]> sigrok.org Git - libsigrok.git/blame - src/hardware/asix-sigma/protocol.c
asix-sigma: move FPGA commands before register layout declaration
[libsigrok.git] / src / hardware / asix-sigma / protocol.c
CommitLineData
28a35d8a 1/*
50985c20 2 * This file is part of the libsigrok project.
28a35d8a 3 *
868501fa 4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
911f1834
UH
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
28a35d8a
HE
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
911f1834 22/*
6352d030 23 * ASIX SIGMA/SIGMA2 logic analyzer driver
911f1834
UH
24 */
25
6ec6c43b 26#include <config.h>
3ba56876 27#include "protocol.h"
28a35d8a 28
b1648dea
MV
29/*
30 * The ASIX Sigma supports arbitrary integer frequency divider in
31 * the 50MHz mode. The divider is in range 1...256 , allowing for
32 * very precise sampling rate selection. This driver supports only
33 * a subset of the sampling rates.
34 */
3ba56876 35SR_PRIV const uint64_t samplerates[] = {
b1648dea
MV
36 SR_KHZ(200), /* div=250 */
37 SR_KHZ(250), /* div=200 */
38 SR_KHZ(500), /* div=100 */
39 SR_MHZ(1), /* div=50 */
40 SR_MHZ(5), /* div=10 */
41 SR_MHZ(10), /* div=5 */
42 SR_MHZ(25), /* div=2 */
43 SR_MHZ(50), /* div=1 */
44 SR_MHZ(100), /* Special FW needed */
45 SR_MHZ(200), /* Special FW needed */
28a35d8a
HE
46};
47
4154a516 48SR_PRIV const size_t samplerates_count = ARRAY_SIZE(samplerates);
39c64c6a 49
742368a2
GS
50static const char *firmware_files[] = {
51 "asix-sigma-50.fw", /* Up to 50MHz sample rate, 8bit divider. */
52 "asix-sigma-100.fw", /* 100MHz sample rate, fixed. */
53 "asix-sigma-200.fw", /* 200MHz sample rate, fixed. */
54 "asix-sigma-50sync.fw", /* Synchronous clock from external pin. */
55 "asix-sigma-phasor.fw", /* Frequency counter. */
f6564c8d
HE
56};
57
742368a2
GS
58#define SIGMA_FIRMWARE_SIZE_LIMIT (256 * 1024)
59
0e1357e8 60static int sigma_read(void *buf, size_t size, struct dev_context *devc)
28a35d8a
HE
61{
62 int ret;
fefa1800 63
0e1357e8 64 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
28a35d8a 65 if (ret < 0) {
47f4f073 66 sr_err("ftdi_read_data failed: %s",
0e1357e8 67 ftdi_get_error_string(&devc->ftdic));
28a35d8a
HE
68 }
69
70 return ret;
71}
72
0e1357e8 73static int sigma_write(void *buf, size_t size, struct dev_context *devc)
28a35d8a
HE
74{
75 int ret;
fefa1800 76
0e1357e8 77 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
8ebad343 78 if (ret < 0)
47f4f073 79 sr_err("ftdi_write_data failed: %s",
0e1357e8 80 ftdi_get_error_string(&devc->ftdic));
8ebad343 81 else if ((size_t) ret != size)
47f4f073 82 sr_err("ftdi_write_data did not complete write.");
28a35d8a
HE
83
84 return ret;
85}
86
e8686e3a
AG
87/*
88 * NOTE: We chose the buffer size to be large enough to hold any write to the
89 * device. We still print a message just in case.
90 */
3ba56876 91SR_PRIV int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
92 struct dev_context *devc)
28a35d8a
HE
93{
94 size_t i;
e8686e3a 95 uint8_t buf[80];
28a35d8a
HE
96 int idx = 0;
97
7c86d853 98 if ((2 * len + 2) > sizeof(buf)) {
e8686e3a 99 sr_err("Attempted to write %zu bytes, but buffer is too small.",
7c86d853 100 len);
e8686e3a
AG
101 return SR_ERR_BUG;
102 }
103
28a35d8a
HE
104 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
105 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
106
0a1f7b09 107 for (i = 0; i < len; i++) {
28a35d8a
HE
108 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
109 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
110 }
111
0e1357e8 112 return sigma_write(buf, idx, devc);
28a35d8a
HE
113}
114
3ba56876 115SR_PRIV int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
28a35d8a 116{
0e1357e8 117 return sigma_write_register(reg, &value, 1, devc);
28a35d8a
HE
118}
119
99965709 120static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
0e1357e8 121 struct dev_context *devc)
28a35d8a
HE
122{
123 uint8_t buf[3];
fefa1800 124
28a35d8a
HE
125 buf[0] = REG_ADDR_LOW | (reg & 0xf);
126 buf[1] = REG_ADDR_HIGH | (reg >> 4);
28a35d8a
HE
127 buf[2] = REG_READ_ADDR;
128
0e1357e8 129 sigma_write(buf, sizeof(buf), devc);
28a35d8a 130
0e1357e8 131 return sigma_read(data, len, devc);
28a35d8a
HE
132}
133
99965709 134static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
0e1357e8 135 struct dev_context *devc)
28a35d8a 136{
07411a60
GS
137 /*
138 * Read 6 registers starting at trigger position LSB.
139 * Which yields two 24bit counter values.
