fpga_bitstream(sdi) != SR_OK) {
1308 ret = upload_fpga_bitstream(sdi, bitstream_fn);
1309 if (ret != SR_OK) {
1310 sr_err("Cannot upload FPGA bitstream.");
1311 return ret;
1312 }
1313 }
1314 ret = enable_fpga_bitstream(sdi);
9de389b1 1315 if (ret != SR_OK) {
d6f89d4b 1316 sr_err("Cannot enable FPGA bitstream after upload.");
9de389b1
KG
1317 return ret;
1318 }
1319
f2cd2deb 1320 state = run_state(sdi);
9de389b1 1321 if (state != 0x85e9) {
91f73872 1322 sr_warn("Unexpected run state, want 0x85e9, got 0x%04x.", state);
9de389b1 1323 }
f2cd2deb 1324
00849545 1325 if ((ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0)) != SR_OK) {
91f73872 1326 sr_err("Cannot reset USB bulk transfer.");
f2cd2deb
FS
1327 return ret;
1328 }
9de389b1 1329
91f73872 1330 sr_dbg("Device should be initialized.");
f2cd2deb 1331
c34f4a89
GS
1332 ret = set_defaults(sdi);
1333 if (ret != SR_OK)
1334 return ret;
1335
1336 return SR_OK;
f2cd2deb
FS
1337}
1338
1339SR_PRIV int la2016_deinit_device(const struct sr_dev_inst *sdi)
1340{
1341 int ret;
1342
00849545 1343 if ((ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0)) != SR_OK) {
91f73872 1344 sr_err("Cannot deinitialize device's FPGA.");
f2cd2deb
FS
1345 return ret;
1346 }
1347
1348 return SR_OK;
1349}