]> sigrok.org Git - libsigrok.git/blame - src/hardware/asix-sigma/protocol.c
asix-sigma: eliminate magic numbers in firmware file references
[libsigrok.git] / src / hardware / asix-sigma / protocol.c
CommitLineData
28a35d8a 1/*
50985c20 2 * This file is part of the libsigrok project.
28a35d8a 3 *
868501fa 4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
911f1834
UH
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
28a35d8a
HE
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
911f1834 22/*
6352d030 23 * ASIX SIGMA/SIGMA2 logic analyzer driver
911f1834
UH
24 */
25
6ec6c43b 26#include <config.h>
3ba56876 27#include "protocol.h"
28a35d8a 28
b1648dea
MV
29/*
30 * The ASIX Sigma supports arbitrary integer frequency divider in
31 * the 50MHz mode. The divider is in range 1...256 , allowing for
32 * very precise sampling rate selection. This driver supports only
33 * a subset of the sampling rates.
34 */
3ba56876 35SR_PRIV const uint64_t samplerates[] = {
b1648dea
MV
36 SR_KHZ(200), /* div=250 */
37 SR_KHZ(250), /* div=200 */
38 SR_KHZ(500), /* div=100 */
39 SR_MHZ(1), /* div=50 */
40 SR_MHZ(5), /* div=10 */
41 SR_MHZ(10), /* div=5 */
42 SR_MHZ(25), /* div=2 */
43 SR_MHZ(50), /* div=1 */
44 SR_MHZ(100), /* Special FW needed */
45 SR_MHZ(200), /* Special FW needed */
28a35d8a
HE
46};
47
4154a516 48SR_PRIV const size_t samplerates_count = ARRAY_SIZE(samplerates);
39c64c6a 49
742368a2 50static const char *firmware_files[] = {
80e717b3
GS
51 [SIGMA_FW_50MHZ] = "asix-sigma-50.fw", /* 50MHz, 8bit divider. */
52 [SIGMA_FW_100MHZ] = "asix-sigma-100.fw", /* 100MHz, fixed. */
53 [SIGMA_FW_200MHZ] = "asix-sigma-200.fw", /* 200MHz, fixed. */
54 [SIGMA_FW_SYNC] = "asix-sigma-50sync.fw", /* Sync from external pin. */
55 [SIGMA_FW_FREQ] = "asix-sigma-phasor.fw", /* Frequency counter. */
f6564c8d
HE
56};
57
742368a2
GS
58#define SIGMA_FIRMWARE_SIZE_LIMIT (256 * 1024)
59
0e1357e8 60static int sigma_read(void *buf, size_t size, struct dev_context *devc)
28a35d8a
HE
61{
62 int ret;
fefa1800 63
0e1357e8 64 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
28a35d8a 65 if (ret < 0) {
47f4f073 66 sr_err("ftdi_read_data failed: %s",
0e1357e8 67 ftdi_get_error_string(&devc->ftdic));
28a35d8a
HE
68 }
69
70 return ret;
71}
72
0e1357e8 73static int sigma_write(void *buf, size_t size, struct dev_context *devc)
28a35d8a
HE
74{
75 int ret;
fefa1800 76
0e1357e8 77 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
8ebad343 78 if (ret < 0)
47f4f073 79 sr_err("ftdi_write_data failed: %s",
0e1357e8 80 ftdi_get_error_string(&devc->ftdic));
8ebad343 81 else if ((size_t) ret != size)
47f4f073 82 sr_err("ftdi_write_data did not complete write.");
28a35d8a
HE
83
84 return ret;
85}
86
e8686e3a
AG
87/*
88 * NOTE: We chose the buffer size to be large enough to hold any write to the
89 * device. We still print a message just in case.
90 */
3ba56876 91SR_PRIV int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
92 struct dev_context *devc)
28a35d8a
HE
93{
94 size_t i;
e8686e3a 95 uint8_t buf[80];
28a35d8a
HE
96 int idx = 0;
97
7c86d853 98 if ((2 * len + 2) > sizeof(buf)) {
e8686e3a 99 sr_err("Attempted to write %zu bytes, but buffer is too small.",
7c86d853 100 len);
e8686e3a
AG
101 return SR_ERR_BUG;
102 }
103
28a35d8a
HE
104 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
105 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
106
0a1f7b09 107 for (i = 0; i < len; i++) {
28a35d8a
HE
108 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
109 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
110 }
111
0e1357e8 112 return sigma_write(buf, idx, devc);
28a35d8a
HE
113}
114
3ba56876 115SR_PRIV int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
28a35d8a 116{
0e1357e8 117 return sigma_write_register(reg, &value, 1, devc);
28a35d8a
HE
118}
119
99965709 120static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
0e1357e8 121 struct dev_context *devc)
28a35d8a
HE
122{
123 uint8_t buf[3];
fefa1800 124
28a35d8a
HE
125 buf[0] = REG_ADDR_LOW | (reg & 0xf);
126 buf[1] = REG_ADDR_HIGH | (reg >> 4);
28a35d8a
HE
127 buf[2] = REG_READ_ADDR;
128
0e1357e8 129 sigma_write(buf, sizeof(buf), devc);
28a35d8a 130
0e1357e8 131 return sigma_read(data, len, devc);
28a35d8a
HE
132}
133
99965709 134static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
0e1357e8 135 struct dev_context *devc)
28a35d8a 136{
07411a60
GS
137 /*
138 * Read 6 registers starting at trigger position LSB.
139 * Which yields two 24bit counter values.
140 */
28a35d8a
HE
141 uint8_t buf[] = {
142 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
07411a60
GS
143 REG_READ_ADDR | REG_ADDR_INC,
144 REG_READ_ADDR | REG_ADDR_INC,
145 REG_READ_ADDR | REG_ADDR_INC,
146 REG_READ_ADDR | REG_ADDR_INC,
147 REG_READ_ADDR | REG_ADDR_INC,
148 REG_READ_ADDR | REG_ADDR_INC,
28a35d8a 149 };
28a35d8a
HE
150 uint8_t result[6];
151
0e1357e8 152 sigma_write(buf, sizeof(buf), devc);
28a35d8a 153
0e1357e8 154 sigma_read(result, sizeof(result), devc);
28a35d8a
HE
155
156 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
157 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
158
dc400817
GS
159 /*
160 * These "position" values point to after the event (end of
161 * capture data, trigger condition matched). This is why they
162 * get decremented here. Sample memory consists of 512-byte
163 * chunks with meta data in the upper 64 bytes. Thus when the
164 * decrements takes us into this upper part of the chunk, then
165 * further move backwards to the end of the chunk's data part.
2c33b092
GS
166 *
167 * TODO Re-consider the above comment's validity. It's true
168 * that a 1024byte row contains 512 u16 entities, of which 64
169 * are timestamps and 448 are events with sample data. It's not
170 * true that 64bytes of metadata reside at the top of a 512byte
171 * block in a row.
172 *
173 * TODO Use ROW_MASK and CLUSTERS_PER_ROW here?
dc400817 174 */
57bbf56b 175 if ((--*stoppos & 0x1ff) == 0x1ff)
382cb19f 176 *stoppos -= 64;
dc400817 177 if ((--*triggerpos & 0x1ff) == 0x1ff)
382cb19f 178 *triggerpos -= 64;
57bbf56b 179
28a35d8a
HE
180 return 1;
181}
182
99965709 183static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
0e1357e8 184 uint8_t *data, struct dev_context *devc)
28a35d8a 185{
28a35d8a 186 uint8_t buf[4096];
f06fb3e9 187 int idx;
07411a60
GS
188 size_t chunk;
189 int sel;
190 gboolean is_last;
28a35d8a 191
07411a60 192 /* Communicate DRAM start address (memory row, aka samples line). */
f06fb3e9
GS
193 idx = 0;
194 buf[idx++] = startchunk >> 8;
195 buf[idx++] = startchunk & 0xff;
196 sigma_write_register(WRITE_MEMROW, buf, idx, devc);
28a35d8a 197
07411a60
GS
198 /*
199 * Access DRAM content. Fetch from DRAM to FPGA's internal RAM,
200 * then transfer via USB. Interleave the FPGA's DRAM access and
201 * USB transfer, use alternating buffers (0/1) in the process.