140 */
28a35d8a
HE
141 uint8_t buf[] = {
142 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
07411a60
GS
143 REG_READ_ADDR | REG_ADDR_INC,
144 REG_READ_ADDR | REG_ADDR_INC,
145 REG_READ_ADDR | REG_ADDR_INC,
146 REG_READ_ADDR | REG_ADDR_INC,
147 REG_READ_ADDR | REG_ADDR_INC,
148 REG_READ_ADDR | REG_ADDR_INC,
28a35d8a 149 };
28a35d8a
HE
150 uint8_t result[6];
151
0e1357e8 152 sigma_write(buf, sizeof(buf), devc);
28a35d8a 153
0e1357e8 154 sigma_read(result, sizeof(result), devc);
28a35d8a
HE
155
156 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
157 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
158
dc400817
GS
159 /*
160 * These "position" values point to after the event (end of
161 * capture data, trigger condition matched). This is why they
162 * get decremented here. Sample memory consists of 512-byte
163 * chunks with meta data in the upper 64 bytes. Thus when the
164 * decrements takes us into this upper part of the chunk, then
165 * further move backwards to the end of the chunk's data part.
166 */
57bbf56b 167 if ((--*stoppos & 0x1ff) == 0x1ff)
382cb19f 168 *stoppos -= 64;
dc400817 169 if ((--*triggerpos & 0x1ff) == 0x1ff)
382cb19f 170 *triggerpos -= 64;
57bbf56b 171
28a35d8a
HE
172 return 1;
173}
174
99965709 175static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
0e1357e8 176 uint8_t *data, struct dev_context *devc)
28a35d8a 177{
28a35d8a 178 uint8_t buf[4096];
f06fb3e9 179 int idx;
07411a60
GS
180 size_t chunk;
181 int sel;
182 gboolean is_last;
28a35d8a 183
07411a60 184 /* Communicate DRAM start address (memory row, aka samples line). */
f06fb3e9
GS
185 idx = 0;
186 buf[idx++] = startchunk >> 8;
187 buf[idx++] = startchunk & 0xff;
188 sigma_write_register(WRITE_MEMROW, buf, idx, devc);
28a35d8a 189
07411a60
GS
190 /*
191 * Access DRAM content. Fetch from DRAM to FPGA's internal RAM,
192 * then transfer via USB. Interleave the FPGA's DRAM access and
193 * USB transfer, use alternating buffers (0/1) in the process.
194 */
f06fb3e9 195 idx = 0;
28a35d8a
HE
196 buf[idx++] = REG_DRAM_BLOCK;
197 buf[idx++] = REG_DRAM_WAIT_ACK;
07411a60
GS
198 for (chunk = 0; chunk < numchunks; chunk++) {
199 sel = chunk % 2;
200 is_last = chunk == numchunks - 1;
201 if (!is_last)
202 buf[idx++] = REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel);
203 buf[idx++] = REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel);
204 if (!is_last)
28a35d8a
HE
205 buf[idx++] = REG_DRAM_WAIT_ACK;
206 }
0e1357e8 207 sigma_write(buf, idx, devc);
28a35d8a 208
0e1357e8 209 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
28a35d8a
HE
210}
211
4ae1f451 212/* Upload trigger look-up tables to Sigma. */
3ba56876 213SR_PRIV int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
ee492173
HE
214{
215 int i;
216 uint8_t tmp[2];
217 uint16_t bit;
218
219 /* Transpose the table and send to Sigma. */
0a1f7b09 220 for (i = 0; i < 16; i++) {
ee492173
HE
221 bit = 1 << i;
222
223 tmp[0] = tmp[1] = 0;
224
225 if (lut->m2d[0] & bit)
226 tmp[0] |= 0x01;
227 if (lut->m2d[1] & bit)
228 tmp[0] |= 0x02;
229 if (lut->m2d[2] & bit)
230 tmp[0] |= 0x04;
231 if (lut->m2d[3] & bit)
232 tmp[0] |= 0x08;
233
234 if (lut->m3 & bit)
235 tmp[0] |= 0x10;
236 if (lut->m3s & bit)
237 tmp[0] |= 0x20;
238 if (lut->m4 & bit)
239 tmp[0] |= 0x40;
240
241 if (lut->m0d[0] & bit)
242 tmp[1] |= 0x01;
243 if (lut->m0d[1] & bit)
244 tmp[1] |= 0x02;
245 if (lut->m0d[2] & bit)
246 tmp[1] |= 0x04;
247 if (lut->m0d[3] & bit)
248 tmp[1] |= 0x08;
249
250 if (lut->m1d[0] & bit)
251 tmp[1] |= 0x10;
252 if (lut->m1d[1] & bit)
253 tmp[1] |= 0x20;
254 if (lut->m1d[2] & bit)
255 tmp[1] |= 0x40;
256 if (lut->m1d[3] & bit)
257 tmp[1] |= 0x80;
258
9fb4c632 259 sigma_write_register(WRITE_TRIGGER_SELECT, tmp, sizeof(tmp),
0e1357e8 260 devc);
9fb4c632 261 sigma_set_register(WRITE_TRIGGER_SELECT2, 0x30 | i, devc);
ee492173
HE
262 }
263
264 /* Send the parameters */
9fb4c632 265 sigma_write_register(WRITE_TRIGGER_SELECT, (uint8_t *) &lut->params,
0e1357e8 266 sizeof(lut->params), devc);
ee492173 267
e46b8fb1 268 return SR_OK;
ee492173
HE
269}
270
d5fa188a 271/*
dc0906e2
GS
272 * See Xilinx UG332 for Spartan-3 FPGA configuration. The SIGMA device
273 * uses FTDI bitbang mode for netlist download in slave serial mode.
274 * (LATER: The OMEGA device's cable contains a more capable FTDI chip
275 * and uses MPSSE mode for bitbang. -- Can we also use FT232H in FT245
276 * compatible bitbang mode? For maximum code re-use and reduced libftdi
277 * dependency? See section 3.5.5 of FT232H: D0 clk, D1 data (out), D2
278 * data (in), D3 select, D4-7 GPIOL. See section 3.5.7 for MCU FIFO.)
279 *
280 * 750kbps rate (four times the speed of sigmalogan) works well for
281 * netlist download. All pins except INIT_B are output pins during
282 * configuration download.
283 *
284 * Some pins are inverted as a byproduct of level shifting circuitry.
285 * That's why high CCLK level (from the cable's point of view) is idle
286 * from the FPGA's perspective.
287 *
288 * The vendor's literature discusses a "suicide sequence" which ends
289 * regular FPGA execution and should be sent before entering bitbang
290 * mode and sending configuration data. Set D7 and toggle D2, D3, D4
291 * a few times.
292 */
293#define BB_PIN_CCLK (1 << 0) /* D0, CCLK */
294#define BB_PIN_PROG (1 << 1) /* D1, PROG */
295#define BB_PIN_D2 (1 << 2) /* D2, (part of) SUICIDE */
296#define BB_PIN_D3 (1 << 3) /* D3, (part of) SUICIDE */
297#define BB_PIN_D4 (1 << 4) /* D4, (part of) SUICIDE (unused?) */
298#define BB_PIN_INIT (1 << 5) /* D5, INIT, input pin */
299#define BB_PIN_DIN (1 << 6) /* D6, DIN */
300#define BB_PIN_D7 (1 << 7) /* D7, (part of) SUICIDE */
301
302#define BB_BITRATE (750 * 1000)
303#define BB_PINMASK (0xff & ~BB_PIN_INIT)
304
305/*
306 * Initiate slave serial mode for configuration download. Which is done
307 * by pulsing PROG_B and sensing INIT_B. Make sure CCLK is idle before
308 * initiating the configuration download. Run a "suicide sequence" first
309 * to terminate the regular FPGA operation before reconfiguration.
d5fa188a
MV
310 */
311static int sigma_fpga_init_bitbang(struct dev_context *devc)
312{
313 uint8_t suicide[] = {
dc0906e2
GS
314 BB_PIN_D7 | BB_PIN_D2,
315 BB_PIN_D7 | BB_PIN_D2,
316 BB_PIN_D7 | BB_PIN_D3,
317 BB_PIN_D7 | BB_PIN_D2,
318 BB_PIN_D7 | BB_PIN_D3,
319 BB_PIN_D7 | BB_PIN_D2,
320 BB_PIN_D7 | BB_PIN_D3,
321 BB_PIN_D7 | BB_PIN_D2,
d5fa188a
MV
322 };
323 uint8_t init_array[] = {
dc0906e2
GS
324 BB_PIN_CCLK,
325 BB_PIN_CCLK | BB_PIN_PROG,
326 BB_PIN_CCLK | BB_PIN_PROG,
327 BB_PIN_CCLK,
328 BB_PIN_CCLK,
329 BB_PIN_CCLK,
330 BB_PIN_CCLK,
331 BB_PIN_CCLK,
332 BB_PIN_CCLK,
333 BB_PIN_CCLK,
d5fa188a 334 };
dc0906e2 335 int retries, ret;
d5fa188a
MV
336 uint8_t data;
337
338 /* Section 2. part 1), do the FPGA suicide. */
339 sigma_write(suicide, sizeof(suicide), devc);
340 sigma_write(suicide, sizeof(suicide), devc);
341 sigma_write(suicide, sizeof(suicide), devc);
342 sigma_write(suicide, sizeof(suicide), devc);
343
dc0906e2 344 /* Section 2. part 2), pulse PROG. */
d5fa188a
MV
345 sigma_write(init_array, sizeof(init_array), devc);
346 ftdi_usb_purge_buffers(&devc->ftdic);
347
dc0906e2
GS
348 /* Wait until the FPGA asserts INIT_B. */
349 retries = 10;
350 while (retries--) {
d5fa188a
MV
351 ret = sigma_read(&data, 1, devc);
352 if (ret < 0)
353 return ret;
dc0906e2
GS
354 if (data & BB_PIN_INIT)
355 return SR_OK;
1a46cc62 356 g_usleep(10 * 1000);
d5fa188a
MV
357 }
358
359 return SR_ERR_TIMEOUT;
360}
361
64fe661b
MV
362/*
363 * Configure the FPGA for logic-analyzer mode.
364 */
365static int sigma_fpga_init_la(struct dev_context *devc)
366{
dc0906e2
GS
367 /*
368 * TODO Construct the sequence at runtime? Such that request data
369 * and response check values will match more apparently?