202 */
f06fb3e9 203 idx = 0;
28a35d8a
HE
204 buf[idx++] = REG_DRAM_BLOCK;
205 buf[idx++] = REG_DRAM_WAIT_ACK;
07411a60
GS
206 for (chunk = 0; chunk < numchunks; chunk++) {
207 sel = chunk % 2;
208 is_last = chunk == numchunks - 1;
209 if (!is_last)
210 buf[idx++] = REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel);
211 buf[idx++] = REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel);
212 if (!is_last)
28a35d8a
HE
213 buf[idx++] = REG_DRAM_WAIT_ACK;
214 }
0e1357e8 215 sigma_write(buf, idx, devc);
28a35d8a 216
2c33b092 217 return sigma_read(data, numchunks * ROW_LENGTH_BYTES, devc);
28a35d8a
HE
218}
219
4ae1f451 220/* Upload trigger look-up tables to Sigma. */
3ba56876 221SR_PRIV int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
ee492173
HE
222{
223 int i;
224 uint8_t tmp[2];
225 uint16_t bit;
226
227 /* Transpose the table and send to Sigma. */
0a1f7b09 228 for (i = 0; i < 16; i++) {
ee492173
HE
229 bit = 1 << i;
230
231 tmp[0] = tmp[1] = 0;
232
233 if (lut->m2d[0] & bit)
234 tmp[0] |= 0x01;
235 if (lut->m2d[1] & bit)
236 tmp[0] |= 0x02;
237 if (lut->m2d[2] & bit)
238 tmp[0] |= 0x04;
239 if (lut->m2d[3] & bit)
240 tmp[0] |= 0x08;
241
242 if (lut->m3 & bit)
243 tmp[0] |= 0x10;
244 if (lut->m3s & bit)
245 tmp[0] |= 0x20;
246 if (lut->m4 & bit)
247 tmp[0] |= 0x40;
248
249 if (lut->m0d[0] & bit)
250 tmp[1] |= 0x01;
251 if (lut->m0d[1] & bit)
252 tmp[1] |= 0x02;
253 if (lut->m0d[2] & bit)
254 tmp[1] |= 0x04;
255 if (lut->m0d[3] & bit)
256 tmp[1] |= 0x08;
257
258 if (lut->m1d[0] & bit)
259 tmp[1] |= 0x10;
260 if (lut->m1d[1] & bit)
261 tmp[1] |= 0x20;
262 if (lut->m1d[2] & bit)
263 tmp[1] |= 0x40;
264 if (lut->m1d[3] & bit)
265 tmp[1] |= 0x80;
266
9fb4c632 267 sigma_write_register(WRITE_TRIGGER_SELECT, tmp, sizeof(tmp),
0e1357e8 268 devc);
9fb4c632 269 sigma_set_register(WRITE_TRIGGER_SELECT2, 0x30 | i, devc);
ee492173
HE
270 }
271
272 /* Send the parameters */
9fb4c632 273 sigma_write_register(WRITE_TRIGGER_SELECT, (uint8_t *) &lut->params,
0e1357e8 274 sizeof(lut->params), devc);
ee492173 275
e46b8fb1 276 return SR_OK;
ee492173
HE
277}
278
d5fa188a 279/*
dc0906e2
GS
280 * See Xilinx UG332 for Spartan-3 FPGA configuration. The SIGMA device
281 * uses FTDI bitbang mode for netlist download in slave serial mode.
282 * (LATER: The OMEGA device's cable contains a more capable FTDI chip
283 * and uses MPSSE mode for bitbang. -- Can we also use FT232H in FT245
284 * compatible bitbang mode? For maximum code re-use and reduced libftdi
285 * dependency? See section 3.5.5 of FT232H: D0 clk, D1 data (out), D2
286 * data (in), D3 select, D4-7 GPIOL. See section 3.5.7 for MCU FIFO.)
287 *
288 * 750kbps rate (four times the speed of sigmalogan) works well for
289 * netlist download. All pins except INIT_B are output pins during
290 * configuration download.
291 *
292 * Some pins are inverted as a byproduct of level shifting circuitry.
293 * That's why high CCLK level (from the cable's point of view) is idle
294 * from the FPGA's perspective.
295 *
296 * The vendor's literature discusses a "suicide sequence" which ends
297 * regular FPGA execution and should be sent before entering bitbang
298 * mode and sending configuration data. Set D7 and toggle D2, D3, D4
299 * a few times.
300 */
301#define BB_PIN_CCLK (1 << 0) /* D0, CCLK */
302#define BB_PIN_PROG (1 << 1) /* D1, PROG */
303#define BB_PIN_D2 (1 << 2) /* D2, (part of) SUICIDE */
304#define BB_PIN_D3 (1 << 3) /* D3, (part of) SUICIDE */
305#define BB_PIN_D4 (1 << 4) /* D4, (part of) SUICIDE (unused?) */
306#define BB_PIN_INIT (1 << 5) /* D5, INIT, input pin */
307#define BB_PIN_DIN (1 << 6) /* D6, DIN */
308#define BB_PIN_D7 (1 << 7) /* D7, (part of) SUICIDE */
309
310#define BB_BITRATE (750 * 1000)
311#define BB_PINMASK (0xff & ~BB_PIN_INIT)
312
313/*
314 * Initiate slave serial mode for configuration download. Which is done
315 * by pulsing PROG_B and sensing INIT_B. Make sure CCLK is idle before
316 * initiating the configuration download. Run a "suicide sequence" first
317 * to terminate the regular FPGA operation before reconfiguration.
d5fa188a
MV
318 */
319static int sigma_fpga_init_bitbang(struct dev_context *devc)
320{
321 uint8_t suicide[] = {
dc0906e2
GS
322 BB_PIN_D7 | BB_PIN_D2,
323 BB_PIN_D7 | BB_PIN_D2,
324 BB_PIN_D7 | BB_PIN_D3,
325 BB_PIN_D7 | BB_PIN_D2,
326 BB_PIN_D7 | BB_PIN_D3,
327 BB_PIN_D7 | BB_PIN_D2,
328 BB_PIN_D7 | BB_PIN_D3,
329 BB_PIN_D7 | BB_PIN_D2,
d5fa188a
MV
330 };
331 uint8_t init_array[] = {
dc0906e2
GS
332 BB_PIN_CCLK,
333 BB_PIN_CCLK | BB_PIN_PROG,
334 BB_PIN_CCLK | BB_PIN_PROG,
335 BB_PIN_CCLK,
336 BB_PIN_CCLK,
337 BB_PIN_CCLK,
338 BB_PIN_CCLK,
339 BB_PIN_CCLK,
340 BB_PIN_CCLK,
341 BB_PIN_CCLK,
d5fa188a 342 };
dc0906e2 343 int retries, ret;
d5fa188a
MV
344 uint8_t data;
345
346 /* Section 2. part 1), do the FPGA suicide. */
347 sigma_write(suicide, sizeof(suicide), devc);
348 sigma_write(suicide, sizeof(suicide), devc);
349 sigma_write(suicide, sizeof(suicide), devc);
350 sigma_write(suicide, sizeof(suicide), devc);
351
dc0906e2 352 /* Section 2. part 2), pulse PROG. */
d5fa188a
MV
353 sigma_write(init_array, sizeof(init_array), devc);
354 ftdi_usb_purge_buffers(&devc->ftdic);
355
dc0906e2
GS
356 /* Wait until the FPGA asserts INIT_B. */
357 retries = 10;
358 while (retries--) {
d5fa188a
MV
359 ret = sigma_read(&data, 1, devc);
360 if (ret < 0)
361 return ret;
dc0906e2
GS
362 if (data & BB_PIN_INIT)
363 return SR_OK;
1a46cc62 364 g_usleep(10 * 1000);
d5fa188a
MV
365 }
366
367 return SR_ERR_TIMEOUT;
368}
369
64fe661b
MV
370/*
371 * Configure the FPGA for logic-analyzer mode.
372 */
373static int sigma_fpga_init_la(struct dev_context *devc)
374{
dc0906e2
GS
375 /*
376 * TODO Construct the sequence at runtime? Such that request data
377 * and response check values will match more apparently?
378 */
22f64ed8 379 uint8_t mode_regval = WMR_SDRAMINIT;
64fe661b 380 uint8_t logic_mode_start[] = {
dc0906e2 381 /* Read ID register. */
011f1091 382 REG_ADDR_LOW | (READ_ID & 0xf),
84a6ed1a 383 REG_ADDR_HIGH | (READ_ID >> 4),
dc0906e2 384 REG_READ_ADDR,
011f1091 385
dc0906e2 386 /* Write 0x55 to scratch register, read back. */
011f1091
MV
387 REG_ADDR_LOW | (WRITE_TEST & 0xf),
388 REG_DATA_LOW | 0x5,
389 REG_DATA_HIGH_WRITE | 0x5,
dc0906e2 390 REG_READ_ADDR,
011f1091 391
dc0906e2 392 /* Write 0xaa to scratch register, read back. */
011f1091
MV
393 REG_DATA_LOW | 0xa,
394 REG_DATA_HIGH_WRITE | 0xa,
dc0906e2 395 REG_READ_ADDR,
011f1091 396
dc0906e2 397 /* Initiate SDRAM initialization in mode register. */
011f1091 398 REG_ADDR_LOW | (WRITE_MODE & 0xf),
22f64ed8
GS
399 REG_DATA_LOW | (mode_regval & 0xf),
400 REG_DATA_HIGH_WRITE | (mode_regval >> 4),
64fe661b 401 };
64fe661b
MV
402 uint8_t result[3];
403 int ret;
404
dc0906e2
GS
405 /*
406 * Send the command sequence which contains 3 READ requests.
407 * Expect to see the corresponding 3 response bytes.
408 */
64fe661b 409 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
dc0906e2
GS
410 ret = sigma_read(result, ARRAY_SIZE(result), devc);
411 if (ret != ARRAY_SIZE(result))
64fe661b 412 goto err;
64fe661b
MV
413 if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
414 goto err;
415
416 return SR_OK;
dc0906e2 417
64fe661b
MV
418err:
419 sr_err("Configuration failed. Invalid reply received.");
420 return SR_ERR;
421}
422
a80226bb
MV
423/*
424 * Read the firmware from a file and transform it into a series of bitbang
425 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
426 * by the caller of this function.
427 */
8e2d6c9d 428static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
a80226bb
MV
429 uint8_t **bb_cmd, gsize *bb_cmd_size)
430{
dc0906e2
GS
431 uint8_t *firmware;
432 size_t file_size;
433 uint8_t *p;
434 size_t l;
a80226bb 435 uint32_t imm;
dc0906e2
GS
436 size_t bb_size;
437 uint8_t *bb_stream, *bbs, byte, mask, v;
a80226bb 438
387825dc 439 /* Retrieve the on-disk firmware file content. */
742368a2
GS
440 firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE, name,
441 &file_size, SIGMA_FIRMWARE_SIZE_LIMIT);
8e2d6c9d 442 if (!firmware)
dc0906e2 443 return SR_ERR_IO;
a80226bb 444
387825dc 445 /* Unscramble the file content (XOR with "random" sequence). */
dc0906e2
GS
446 p = firmware;
447 l = file_size;
a80226bb 448 imm = 0x3f6df2ab;
dc0906e2 449 while (l--) {
a80226bb 450 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
dc0906e2 451 *p++ ^= imm & 0xff;
a80226bb
MV
452 }
453
454 /*
387825dc
GS
455 * Generate a sequence of bitbang samples. With two samples per
456 * FPGA configuration bit, providing the level for the DIN signal
457 * as well as two edges for CCLK. See Xilinx UG332 for details
458 * ("slave serial" mode).
459 *
460 * Note that CCLK is inverted in hardware. That's why the
461 * respective bit is first set and then cleared in the bitbang
462 * sample sets. So that the DIN level will be stable when the
463 * data gets sampled at the rising CCLK edge, and the signals'
464 * setup time constraint will be met.
465 *
466 * The caller will put the FPGA into download mode, will send
467 * the bitbang samples, and release the allocated memory.
a80226bb 468 */
a80226bb 469 bb_size = file_size * 8 * 2;
dc0906e2 470 bb_stream = g_try_malloc(bb_size);
a80226bb
MV
471 if (!bb_stream) {
472 sr_err("%s: Failed to allocate bitbang stream", __func__);
dc0906e2
GS
473 g_free(firmware);
474 return SR_ERR_MALLOC;
a80226bb 475 }
a80226bb 476 bbs = bb_stream;
dc0906e2
GS
477 p = firmware;
478 l = file_size;
479 while (l--) {
480 byte = *p++;
481 mask = 0x80;
482 while (mask) {
483 v = (byte & mask) ? BB_PIN_DIN : 0;
484 mask >>= 1;
485 *bbs++ = v | BB_PIN_CCLK;
a80226bb
MV
486 *bbs++ = v;
487 }
488 }
dc0906e2 489 g_free(firmware);
a80226bb
MV
490
491 /* The transformation completed successfully, return the result. */
492 *bb_cmd = bb_stream;
493 *bb_cmd_size = bb_size;
494
dc0906e2 495 return SR_OK;
a80226bb
MV
496}
497
8e2d6c9d 498static int upload_firmware(struct sr_context *ctx,
80e717b3 499 struct dev_context *devc, enum sigma_firmware_idx firmware_idx)
28a35d8a
HE
500{
501 int ret;
502 unsigned char *buf;
503 unsigned char pins;
504 size_t buf_size;
a9016883 505 const char *firmware;
a9016883 506
80e717b3
GS
507 /* Check for valid firmware file selection. */
508 if (firmware_idx >= ARRAY_SIZE(firmware_files))
509 return SR_ERR_ARG;
4b25cbff 510 firmware = firmware_files[firmware_idx];
80e717b3
GS
511 if (!firmware || !*firmware)
512 return SR_ERR_ARG;
513
514 /* Avoid downloading the same firmware multiple times. */
515 if (devc->firmware_idx == firmware_idx) {
a9016883
GS
516 sr_info("Not uploading firmware file '%s' again.", firmware);
517 return SR_OK;
518 }
28a35d8a 519
1bb9dc82
GS
520 devc->state.state = SIGMA_CONFIG;
521
dc0906e2
GS
522 /* Set the cable to bitbang mode. */
523 ret = ftdi_set_bitmode(&devc->ftdic, BB_PINMASK, BITMODE_BITBANG);
8bbf7627 524 if (ret < 0) {
47f4f073 525 sr_err("ftdi_set_bitmode failed: %s",
1f4f98e0 526 ftdi_get_error_string(&devc->ftdic));
7bcf2168 527 return SR_ERR;
28a35d8a 528 }
dc0906e2 529 ret = ftdi_set_baudrate(&devc->ftdic, BB_BITRATE);
8bbf7627 530 if (ret < 0) {
47f4f073 531 sr_err("ftdi_set_baudrate failed: %s",
1f4f98e0 532 ftdi_get_error_string(&devc->ftdic));
7bcf2168 533 return SR_ERR;
28a35d8a
HE
534 }
535
dc0906e2 536 /* Initiate FPGA configuration mode. */
d5fa188a
MV
537 ret = sigma_fpga_init_bitbang(devc);
538 if (ret)
539 return ret;
28a35d8a 540
dc0906e2 541 /* Prepare wire format of the firmware image. */
8e2d6c9d 542 ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
8bbf7627 543 if (ret != SR_OK) {
f3f19d11 544 sr_err("An error occurred while reading the firmware: %s",
499b17e9 545 firmware);
b53738ba 546 return ret;
28a35d8a
HE
547 }
548
dc0906e2 549 /* Write the FPGA netlist to the cable. */
499b17e9 550 sr_info("Uploading firmware file '%s'.", firmware);
0e1357e8 551 sigma_write(buf, buf_size, devc);
28a35d8a
HE
552
553 g_free(buf);
554
dc0906e2
GS
555 /* Leave bitbang mode and discard pending input data. */
556 ret = ftdi_set_bitmode(&devc->ftdic, 0, BITMODE_RESET);
8bbf7627 557 if (ret < 0) {
47f4f073 558 sr_err("ftdi_set_bitmode failed: %s",
1f4f98e0 559 ftdi_get_error_string(&devc->ftdic));
e46b8fb1 560 return SR_ERR;
28a35d8a 561 }
1f4f98e0 562 ftdi_usb_purge_buffers(&devc->ftdic);
29b66a2e 563 while (sigma_read(&pins, 1, devc) == 1)
28a35d8a
HE
564 ;
565
64fe661b
MV
566 /* Initialize the FPGA for logic-analyzer mode. */
567 ret = sigma_fpga_init_la(devc);
568 if (ret != SR_OK)
569 return ret;
28a35d8a 570
dc0906e2 571 /* Keep track of successful firmware download completion. */
1bb9dc82 572 devc->state.state = SIGMA_IDLE;
80e717b3 573 devc->firmware_idx = firmware_idx;
47f4f073 574 sr_info("Firmware uploaded.");
e3fff420 575
e46b8fb1 576 return SR_OK;
f6564c8d
HE
577}
578
9a0a606a 579/*
5e78a564
GS
580 * The driver supports user specified time or sample count limits. The
581 * device's hardware supports neither, and hardware compression prevents
582 * reliable detection of "fill levels" (currently reached sample counts)
583 * from register values during acquisition. That's why the driver needs
584 * to apply some heuristics:
9a0a606a 585 *
5e78a564
GS
586 * - The (optional) sample count limit and the (normalized) samplerate
587 * get mapped to an estimated duration for these samples' acquisition.