370 */
22f64ed8 371 uint8_t mode_regval = WMR_SDRAMINIT;
64fe661b 372 uint8_t logic_mode_start[] = {
dc0906e2 373 /* Read ID register. */
011f1091 374 REG_ADDR_LOW | (READ_ID & 0xf),
84a6ed1a 375 REG_ADDR_HIGH | (READ_ID >> 4),
dc0906e2 376 REG_READ_ADDR,
011f1091 377
dc0906e2 378 /* Write 0x55 to scratch register, read back. */
011f1091
MV
379 REG_ADDR_LOW | (WRITE_TEST & 0xf),
380 REG_DATA_LOW | 0x5,
381 REG_DATA_HIGH_WRITE | 0x5,
dc0906e2 382 REG_READ_ADDR,
011f1091 383
dc0906e2 384 /* Write 0xaa to scratch register, read back. */
011f1091
MV
385 REG_DATA_LOW | 0xa,
386 REG_DATA_HIGH_WRITE | 0xa,
dc0906e2 387 REG_READ_ADDR,
011f1091 388
dc0906e2 389 /* Initiate SDRAM initialization in mode register. */
011f1091 390 REG_ADDR_LOW | (WRITE_MODE & 0xf),
22f64ed8
GS
391 REG_DATA_LOW | (mode_regval & 0xf),
392 REG_DATA_HIGH_WRITE | (mode_regval >> 4),
64fe661b 393 };
64fe661b
MV
394 uint8_t result[3];
395 int ret;
396
dc0906e2
GS
397 /*
398 * Send the command sequence which contains 3 READ requests.
399 * Expect to see the corresponding 3 response bytes.
400 */
64fe661b 401 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
dc0906e2
GS
402 ret = sigma_read(result, ARRAY_SIZE(result), devc);
403 if (ret != ARRAY_SIZE(result))
64fe661b 404 goto err;
64fe661b
MV
405 if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
406 goto err;
407
408 return SR_OK;
dc0906e2 409
64fe661b
MV
410err:
411 sr_err("Configuration failed. Invalid reply received.");
412 return SR_ERR;
413}
414
a80226bb
MV
415/*
416 * Read the firmware from a file and transform it into a series of bitbang
417 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
418 * by the caller of this function.
419 */
8e2d6c9d 420static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
a80226bb
MV
421 uint8_t **bb_cmd, gsize *bb_cmd_size)
422{
dc0906e2
GS
423 uint8_t *firmware;
424 size_t file_size;
425 uint8_t *p;
426 size_t l;
a80226bb 427 uint32_t imm;
dc0906e2
GS
428 size_t bb_size;
429 uint8_t *bb_stream, *bbs, byte, mask, v;
a80226bb 430
387825dc 431 /* Retrieve the on-disk firmware file content. */
742368a2
GS
432 firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE, name,
433 &file_size, SIGMA_FIRMWARE_SIZE_LIMIT);
8e2d6c9d 434 if (!firmware)
dc0906e2 435 return SR_ERR_IO;
a80226bb 436
387825dc 437 /* Unscramble the file content (XOR with "random" sequence). */
dc0906e2
GS
438 p = firmware;
439 l = file_size;
a80226bb 440 imm = 0x3f6df2ab;
dc0906e2 441 while (l--) {
a80226bb 442 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
dc0906e2 443 *p++ ^= imm & 0xff;
a80226bb
MV
444 }
445
446 /*
387825dc
GS
447 * Generate a sequence of bitbang samples. With two samples per
448 * FPGA configuration bit, providing the level for the DIN signal
449 * as well as two edges for CCLK. See Xilinx UG332 for details
450 * ("slave serial" mode).
451 *
452 * Note that CCLK is inverted in hardware. That's why the
453 * respective bit is first set and then cleared in the bitbang
454 * sample sets. So that the DIN level will be stable when the
455 * data gets sampled at the rising CCLK edge, and the signals'
456 * setup time constraint will be met.
457 *
458 * The caller will put the FPGA into download mode, will send
459 * the bitbang samples, and release the allocated memory.
a80226bb 460 */
a80226bb 461 bb_size = file_size * 8 * 2;
dc0906e2 462 bb_stream = g_try_malloc(bb_size);
a80226bb
MV
463 if (!bb_stream) {
464 sr_err("%s: Failed to allocate bitbang stream", __func__);
dc0906e2
GS
465 g_free(firmware);
466 return SR_ERR_MALLOC;
a80226bb 467 }
a80226bb 468 bbs = bb_stream;
dc0906e2
GS
469 p = firmware;
470 l = file_size;
471 while (l--) {
472 byte = *p++;
473 mask = 0x80;
474 while (mask) {
475 v = (byte & mask) ? BB_PIN_DIN : 0;
476 mask >>= 1;
477 *bbs++ = v | BB_PIN_CCLK;
a80226bb
MV
478 *bbs++ = v;
479 }
480 }
dc0906e2 481 g_free(firmware);
a80226bb
MV
482
483 /* The transformation completed successfully, return the result. */
484 *bb_cmd = bb_stream;
485 *bb_cmd_size = bb_size;
486
dc0906e2 487 return SR_OK;
a80226bb
MV
488}
489
8e2d6c9d
DE
490static int upload_firmware(struct sr_context *ctx,
491 int firmware_idx, struct dev_context *devc)
28a35d8a
HE
492{
493 int ret;
494 unsigned char *buf;
495 unsigned char pins;
496 size_t buf_size;
a9016883 497 const char *firmware;
a9016883
GS
498
499 /* Avoid downloading the same firmware multiple times. */
4b25cbff 500 firmware = firmware_files[firmware_idx];
a9016883
GS
501 if (devc->cur_firmware == firmware_idx) {
502 sr_info("Not uploading firmware file '%s' again.", firmware);
503 return SR_OK;