588 * - The (optional) time limit gets checked as well. The lesser of the
589 * two limits will terminate the data acquisition phase. The exact
590 * sample count limit gets enforced in session feed submission paths.
591 * - Some slack needs to be given to account for hardware pipelines as
592 * well as late storage of last chunks after compression thresholds
593 * are tripped. The resulting data set will span at least the caller
594 * specified period of time, which shall be perfectly acceptable.
595 *
596 * With RLE compression active, up to 64K sample periods can pass before
597 * a cluster accumulates. Which translates to 327ms at 200kHz. Add two
598 * times that period for good measure, one is not enough to flush the
599 * hardware pipeline (observation from an earlier experiment).
9a0a606a 600 */
5e78a564 601SR_PRIV int sigma_set_acquire_timeout(struct dev_context *devc)
9a0a606a 602{
5e78a564
GS
603 int ret;
604 GVariant *data;
605 uint64_t user_count, user_msecs;
9a0a606a 606 uint64_t worst_cluster_time_ms;
5e78a564 607 uint64_t count_msecs, acquire_msecs;
9a0a606a 608
5e78a564
GS
609 sr_sw_limits_init(&devc->acq_limits);
610
611 /* Get sample count limit, convert to msecs. */
612 ret = sr_sw_limits_config_get(&devc->cfg_limits,
613 SR_CONF_LIMIT_SAMPLES, &data);
614 if (ret != SR_OK)
615 return ret;
616 user_count = g_variant_get_uint64(data);
617 g_variant_unref(data);
618 count_msecs = 0;
619 if (user_count)
620 count_msecs = 1000 * user_count / devc->samplerate + 1;
621
622 /* Get time limit, which is in msecs. */
623 ret = sr_sw_limits_config_get(&devc->cfg_limits,
624 SR_CONF_LIMIT_MSEC, &data);
625 if (ret != SR_OK)
626 return ret;
627 user_msecs = g_variant_get_uint64(data);
628 g_variant_unref(data);
629
630 /* Get the lesser of them, with both being optional. */
631 acquire_msecs = ~0ull;
632 if (user_count && count_msecs < acquire_msecs)
633 acquire_msecs = count_msecs;
634 if (user_msecs && user_msecs < acquire_msecs)
635 acquire_msecs = user_msecs;
636 if (acquire_msecs == ~0ull)
637 return SR_OK;
638
639 /* Add some slack, and use that timeout for acquisition. */
640 worst_cluster_time_ms = 1000 * 65536 / devc->samplerate;
641 acquire_msecs += 2 * worst_cluster_time_ms;
642 data = g_variant_new_uint64(acquire_msecs);
643 ret = sr_sw_limits_config_set(&devc->acq_limits,
644 SR_CONF_LIMIT_MSEC, data);
645 g_variant_unref(data);
646 if (ret != SR_OK)
647 return ret;
648
649 sr_sw_limits_acquisition_start(&devc->acq_limits);
650 return SR_OK;
9a0a606a
GS
651}
652
5e78a564
GS
653/*
654 * Check whether a caller specified samplerate matches the device's
655 * hardware constraints (can be used for acquisition). Optionally yield
656 * a value that approximates the original spec.
657 *
658 * This routine assumes that input specs are in the 200kHz to 200MHz
659 * range of supported rates, and callers typically want to normalize a
660 * given value to the hardware capabilities. Values in the 50MHz range
661 * get rounded up by default, to avoid a more expensive check for the
662 * closest match, while higher sampling rate is always desirable during
663 * measurement. Input specs which exactly match hardware capabilities
664 * remain unaffected. Because 100/200MHz rates also limit the number of
665 * available channels, they are not suggested by this routine, instead
666 * callers need to pick them consciously.
667 */
668SR_PRIV int sigma_normalize_samplerate(uint64_t want_rate, uint64_t *have_rate)
669{
670 uint64_t div, rate;
671
672 /* Accept exact matches for 100/200MHz. */
673 if (want_rate == SR_MHZ(200) || want_rate == SR_MHZ(100)) {
674 if (have_rate)
675 *have_rate = want_rate;
676 return SR_OK;
677 }
678
679 /* Accept 200kHz to 50MHz range, and map to near value. */
680 if (want_rate >= SR_KHZ(200) && want_rate <= SR_MHZ(50)) {
681 div = SR_MHZ(50) / want_rate;
682 rate = SR_MHZ(50) / div;
683 if (have_rate)
684 *have_rate = rate;
685 return SR_OK;
686 }
687
688 return SR_ERR_ARG;
689}
690
691SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi)
f6564c8d 692{
2c9c0df8 693 struct dev_context *devc;
8e2d6c9d 694 struct drv_context *drvc;
5e78a564 695 uint64_t samplerate;
2c9c0df8 696 int ret;
ac9534f4 697 int num_channels;
f6564c8d 698
2c9c0df8 699 devc = sdi->priv;
8e2d6c9d 700 drvc = sdi->driver->context;
f4abaa9f 701
5e78a564
GS
702 /* Accept any caller specified rate which the hardware supports. */
703 ret = sigma_normalize_samplerate(devc->samplerate, &samplerate);
704 if (ret != SR_OK)
705 return ret;
f6564c8d 706
2f7e529c
GS
707 /*
708 * Depending on the samplerates of 200/100/50- MHz, specific
709 * firmware is required and higher rates might limit the set
710 * of available channels.
711 */
ac9534f4 712 num_channels = devc->num_channels;
59df0c77 713 if (samplerate <= SR_MHZ(50)) {
80e717b3 714 ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_50MHZ);
ac9534f4 715 num_channels = 16;
6b2d3385 716 } else if (samplerate == SR_MHZ(100)) {
80e717b3 717 ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_100MHZ);
ac9534f4 718 num_channels = 8;
6b2d3385 719 } else if (samplerate == SR_MHZ(200)) {
80e717b3 720 ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_200MHZ);
ac9534f4 721 num_channels = 4;
f78898e9 722 }
f6564c8d 723
2f7e529c 724 /*
5e78a564
GS
725 * The samplerate affects the number of available logic channels
726 * as well as a sample memory layout detail (the number of samples
727 * which the device will communicate within an "event").
2f7e529c 728 */
6b2d3385 729 if (ret == SR_OK) {
ac9534f4 730 devc->num_channels = num_channels;
6b2d3385 731 devc->samples_per_event = 16 / devc->num_channels;
6b2d3385 732 }
f6564c8d 733
e8397563 734 return ret;
28a35d8a
HE
735}
736
98b43eb3
GS
737/*
738 * Arrange for a session feed submit buffer. A queue where a number of
739 * samples gets accumulated to reduce the number of send calls. Which
740 * also enforces an optional sample count limit for data acquisition.
741 *
742 * The buffer holds up to CHUNK_SIZE bytes. The unit size is fixed (the
743 * driver provides a fixed channel layout regardless of samplerate).