504 }
28a35d8a 505
dc0906e2
GS
506 /* Set the cable to bitbang mode. */
507 ret = ftdi_set_bitmode(&devc->ftdic, BB_PINMASK, BITMODE_BITBANG);
8bbf7627 508 if (ret < 0) {
47f4f073 509 sr_err("ftdi_set_bitmode failed: %s",
1f4f98e0 510 ftdi_get_error_string(&devc->ftdic));
7bcf2168 511 return SR_ERR;
28a35d8a 512 }
dc0906e2 513 ret = ftdi_set_baudrate(&devc->ftdic, BB_BITRATE);
8bbf7627 514 if (ret < 0) {
47f4f073 515 sr_err("ftdi_set_baudrate failed: %s",
1f4f98e0 516 ftdi_get_error_string(&devc->ftdic));
7bcf2168 517 return SR_ERR;
28a35d8a
HE
518 }
519
dc0906e2 520 /* Initiate FPGA configuration mode. */
d5fa188a
MV
521 ret = sigma_fpga_init_bitbang(devc);
522 if (ret)
523 return ret;
28a35d8a 524
dc0906e2 525 /* Prepare wire format of the firmware image. */
8e2d6c9d 526 ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
8bbf7627 527 if (ret != SR_OK) {
f3f19d11 528 sr_err("An error occurred while reading the firmware: %s",
499b17e9 529 firmware);
b53738ba 530 return ret;
28a35d8a
HE
531 }
532
dc0906e2 533 /* Write the FPGA netlist to the cable. */
499b17e9 534 sr_info("Uploading firmware file '%s'.", firmware);
0e1357e8 535 sigma_write(buf, buf_size, devc);
28a35d8a
HE
536
537 g_free(buf);
538
dc0906e2
GS
539 /* Leave bitbang mode and discard pending input data. */
540 ret = ftdi_set_bitmode(&devc->ftdic, 0, BITMODE_RESET);
8bbf7627 541 if (ret < 0) {
47f4f073 542 sr_err("ftdi_set_bitmode failed: %s",
1f4f98e0 543 ftdi_get_error_string(&devc->ftdic));
e46b8fb1 544 return SR_ERR;
28a35d8a 545 }
1f4f98e0 546 ftdi_usb_purge_buffers(&devc->ftdic);
29b66a2e 547 while (sigma_read(&pins, 1, devc) == 1)
28a35d8a
HE
548 ;
549
64fe661b
MV
550 /* Initialize the FPGA for logic-analyzer mode. */
551 ret = sigma_fpga_init_la(devc);
552 if (ret != SR_OK)
553 return ret;
28a35d8a 554
dc0906e2 555 /* Keep track of successful firmware download completion. */
0e1357e8 556 devc->cur_firmware = firmware_idx;
47f4f073 557 sr_info("Firmware uploaded.");
e3fff420 558
e46b8fb1 559 return SR_OK;
f6564c8d
HE
560}
561
9a0a606a
GS
562/*
563 * Sigma doesn't support limiting the number of samples, so we have to
564 * translate the number and the samplerate to an elapsed time.
565 *
566 * In addition we need to ensure that the last data cluster has passed
567 * the hardware pipeline, and became available to the PC side. With RLE
568 * compression up to 327ms could pass before another cluster accumulates
569 * at 200kHz samplerate when input pins don't change.
570 */
571SR_PRIV uint64_t sigma_limit_samples_to_msec(const struct dev_context *devc,
572 uint64_t limit_samples)
573{
574 uint64_t limit_msec;
575 uint64_t worst_cluster_time_ms;
576
577 limit_msec = limit_samples * 1000 / devc->cur_samplerate;
578 worst_cluster_time_ms = 65536 * 1000 / devc->cur_samplerate;
579 /*
580 * One cluster time is not enough to flush pipeline when sampling
581 * grounded pins with 1 sample limit at 200kHz. Hence the 2* fix.
582 */
583 return limit_msec + 2 * worst_cluster_time_ms;
584}
585
3ba56876 586SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
f6564c8d 587{
2c9c0df8 588 struct dev_context *devc;
8e2d6c9d 589 struct drv_context *drvc;
4154a516 590 size_t i;
2c9c0df8 591 int ret;
ac9534f4 592 int num_channels;
f6564c8d 593
2c9c0df8 594 devc = sdi->priv;
8e2d6c9d 595 drvc = sdi->driver->context;
f4abaa9f
UH
596 ret = SR_OK;
597
2f7e529c 598 /* Reject rates that are not in the list of supported rates. */
4154a516 599 for (i = 0; i < samplerates_count; i++) {
2c9c0df8 600 if (samplerates[i] == samplerate)
f6564c8d
HE
601 break;
602 }
4154a516 603 if (i >= samplerates_count || samplerates[i] == 0)
e46b8fb1 604 return SR_ERR_SAMPLERATE;
f6564c8d 605
2f7e529c
GS
606 /*
607 * Depending on the samplerates of 200/100/50- MHz, specific
608 * firmware is required and higher rates might limit the set
609 * of available channels.
610 */
ac9534f4 611 num_channels = devc->num_channels;
59df0c77 612 if (samplerate <= SR_MHZ(50)) {
8e2d6c9d 613 ret = upload_firmware(drvc->sr_ctx, 0, devc);
ac9534f4 614 num_channels = 16;
6b2d3385 615 } else if (samplerate == SR_MHZ(100)) {
8e2d6c9d 616 ret = upload_firmware(drvc->sr_ctx, 1, devc);
ac9534f4 617 num_channels = 8;
6b2d3385 618 } else if (samplerate == SR_MHZ(200)) {
8e2d6c9d 619 ret = upload_firmware(drvc->sr_ctx, 2, devc);
ac9534f4 620 num_channels = 4;
f78898e9 621 }
f6564c8d 622
2f7e529c
GS
623 /*
624 * Derive the sample period from the sample rate as well as the
625 * number of samples that the device will communicate within
626 * an "event" (memory organization internal to the device).
627 */
6b2d3385 628 if (ret == SR_OK) {
ac9534f4 629 devc->num_channels = num_channels;
6b2d3385 630 devc->cur_samplerate = samplerate;
6b2d3385
BV
631 devc->samples_per_event = 16 / devc->num_channels;
632 devc->state.state = SIGMA_IDLE;
633 }
f6564c8d 634
2f7e529c
GS
635 /*
636 * Support for "limit_samples" is implemented by stopping
637 * acquisition after a corresponding period of time.
638 * Re-calculate that period of time, in case the limit is
639 * set first and the samplerate gets (re-)configured later.
640 */
641 if (ret == SR_OK && devc->limit_samples) {
642 uint64_t msecs;
9a0a606a 643 msecs = sigma_limit_samples_to_msec(devc, devc->limit_samples);
2f7e529c
GS
644 devc->limit_msec = msecs;
645 }
646
e8397563 647 return ret;
28a35d8a
HE
648}
649
c53d793f
HE
650/*
651 * In 100 and 200 MHz mode, only a single pin rising/falling can be
652 * set as trigger. In other modes, two rising/falling triggers can be set,
ba7dd8bb 653 * in addition to value/mask trigger for any number of channels.
c53d793f
HE
654 *
655 * The Sigma supports complex triggers using boolean expressions, but this
656 * has not been implemented yet.
657 */
3ba56876 658SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
57bbf56b 659{
39c64c6a
BV
660 struct dev_context *devc;
661 struct sr_trigger *trigger;
662 struct sr_trigger_stage *stage;
663 struct sr_trigger_match *match;
664 const GSList *l, *m;
665 int channelbit, trigger_set;
57bbf56b 666
39c64c6a 667 devc = sdi->priv;
0e1357e8 668 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
0812c40e 669 if (!(trigger = sr_session_trigger_get(sdi->session)))
39c64c6a
BV
670 return SR_OK;
671
672 trigger_set = 0;
673 for (l = trigger->stages; l; l = l->next) {
674 stage = l->data;
675 for (m = stage->matches; m; m = m->next) {
676 match = m->data;
677 if (!match->channel->enabled)
678 /* Ignore disabled channels with a trigger. */
679 continue;
680 channelbit = 1 << (match->channel->index);
681 if (devc->cur_samplerate >= SR_MHZ(100)) {
682 /* Fast trigger support. */
683 if (trigger_set) {
684 sr_err("Only a single pin trigger is "
685 "supported in 100 and 200MHz mode.");
686 return SR_ERR;
687 }
688 if (match->match == SR_TRIGGER_FALLING)
689 devc->trigger.fallingmask |= channelbit;
690 else if (match->match == SR_TRIGGER_RISING)
691 devc->trigger.risingmask |= channelbit;
692 else {
693 sr_err("Only rising/falling trigger is "
694 "supported in 100 and 200MHz mode.");
695 return SR_ERR;
696 }
eec5275e 697
0a1f7b09 698 trigger_set++;
39c64c6a
BV
699 } else {
700 /* Simple trigger support (event). */
701 if (match->match == SR_TRIGGER_ONE) {
702 devc->trigger.simplevalue |= channelbit;
703 devc->trigger.simplemask |= channelbit;
8ebad343 704 } else if (match->match == SR_TRIGGER_ZERO) {
39c64c6a
BV
705 devc->trigger.simplevalue &= ~channelbit;
706 devc->trigger.simplemask |= channelbit;
8ebad343 707 } else if (match->match == SR_TRIGGER_FALLING) {
39c64c6a 708 devc->trigger.fallingmask |= channelbit;
0a1f7b09 709 trigger_set++;
8ebad343 710 } else if (match->match == SR_TRIGGER_RISING) {
39c64c6a 711 devc->trigger.risingmask |= channelbit;
0a1f7b09 712 trigger_set++;
39c64c6a
BV
713 }
714
715 /*
716 * Actually, Sigma supports 2 rising/falling triggers,
717 * but they are ORed and the current trigger syntax
718 * does not permit ORed triggers.
719 */
720 if (trigger_set > 1) {
721 sr_err("Only 1 rising/falling trigger "
722 "is supported.");
723 return SR_ERR;
724 }
ee492173 725 }
ee492173 726 }
57bbf56b
HE
727 }
728
e46b8fb1 729 return SR_OK;
57bbf56b
HE
730}
731
36b1c8e6 732/* Software trigger to determine exact trigger position. */
5fc01191 733static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
36b1c8e6
HE
734 struct sigma_trigger *t)
735{
736 int i;
5fc01191 737 uint16_t sample = 0;
36b1c8e6 738
0a1f7b09 739 for (i = 0; i < 8; i++) {
36b1c8e6 740 if (i > 0)
5fc01191
MV
741 last_sample = sample;
742 sample = samples[2 * i] | (samples[2 * i + 1] << 8);
36b1c8e6
HE
743
744 /* Simple triggers. */
5fc01191 745 if ((sample & t->simplemask) != t->simplevalue)
36b1c8e6
HE
746 continue;
747
748 /* Rising edge. */
5fc01191
MV
749 if (((last_sample & t->risingmask) != 0) ||
750 ((sample & t->risingmask) != t->risingmask))
36b1c8e6
HE
751 continue;
752
753 /* Falling edge. */
bdfc7a89 754 if ((last_sample & t->fallingmask) != t->fallingmask ||
5fc01191 755 (sample & t->fallingmask) != 0)
36b1c8e6
HE
756 continue;
757
758 break;
759 }
760
761 /* If we did not match, return original trigger pos. */
762 return i & 0x7;
763}
764
3513d965
MV
765/*
766 * Return the timestamp of "DRAM cluster".