744 */
745
746#define CHUNK_SIZE (4 * 1024 * 1024)
747
748struct submit_buffer {
749 size_t unit_size;
750 size_t max_samples, curr_samples;
751 uint8_t *sample_data;
752 uint8_t *write_pointer;
753 struct sr_dev_inst *sdi;
754 struct sr_datafeed_packet packet;
755 struct sr_datafeed_logic logic;
98b43eb3
GS
756};
757
758static int alloc_submit_buffer(struct sr_dev_inst *sdi)
759{
760 struct dev_context *devc;
761 struct submit_buffer *buffer;
762 size_t size;
763
764 devc = sdi->priv;
765
766 buffer = g_malloc0(sizeof(*buffer));
767 devc->buffer = buffer;
768
769 buffer->unit_size = sizeof(uint16_t);
770 size = CHUNK_SIZE;
771 size /= buffer->unit_size;
772 buffer->max_samples = size;
773 size *= buffer->unit_size;
774 buffer->sample_data = g_try_malloc0(size);
775 if (!buffer->sample_data)
776 return SR_ERR_MALLOC;
777 buffer->write_pointer = buffer->sample_data;
5e78a564 778 sr_sw_limits_init(&devc->feed_limits);
98b43eb3
GS
779
780 buffer->sdi = sdi;
781 memset(&buffer->logic, 0, sizeof(buffer->logic));
782 buffer->logic.unitsize = buffer->unit_size;
783 buffer->logic.data = buffer->sample_data;
784 memset(&buffer->packet, 0, sizeof(buffer->packet));
785 buffer->packet.type = SR_DF_LOGIC;
786 buffer->packet.payload = &buffer->logic;
787
788 return SR_OK;
789}
790
5e78a564 791static int setup_submit_limit(struct dev_context *devc)
98b43eb3 792{
5e78a564 793 struct sr_sw_limits *limits;
98b43eb3
GS
794 int ret;
795 GVariant *data;
796 uint64_t total;
797
5e78a564 798 limits = &devc->feed_limits;
98b43eb3 799
5e78a564
GS
800 ret = sr_sw_limits_config_get(&devc->cfg_limits,
801 SR_CONF_LIMIT_SAMPLES, &data);
802 if (ret != SR_OK)
803 return ret;
804 total = g_variant_get_uint64(data);
805 g_variant_unref(data);
806
807 sr_sw_limits_init(limits);
98b43eb3
GS
808 if (total) {
809 data = g_variant_new_uint64(total);
5e78a564 810 ret = sr_sw_limits_config_set(limits,
98b43eb3
GS
811 SR_CONF_LIMIT_SAMPLES, data);
812 g_variant_unref(data);
813 if (ret != SR_OK)
814 return ret;
815 }
816
5e78a564 817 sr_sw_limits_acquisition_start(limits);
98b43eb3
GS
818
819 return SR_OK;
820}
821
822static void free_submit_buffer(struct dev_context *devc)
823{
824 struct submit_buffer *buffer;
825
826 if (!devc)
827 return;
828
829 buffer = devc->buffer;
830 if (!buffer)
831 return;
832 devc->buffer = NULL;
833
834 g_free(buffer->sample_data);
835 g_free(buffer);
836}
837
838static int flush_submit_buffer(struct dev_context *devc)
839{
840 struct submit_buffer *buffer;
841 int ret;
842
843 buffer = devc->buffer;
844
845 /* Is queued sample data available? */
846 if (!buffer->curr_samples)
847 return SR_OK;
848
849 /* Submit to the session feed. */
850 buffer->logic.length = buffer->curr_samples * buffer->unit_size;
851 ret = sr_session_send(buffer->sdi, &buffer->packet);
852 if (ret != SR_OK)
853 return ret;
854
855 /* Rewind queue position. */
856 buffer->curr_samples = 0;
857 buffer->write_pointer = buffer->sample_data;
858
859 return SR_OK;
860}
861
862static int addto_submit_buffer(struct dev_context *devc,
863 uint16_t sample, size_t count)
864{
865 struct submit_buffer *buffer;
5e78a564 866 struct sr_sw_limits *limits;
98b43eb3
GS
867 int ret;
868
869 buffer = devc->buffer;
5e78a564
GS
870 limits = &devc->feed_limits;
871 if (sr_sw_limits_check(limits))
98b43eb3
GS
872 count = 0;
873
874 /*
875 * Individually accumulate and check each sample, such that
876 * accumulation between flushes won't exceed local storage, and
877 * enforcement of user specified limits is exact.
878 */
879 while (count--) {
880 WL16(buffer->write_pointer, sample);
881 buffer->write_pointer += buffer->unit_size;
882 buffer->curr_samples++;
883 if (buffer->curr_samples == buffer->max_samples) {
884 ret = flush_submit_buffer(devc);
885 if (ret != SR_OK)
886 return ret;
887 }
5e78a564
GS
888 sr_sw_limits_update_samples_read(limits, 1);
889 if (sr_sw_limits_check(limits))
98b43eb3
GS
890 break;
891 }
892
893 return SR_OK;
894}
895
c53d793f
HE
896/*
897 * In 100 and 200 MHz mode, only a single pin rising/falling can be
898 * set as trigger. In other modes, two rising/falling triggers can be set,
ba7dd8bb 899 * in addition to value/mask trigger for any number of channels.
c53d793f
HE
900 *
901 * The Sigma supports complex triggers using boolean expressions, but this
902 * has not been implemented yet.
903 */
3ba56876 904SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
57bbf56b 905{
39c64c6a
BV
906 struct dev_context *devc;
907 struct sr_trigger *trigger;
908 struct sr_trigger_stage *stage;
909 struct sr_trigger_match *match;
910 const GSList *l, *m;
911 int channelbit, trigger_set;
57bbf56b 912
39c64c6a 913 devc = sdi->priv;
0e1357e8 914 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
0812c40e 915 if (!(trigger = sr_session_trigger_get(sdi->session)))
39c64c6a
BV
916 return SR_OK;
917
918 trigger_set = 0;
919 for (l = trigger->stages; l; l = l->next) {
920 stage = l->data;
921 for (m = stage->matches; m; m = m->next) {
922 match = m->data;
923 if (!match->channel->enabled)
924 /* Ignore disabled channels with a trigger. */
925 continue;
926 channelbit = 1 << (match->channel->index);
5e78a564 927 if (devc->samplerate >= SR_MHZ(100)) {
39c64c6a
BV
928 /* Fast trigger support. */
929 if (trigger_set) {
930 sr_err("Only a single pin trigger is "
931 "supported in 100 and 200MHz mode.");
932 return SR_ERR;
933 }
934 if (match->match == SR_TRIGGER_FALLING)
935 devc->trigger.fallingmask |= channelbit;
936 else if (match->match == SR_TRIGGER_RISING)
937 devc->trigger.risingmask |= channelbit;
938 else {
939 sr_err("Only rising/falling trigger is "
940 "supported in 100 and 200MHz mode.");
941 return SR_ERR;
942 }
eec5275e 943
0a1f7b09 944 trigger_set++;
39c64c6a
BV
945 } else {
946 /* Simple trigger support (event). */
947 if (match->match == SR_TRIGGER_ONE) {
948 devc->trigger.simplevalue |= channelbit;
949 devc->trigger.simplemask |= channelbit;
8ebad343 950 } else if (match->match == SR_TRIGGER_ZERO) {
39c64c6a
BV
951 devc->trigger.simplevalue &= ~channelbit;
952 devc->trigger.simplemask |= channelbit;
8ebad343 953 } else if (match->match == SR_TRIGGER_FALLING) {
39c64c6a 954 devc->trigger.fallingmask |= channelbit;
0a1f7b09 955 trigger_set++;
8ebad343 956 } else if (match->match == SR_TRIGGER_RISING) {
39c64c6a 957 devc->trigger.risingmask |= channelbit;
0a1f7b09 958 trigger_set++;
39c64c6a
BV
959 }
960
961 /*
962 * Actually, Sigma supports 2 rising/falling triggers,
963 * but they are ORed and the current trigger syntax
964 * does not permit ORed triggers.
965 */
966 if (trigger_set > 1) {
967 sr_err("Only 1 rising/falling trigger "
968 "is supported.");
969 return SR_ERR;
970 }
ee492173 971 }
ee492173 972 }
57bbf56b
HE
973 }
974
e46b8fb1 975 return SR_OK;
57bbf56b
HE
976}
977
36b1c8e6 978/* Software trigger to determine exact trigger position. */
5fc01191 979static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
36b1c8e6
HE
980 struct sigma_trigger *t)
981{
982 int i;
5fc01191 983 uint16_t sample = 0;
36b1c8e6 984
0a1f7b09 985 for (i = 0; i < 8; i++) {
36b1c8e6 986 if (i > 0)
5fc01191
MV
987 last_sample = sample;
988 sample = samples[2 * i] | (samples[2 * i + 1] << 8);
36b1c8e6
HE
989
990 /* Simple triggers. */
5fc01191 991 if ((sample & t->simplemask) != t->simplevalue)
36b1c8e6
HE
992 continue;
993
994 /* Rising edge. */
5fc01191
MV
995 if (((last_sample & t->risingmask) != 0) ||
996 ((sample & t->risingmask) != t->risingmask))
36b1c8e6
HE
997 continue;
998
999 /* Falling edge. */
bdfc7a89 1000 if ((last_sample & t->fallingmask) != t->fallingmask ||
5fc01191 1001 (sample & t->fallingmask) != 0)
36b1c8e6
HE
1002 continue;
1003
1004 break;
1005 }
1006
1007 /* If we did not match, return original trigger pos. */
1008 return i & 0x7;
1009}
1010
98b43eb3
GS
1011static gboolean sample_matches_trigger(struct dev_context *devc, uint16_t sample)
1012{
1013 /* TODO
1014 * Check whether the combination of this very sample and the
1015 * previous state match the configured trigger condition. This
1016 * improves the resolution of the trigger marker's position.
1017 * The hardware provided position is coarse, and may point to
1018 * a position before the actual match.
1019 *
1020 * See the previous get_trigger_offset() implementation. This
1021 * code needs to get re-used here.
1022 */
1023 (void)devc;
1024 (void)sample;
1025 (void)get_trigger_offset;
1026
1027 return FALSE;
1028}
1029
1030static int check_and_submit_sample(struct dev_context *devc,
1031 uint16_t sample, size_t count, gboolean check_trigger)
1032{
1033 gboolean triggered;
1034 int ret;
1035
1036 triggered = check_trigger && sample_matches_trigger(devc, sample);
1037 if (triggered) {
1038 ret = flush_submit_buffer(devc);
1039 if (ret != SR_OK)
1040 return ret;
1041 ret = std_session_send_df_trigger(devc->buffer->sdi);
1042 if (ret != SR_OK)
1043 return ret;
1044 }
1045
1046 ret = addto_submit_buffer(devc, sample, count);
1047 if (ret != SR_OK)
1048 return ret;
1049
1050 return SR_OK;
1051}
1052
3513d965
MV
1053/*
1054 * Return the timestamp of "DRAM cluster".
1055 */
1056static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
1057{
1058 return (cluster->timestamp_hi << 8) | cluster->timestamp_lo;
1059}
1060
0498f743
GS
1061/*
1062 * Return one 16bit data entity of a DRAM cluster at the specified index.
1063 */
1064static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx)
1065{
1066 uint16_t sample;
1067
1068 sample = 0;
1069 sample |= cl->samples[idx].sample_lo << 0;
1070 sample |= cl->samples[idx].sample_hi << 8;
3281cf59 1071 sample = (sample >> 8) | (sample << 8);
0498f743
GS
1072 return sample;
1073}
1074
85c032e4
GS
1075/*
1076 * Deinterlace sample data that was retrieved at 100MHz samplerate.
1077 * One 16bit item contains two samples of 8bits each. The bits of
1078 * multiple samples are interleaved.
1079 */
1080static uint16_t sigma_deinterlace_100mhz_data(uint16_t indata, int idx)
1081{
1082 uint16_t outdata;
1083
1084 indata >>= idx;
1085 outdata = 0;
1086 outdata |= (indata >> (0 * 2 - 0)) & (1 << 0);
1087 outdata |= (indata >> (1 * 2 - 1)) & (1 << 1);
1088 outdata |= (indata >> (2 * 2 - 2)) & (1 << 2);
1089 outdata |= (indata >> (3 * 2 - 3)) & (1 << 3);
1090 outdata |= (indata >> (4 * 2 - 4)) & (1 << 4);
1091 outdata |= (indata >> (5 * 2 - 5)) & (1 << 5);
1092 outdata |= (indata >> (6 * 2 - 6)) & (1 << 6);
1093 outdata |= (indata >> (7 * 2 - 7)) & (1 << 7);
1094 return outdata;
1095}
1096
1097/*
1098 * Deinterlace sample data that was retrieved at 200MHz samplerate.
1099 * One 16bit item contains four samples of 4bits each. The bits of
1100 * multiple samples are interleaved.
1101 */
1102static uint16_t sigma_deinterlace_200mhz_data(uint16_t indata, int idx)
1103{
1104 uint16_t outdata;
1105
1106 indata >>= idx;
1107 outdata = 0;
1108 outdata |= (indata >> (0 * 4 - 0)) & (1 << 0);
1109 outdata |= (indata >> (1 * 4 - 1)) & (1 << 1);
1110 outdata |= (indata >> (2 * 4 - 2)) & (1 << 2);
1111 outdata |= (indata >> (3 * 4 - 3)) & (1 << 3);
1112 return outdata;
1113}
1114
98b43eb3
GS
1115static void sigma_decode_dram_cluster(struct dev_context *devc,
1116 struct sigma_dram_cluster *dram_cluster,
1117 size_t events_in_cluster, gboolean triggered)
23239b5c 1118{
98b43eb3 1119 struct sigma_state *ss;
85c032e4 1120 uint16_t tsdiff, ts, sample, item16;
23239b5c 1121 unsigned int i;
23239b5c 1122
98b43eb3
GS
1123 if (!devc->use_triggers || !ASIX_SIGMA_WITH_TRIGGER)
1124 triggered = FALSE;
23239b5c
MV
1125
1126 /*
468f17f2
GS
1127 * If this cluster is not adjacent to the previously received
1128 * cluster, then send the appropriate number of samples with the
1129 * previous values to the sigrok session. This "decodes RLE".
2c33b092 1130 *
98b43eb3
GS
1131 * These samples cannot match the trigger since they just repeat
1132 * the previously submitted data pattern. (This assumption holds
1133 * for simple level and edge triggers. It would not for timed or
1134 * counted conditions, which currently are not supported.)
23239b5c 1135 */
98b43eb3
GS
1136 ss = &devc->state;
1137 ts = sigma_dram_cluster_ts(dram_cluster);
1138 tsdiff = ts - ss->lastts;
1139 if (tsdiff > 0) {
1140 size_t count;
1141 count = tsdiff * devc->samples_per_event;
1142 (void)check_and_submit_sample(devc, ss->lastsample, count, FALSE);
23239b5c 1143 }
98b43eb3 1144 ss->lastts = ts + EVENTS_PER_CLUSTER;
23239b5c
MV
1145
1146 /*
98b43eb3
GS
1147 * Grab sample data from the current cluster and prepare their
1148 * submission to the session feed. Handle samplerate dependent
1149 * memory layout of sample data. Accumulation of data chunks
1150 * before submission is transparent to this code path, specific
1151 * buffer depth is neither assumed nor required here.
23239b5c 1152 */
0498f743 1153 sample = 0;
23239b5c 1154 for (i = 0; i < events_in_cluster; i++) {
85c032e4 1155 item16 = sigma_dram_cluster_data(dram_cluster, i);
5e78a564 1156 if (devc->samplerate == SR_MHZ(200)) {
85c032e4 1157 sample = sigma_deinterlace_200mhz_data(item16, 0);
98b43eb3 1158 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4 1159 sample = sigma_deinterlace_200mhz_data(item16, 1);
98b43eb3 1160 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4 1161 sample = sigma_deinterlace_200mhz_data(item16, 2);
98b43eb3 1162 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4 1163 sample = sigma_deinterlace_200mhz_data(item16, 3);
98b43eb3 1164 check_and_submit_sample(devc, sample, 1, triggered);
5e78a564 1165 } else if (devc->samplerate == SR_MHZ(100)) {
85c032e4 1166 sample = sigma_deinterlace_100mhz_data(item16, 0);
98b43eb3 1167 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4 1168 sample = sigma_deinterlace_100mhz_data(item16, 1);
98b43eb3 1169 check_and_submit_sample(devc, sample, 1, triggered);
85c032e4
GS
1170 } else {
1171 sample = item16;
98b43eb3 1172 check_and_submit_sample(devc, sample, 1, triggered);
23239b5c 1173 }
23239b5c 1174 }
0498f743 1175 ss->lastsample = sample;
23239b5c
MV
1176}
1177
28a35d8a 1178/*
fefa1800
UH
1179 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
1180 * Each event is 20ns apart, and can contain multiple samples.
f78898e9
HE
1181 *
1182 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
1183 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
1184 * For 50 MHz and below, events contain one sample for each channel,
1185 * spread 20 ns apart.