767 */
768static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
769{
770 return (cluster->timestamp_hi << 8) | cluster->timestamp_lo;
771}
772
0498f743
GS
773/*
774 * Return one 16bit data entity of a DRAM cluster at the specified index.
775 */
776static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx)
777{
778 uint16_t sample;
779
780 sample = 0;
781 sample |= cl->samples[idx].sample_lo << 0;
782 sample |= cl->samples[idx].sample_hi << 8;
3281cf59 783 sample = (sample >> 8) | (sample << 8);
0498f743
GS
784 return sample;
785}
786
85c032e4
GS
787/*
788 * Deinterlace sample data that was retrieved at 100MHz samplerate.
789 * One 16bit item contains two samples of 8bits each. The bits of
790 * multiple samples are interleaved.
791 */
792static uint16_t sigma_deinterlace_100mhz_data(uint16_t indata, int idx)
793{
794 uint16_t outdata;
795
796 indata >>= idx;
797 outdata = 0;
798 outdata |= (indata >> (0 * 2 - 0)) & (1 << 0);
799 outdata |= (indata >> (1 * 2 - 1)) & (1 << 1);
800 outdata |= (indata >> (2 * 2 - 2)) & (1 << 2);
801 outdata |= (indata >> (3 * 2 - 3)) & (1 << 3);
802 outdata |= (indata >> (4 * 2 - 4)) & (1 << 4);
803 outdata |= (indata >> (5 * 2 - 5)) & (1 << 5);
804 outdata |= (indata >> (6 * 2 - 6)) & (1 << 6);
805 outdata |= (indata >> (7 * 2 - 7)) & (1 << 7);
806 return outdata;
807}
808
809/*
810 * Deinterlace sample data that was retrieved at 200MHz samplerate.
811 * One 16bit item contains four samples of 4bits each. The bits of
812 * multiple samples are interleaved.
813 */
814static uint16_t sigma_deinterlace_200mhz_data(uint16_t indata, int idx)
815{
816 uint16_t outdata;
817
818 indata >>= idx;
819 outdata = 0;
820 outdata |= (indata >> (0 * 4 - 0)) & (1 << 0);
821 outdata |= (indata >> (1 * 4 - 1)) & (1 << 1);
822 outdata |= (indata >> (2 * 4 - 2)) & (1 << 2);
823 outdata |= (indata >> (3 * 4 - 3)) & (1 << 3);
824 return outdata;
825}
826
0498f743
GS
827static void store_sr_sample(uint8_t *samples, int idx, uint16_t data)
828{
829 samples[2 * idx + 0] = (data >> 0) & 0xff;
830 samples[2 * idx + 1] = (data >> 8) & 0xff;
831}
832
735ed8a1
GS
833/*
834 * Local wrapper around sr_session_send() calls. Make sure to not send
835 * more samples to the session's datafeed than what was requested by a
836 * previously configured (optional) sample count.
837 */
838static void sigma_session_send(struct sr_dev_inst *sdi,
839 struct sr_datafeed_packet *packet)
840{
841 struct dev_context *devc;
842 struct sr_datafeed_logic *logic;
843 uint64_t send_now;
844
845 devc = sdi->priv;
846 if (devc->limit_samples) {
847 logic = (void *)packet->payload;
848 send_now = logic->length / logic->unitsize;
849 if (devc->sent_samples + send_now > devc->limit_samples) {
850 send_now = devc->limit_samples - devc->sent_samples;
851 logic->length = send_now * logic->unitsize;
852 }
853 if (!send_now)
854 return;
855 devc->sent_samples += send_now;
856 }
857
858 sr_session_send(sdi, packet);
859}
860
85c032e4
GS
861/*
862 * This size translates to: event count (1K events per cluster), times
863 * the sample width (unitsize, 16bits per event), times the maximum
864 * number of samples per event.
865 */
866#define SAMPLES_BUFFER_SIZE (1024 * 2 * 4)
867
23239b5c
MV
868static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster,
869 unsigned int events_in_cluster,
1e23158b 870 unsigned int triggered,
23239b5c
MV
871 struct sr_dev_inst *sdi)
872{
873 struct dev_context *devc = sdi->priv;
874 struct sigma_state *ss = &devc->state;
875 struct sr_datafeed_packet packet;
876 struct sr_datafeed_logic logic;
85c032e4
GS
877 uint16_t tsdiff, ts, sample, item16;
878 uint8_t samples[SAMPLES_BUFFER_SIZE];
879 uint8_t *send_ptr;
880 size_t send_count, trig_count;
23239b5c 881 unsigned int i;
85c032e4 882 int j;
23239b5c 883
23239b5c
MV
884 ts = sigma_dram_cluster_ts(dram_cluster);
885 tsdiff = ts - ss->lastts;
a44b3b3f 886 ss->lastts = ts + EVENTS_PER_CLUSTER;
23239b5c
MV
887
888 packet.type = SR_DF_LOGIC;
889 packet.payload = &logic;
890 logic.unitsize = 2;
891 logic.data = samples;
892
893 /*
468f17f2
GS
894 * If this cluster is not adjacent to the previously received
895 * cluster, then send the appropriate number of samples with the
896 * previous values to the sigrok session. This "decodes RLE".