28a35d8a 1186 */
98b43eb3
GS
1187static int decode_chunk_ts(struct dev_context *devc,
1188 struct sigma_dram_line *dram_line,
1189 size_t events_in_line, size_t trigger_event)
28a35d8a 1190{
3628074d 1191 struct sigma_dram_cluster *dram_cluster;
f06fb3e9 1192 unsigned int clusters_in_line;
5fc01191 1193 unsigned int events_in_cluster;
23239b5c 1194 unsigned int i;
98b43eb3 1195 uint32_t trigger_cluster;
f06fb3e9 1196
f06fb3e9
GS
1197 clusters_in_line = events_in_line;
1198 clusters_in_line += EVENTS_PER_CLUSTER - 1;
1199 clusters_in_line /= EVENTS_PER_CLUSTER;
1200 trigger_cluster = ~0;
ee492173 1201
4ae1f451 1202 /* Check if trigger is in this chunk. */
2c33b092 1203 if (trigger_event < EVENTS_PER_ROW) {
5e78a564 1204 if (devc->samplerate <= SR_MHZ(50)) {
1e23158b
MV
1205 trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
1206 trigger_event);
1207 }
57bbf56b 1208
f3f19d11 1209 /* Find in which cluster the trigger occurred. */
1e23158b 1210 trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
ee492173 1211 }
28a35d8a 1212
5fc01191
MV
1213 /* For each full DRAM cluster. */
1214 for (i = 0; i < clusters_in_line; i++) {
3628074d 1215 dram_cluster = &dram_line->cluster[i];
5fc01191 1216
5fc01191 1217 /* The last cluster might not be full. */
23239b5c
MV
1218 if ((i == clusters_in_line - 1) &&
1219 (events_in_line % EVENTS_PER_CLUSTER)) {
5fc01191 1220 events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
23239b5c 1221 } else {
5fc01191 1222 events_in_cluster = EVENTS_PER_CLUSTER;
abda62ce 1223 }
ee492173 1224
98b43eb3
GS
1225 sigma_decode_dram_cluster(devc, dram_cluster,
1226 events_in_cluster, i == trigger_cluster);
28a35d8a
HE
1227 }
1228
e46b8fb1 1229 return SR_OK;
28a35d8a
HE
1230}
1231
6057d9fa 1232static int download_capture(struct sr_dev_inst *sdi)
28a35d8a 1233{
e15e5873 1234 const uint32_t chunks_per_read = 32;
f06fb3e9
GS
1235
1236 struct dev_context *devc;
fd830beb 1237 struct sigma_dram_line *dram_line;
c6648b66 1238 int bufsz;
462fe786 1239 uint32_t stoppos, triggerpos;
6057d9fa 1240 uint8_t modestatus;
c6648b66
MV
1241 uint32_t i;
1242 uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
74d453ab 1243 uint32_t dl_first_line, dl_line;
f06fb3e9
GS
1244 uint32_t dl_events_in_line;
1245 uint32_t trg_line, trg_event;
98b43eb3 1246 int ret;
f06fb3e9
GS
1247
1248 devc = sdi->priv;
2c33b092 1249 dl_events_in_line = EVENTS_PER_ROW;
c6648b66 1250
6868626b 1251 sr_info("Downloading sample data.");
dde0175d 1252 devc->state.state = SIGMA_DOWNLOAD;
6868626b 1253
22f64ed8
GS
1254 /*
1255 * Ask the hardware to stop data acquisition. Reception of the
1256 * FORCESTOP request makes the hardware "disable RLE" (store
1257 * clusters to DRAM regardless of whether pin state changes) and
1258 * raise the POSTTRIGGERED flag.
1259 */
1260 sigma_set_register(WRITE_MODE, WMR_FORCESTOP | WMR_SDRAMWRITEEN, devc);
1261 do {
f73b00b6 1262 if (sigma_read_register(READ_MODE, &modestatus, 1, devc) != 1) {
bfa79fbd 1263 sr_err("failed while waiting for RMR_POSTTRIGGERED bit");
f73b00b6
DT
1264 return FALSE;
1265 }
22f64ed8 1266 } while (!(modestatus & RMR_POSTTRIGGERED));
6057d9fa
MV
1267
1268 /* Set SDRAM Read Enable. */
22f64ed8 1269 sigma_set_register(WRITE_MODE, WMR_SDRAMREADEN, devc);
6057d9fa
MV
1270
1271 /* Get the current position. */
462fe786 1272 sigma_read_pos(&stoppos, &triggerpos, devc);
6057d9fa
MV
1273
1274 /* Check if trigger has fired. */
f73b00b6 1275 if (sigma_read_register(READ_MODE, &modestatus, 1, devc) != 1) {
bfa79fbd 1276 sr_err("failed to read READ_MODE register");
f73b00b6
DT
1277 return FALSE;
1278 }
dc400817
GS
1279 trg_line = ~0;
1280 trg_event = ~0;
22f64ed8 1281 if (modestatus & RMR_TRIGGERED) {
c6648b66 1282 trg_line = triggerpos >> 9;
1e23158b
MV
1283 trg_event = triggerpos & 0x1ff;
1284 }
6057d9fa 1285
c6648b66 1286 /*
74d453ab
GS
1287 * Determine how many "DRAM lines" of 1024 bytes each we need to
1288 * retrieve from the Sigma hardware, so that we have a complete
1289 * set of samples. Note that the last line need not contain 64
1290 * clusters, it might be partially filled only.
1291 *
1292 * When RMR_ROUND is set, the circular buffer in DRAM has wrapped
1293 * around. Since the status of the very next line is uncertain in
2c33b092 1294 * that case, we skip it and start reading from the next line.
c6648b66 1295 */
2c33b092
GS
1296 dl_first_line = 0;
1297 dl_lines_total = (stoppos >> ROW_SHIFT) + 1;
74d453ab
GS
1298 if (modestatus & RMR_ROUND) {
1299 dl_first_line = dl_lines_total + 1;
2c33b092 1300 dl_lines_total = ROW_COUNT - 2;
74d453ab 1301 }
44081095
DT
1302 dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
1303 if (!dram_line)
1304 return FALSE;
98b43eb3
GS
1305 ret = alloc_submit_buffer(sdi);
1306 if (ret != SR_OK)
1307 return FALSE;
5e78a564 1308 ret = setup_submit_limit(devc);
98b43eb3
GS
1309 if (ret != SR_OK)
1310 return FALSE;
c6648b66 1311 dl_lines_done = 0;
c6648b66
MV
1312 while (dl_lines_total > dl_lines_done) {
1313 /* We can download only up-to 32 DRAM lines in one go! */
547c4cdc 1314 dl_lines_curr = MIN(chunks_per_read, dl_lines_total - dl_lines_done);
6868626b 1315
74d453ab 1316 dl_line = dl_first_line + dl_lines_done;
2c33b092 1317 dl_line %= ROW_COUNT;
74d453ab 1318 bufsz = sigma_read_dram(dl_line, dl_lines_curr,
f41a4cae 1319 (uint8_t *)dram_line, devc);
c6648b66
MV
1320 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1321 (void)bufsz;
6868626b 1322
c6648b66
MV
1323 /* This is the first DRAM line, so find the initial timestamp. */
1324 if (dl_lines_done == 0) {
3513d965
MV
1325 devc->state.lastts =
1326 sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
c6648b66 1327 devc->state.lastsample = 0;
6868626b
BV
1328 }
1329
c6648b66 1330 for (i = 0; i < dl_lines_curr; i++) {
1e23158b 1331 uint32_t trigger_event = ~0;
c6648b66
MV
1332 /* The last "DRAM line" can be only partially full. */
1333 if (dl_lines_done + i == dl_lines_total - 1)
46641fac 1334 dl_events_in_line = stoppos & 0x1ff;
c6648b66 1335
e69ad48e 1336 /* Test if the trigger happened on this line. */
c6648b66 1337 if (dl_lines_done + i == trg_line)
1e23158b 1338 trigger_event = trg_event;
e69ad48e 1339
98b43eb3
GS
1340 decode_chunk_ts(devc, dram_line + i,
1341 dl_events_in_line, trigger_event);
c6648b66 1342 }
6868626b 1343
c6648b66 1344 dl_lines_done += dl_lines_curr;
6868626b 1345 }
98b43eb3
GS
1346 flush_submit_buffer(devc);
1347 free_submit_buffer(devc);
dde0175d 1348 g_free(dram_line);
6868626b 1349
bee2b016 1350 std_session_send_df_end(sdi);
6057d9fa 1351
dde0175d 1352 devc->state.state = SIGMA_IDLE;
d2f7c417 1353 sr_dev_acquisition_stop(sdi);
6057d9fa
MV
1354
1355 return TRUE;
6868626b
BV
1356}
1357
d4051930 1358/*
74d453ab
GS
1359 * Periodically check the Sigma status when in CAPTURE mode. This routine
1360 * checks whether the configured sample count or sample time have passed,
1361 * and will stop acquisition and download the acquired samples.
d4051930
MV
1362 */
1363static int sigma_capture_mode(struct sr_dev_inst *sdi)
6868626b 1364{
f06fb3e9 1365 struct dev_context *devc;
28a35d8a 1366
f06fb3e9 1367 devc = sdi->priv;
5e78a564 1368 if (sr_sw_limits_check(&devc->acq_limits))
6057d9fa 1369 return download_capture(sdi);
00c86508 1370
d4051930
MV
1371 return TRUE;
1372}
28a35d8a 1373
3ba56876 1374SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
d4051930
MV
1375{
1376 struct sr_dev_inst *sdi;
1377 struct dev_context *devc;
88c51afe 1378
d4051930
MV
1379 (void)fd;
1380 (void)revents;
88c51afe 1381
d4051930
MV
1382 sdi = cb_data;
1383 devc = sdi->priv;
1384
1385 if (devc->state.state == SIGMA_IDLE)
1386 return TRUE;
1387
dde0175d
GS
1388 /*
1389 * When the application has requested to stop the acquisition,
1390 * then immediately start downloading sample data. Otherwise
1391 * keep checking configured limits which will terminate the
1392 * acquisition and initiate download.
1393 */
1394 if (devc->state.state == SIGMA_STOPPING)
1395 return download_capture(sdi);
d4051930
MV
1396 if (devc->state.state == SIGMA_CAPTURE)
1397 return sigma_capture_mode(sdi);
28a35d8a 1398
28a35d8a
HE
1399 return TRUE;
1400}
1401
c53d793f
HE
1402/* Build a LUT entry used by the trigger functions. */
1403static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
ee492173
HE
1404{
1405 int i, j, k, bit;
1406
ba7dd8bb 1407 /* For each quad channel. */
0a1f7b09 1408 for (i = 0; i < 4; i++) {
c53d793f 1409 entry[i] = 0xffff;
ee492173 1410
f758d074 1411 /* For each bit in LUT. */
0a1f7b09 1412 for (j = 0; j < 16; j++)
ee492173 1413
ba7dd8bb 1414 /* For each channel in quad. */
0a1f7b09 1415 for (k = 0; k < 4; k++) {
ee492173
HE
1416 bit = 1 << (i * 4 + k);
1417
c53d793f 1418 /* Set bit in entry */
0a1f7b09
UH
1419 if ((mask & bit) && ((!(value & bit)) !=
1420 (!(j & (1 << k)))))
c53d793f 1421 entry[i] &= ~(1 << j);
ee492173
HE
1422 }
1423 }
c53d793f 1424}
ee492173 1425
c53d793f
HE
1426/* Add a logical function to LUT mask. */
1427static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1428 int index, int neg, uint16_t *mask)
1429{
1430 int i, j;
1431 int x[2][2], tmp, a, b, aset, bset, rset;
1432
1433 memset(x, 0, 4 * sizeof(int));
1434
1435 /* Trigger detect condition. */
1436 switch (oper) {
1437 case OP_LEVEL:
1438 x[0][1] = 1;
1439 x[1][1] = 1;
1440 break;
1441 case OP_NOT:
1442 x[0][0] = 1;
1443 x[1][0] = 1;
1444 break;
1445 case OP_RISE:
1446 x[0][1] = 1;
1447 break;
1448 case OP_FALL:
1449 x[1][0] = 1;
1450 break;
1451 case OP_RISEFALL:
1452 x[0][1] = 1;
1453 x[1][0] = 1;
1454 break;
1455 case OP_NOTRISE:
1456 x[1][1] = 1;
1457 x[0][0] = 1;
1458 x[1][0] = 1;
1459 break;
1460 case OP_NOTFALL:
1461 x[1][1] = 1;
1462 x[0][0] = 1;
1463 x[0][1] = 1;
1464 break;
1465 case OP_NOTRISEFALL:
1466 x[1][1] = 1;
1467 x[0][0] = 1;
1468 break;
1469 }
1470
1471 /* Transpose if neg is set. */
1472 if (neg) {
0a1f7b09
UH
1473 for (i = 0; i < 2; i++) {
1474 for (j = 0; j < 2; j++) {
c53d793f 1475 tmp = x[i][j];
0a1f7b09
UH
1476 x[i][j] = x[1 - i][1 - j];
1477 x[1 - i][1 - j] = tmp;
c53d793f 1478 }
ea9cfed7 1479 }
c53d793f
HE
1480 }
1481
1482 /* Update mask with function. */
0a1f7b09 1483 for (i = 0; i < 16; i++) {
c53d793f
HE
1484 a = (i >> (2 * index + 0)) & 1;
1485 b = (i >> (2 * index + 1)) & 1;
1486
1487 aset = (*mask >> i) & 1;
1488 bset = x[b][a];
1489
382cb19f 1490 rset = 0;
c53d793f
HE
1491 if (func == FUNC_AND || func == FUNC_NAND)
1492 rset = aset & bset;
1493 else if (func == FUNC_OR || func == FUNC_NOR)
1494 rset = aset | bset;
1495 else if (func == FUNC_XOR || func == FUNC_NXOR)
1496 rset = aset ^ bset;
1497
1498 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1499 rset = !rset;
1500
1501 *mask &= ~(1 << i);
1502
1503 if (rset)
1504 *mask |= 1 << i;
1505 }
1506}
1507
1508/*
1509 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1510 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1511 * set at any time, but a full mask and value can be set (0/1).
1512 */
3ba56876 1513SR_PRIV int sigma_build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
c53d793f
HE
1514{
1515 int i,j;
4ae1f451 1516 uint16_t masks[2] = { 0, 0 };
c53d793f
HE
1517
1518 memset(lut, 0, sizeof(struct triggerlut));
1519
f3f19d11 1520 /* Constant for simple triggers. */
c53d793f
HE
1521 lut->m4 = 0xa000;
1522
1523 /* Value/mask trigger support. */
0e1357e8 1524 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
99965709 1525 lut->m2d);
c53d793f
HE
1526
1527 /* Rise/fall trigger support. */
0a1f7b09 1528 for (i = 0, j = 0; i < 16; i++) {
0e1357e8
BV
1529 if (devc->trigger.risingmask & (1 << i) ||
1530 devc->trigger.fallingmask & (1 << i))
c53d793f
HE
1531 masks[j++] = 1 << i;
1532 }
1533
1534 build_lut_entry(masks[0], masks[0], lut->m0d);
1535 build_lut_entry(masks[1], masks[1], lut->m1d);
1536
1537 /* Add glue logic */
1538 if (masks[0] || masks[1]) {
1539 /* Transition trigger. */
0e1357e8 1540 if (masks[0] & devc->trigger.risingmask)
c53d793f 1541 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1542 if (masks[0] & devc->trigger.fallingmask)
c53d793f 1543 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1544 if (masks[1] & devc->trigger.risingmask)
c53d793f 1545 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
0e1357e8 1546 if (masks[1] & devc->trigger.fallingmask)
c53d793f
HE
1547 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1548 } else {
1549 /* Only value/mask trigger. */
1550 lut->m3 = 0xffff;
1551 }
ee492173 1552
c53d793f 1553 /* Triggertype: event. */
ee492173
HE
1554 lut->params.selres = 3;
1555
e46b8fb1 1556 return SR_OK;
ee492173 1557}