23239b5c 897 */
a44b3b3f 898 for (ts = 0; ts < tsdiff; ts++) {
23239b5c 899 i = ts % 1024;
0498f743 900 store_sr_sample(samples, i, ss->lastsample);
23239b5c
MV
901
902 /*
903 * If we have 1024 samples ready or we're at the
904 * end of submitting the padding samples, submit
85c032e4
GS
905 * the packet to Sigrok. Since constant data is
906 * sent, duplication of data for rates above 50MHz
907 * is simple.
23239b5c 908 */
a44b3b3f 909 if ((i == 1023) || (ts == tsdiff - 1)) {
23239b5c 910 logic.length = (i + 1) * logic.unitsize;
85c032e4 911 for (j = 0; j < devc->samples_per_event; j++)
735ed8a1 912 sigma_session_send(sdi, &packet);
23239b5c
MV
913 }
914 }
915
916 /*
917 * Parse the samples in current cluster and prepare them
85c032e4
GS
918 * to be submitted to Sigrok. Cope with memory layouts that
919 * vary with the samplerate.
23239b5c 920 */
85c032e4
GS
921 send_ptr = &samples[0];
922 send_count = 0;
0498f743 923 sample = 0;
23239b5c 924 for (i = 0; i < events_in_cluster; i++) {
85c032e4
GS
925 item16 = sigma_dram_cluster_data(dram_cluster, i);
926 if (devc->cur_samplerate == SR_MHZ(200)) {
927 sample = sigma_deinterlace_200mhz_data(item16, 0);
928 store_sr_sample(samples, send_count++, sample);
929 sample = sigma_deinterlace_200mhz_data(item16, 1);
930 store_sr_sample(samples, send_count++, sample);
931 sample = sigma_deinterlace_200mhz_data(item16, 2);
932 store_sr_sample(samples, send_count++, sample);
933 sample = sigma_deinterlace_200mhz_data(item16, 3);
934 store_sr_sample(samples, send_count++, sample);
935 } else if (devc->cur_samplerate == SR_MHZ(100)) {
936 sample = sigma_deinterlace_100mhz_data(item16, 0);
937 store_sr_sample(samples, send_count++, sample);
938 sample = sigma_deinterlace_100mhz_data(item16, 1);
939 store_sr_sample(samples, send_count++, sample);
940 } else {
941 sample = item16;
942 store_sr_sample(samples, send_count++, sample);
943 }
23239b5c
MV
944 }
945
de3f7acb
GS
946 /*
947 * If a trigger position applies, then provide the datafeed with
948 * the first part of data up to that position, then send the
949 * trigger marker.
950 */
23239b5c 951 int trigger_offset = 0;
1e23158b 952 if (triggered) {
23239b5c
MV
953 /*
954 * Trigger is not always accurate to sample because of
955 * pipeline delay. However, it always triggers before
956 * the actual event. We therefore look at the next
957 * samples to pinpoint the exact position of the trigger.
958 */
959 trigger_offset = get_trigger_offset(samples,
960 ss->lastsample, &devc->trigger);
961
962 if (trigger_offset > 0) {
85c032e4 963 trig_count = trigger_offset * devc->samples_per_event;
23239b5c 964 packet.type = SR_DF_LOGIC;
85c032e4 965 logic.length = trig_count * logic.unitsize;
735ed8a1 966 sigma_session_send(sdi, &packet);
85c032e4
GS
967 send_ptr += trig_count * logic.unitsize;
968 send_count -= trig_count;
23239b5c
MV
969 }
970
971 /* Only send trigger if explicitly enabled. */
0fa71943
UH
972 if (devc->use_triggers)
973 std_session_send_df_trigger(sdi);
23239b5c
MV
974 }
975
de3f7acb
GS
976 /*
977 * Send the data after the trigger, or all of the received data
978 * if no trigger position applies.
979 */
85c032e4 980 if (send_count) {
23239b5c 981 packet.type = SR_DF_LOGIC;
85c032e4
GS
982 logic.length = send_count * logic.unitsize;
983 logic.data = send_ptr;
735ed8a1 984 sigma_session_send(sdi, &packet);
23239b5c
MV
985 }
986
0498f743 987 ss->lastsample = sample;
23239b5c
MV
988}
989
28a35d8a 990/*
fefa1800
UH
991 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
992 * Each event is 20ns apart, and can contain multiple samples.
f78898e9
HE
993 *
994 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
995 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
996 * For 50 MHz and below, events contain one sample for each channel,
997 * spread 20 ns apart.
28a35d8a 998 */
1e23158b
MV
999static int decode_chunk_ts(struct sigma_dram_line *dram_line,
1000 uint16_t events_in_line,
1001 uint32_t trigger_event,
102f1239 1002 struct sr_dev_inst *sdi)
28a35d8a 1003{
3628074d 1004 struct sigma_dram_cluster *dram_cluster;
f06fb3e9
GS
1005 struct dev_context *devc;
1006 unsigned int clusters_in_line;
5fc01191 1007 unsigned int events_in_cluster;
23239b5c 1008 unsigned int i;
f06fb3e9
GS
1009 uint32_t trigger_cluster, triggered;
1010
1011 devc = sdi->priv;
1012 clusters_in_line = events_in_line;
1013 clusters_in_line += EVENTS_PER_CLUSTER - 1;
1014 clusters_in_line /= EVENTS_PER_CLUSTER;
1015 trigger_cluster = ~0;
1016 triggered = 0;
ee492173 1017
4ae1f451 1018 /* Check if trigger is in this chunk. */
1e23158b
MV
1019 if (trigger_event < (64 * 7)) {
1020 if (devc->cur_samplerate <= SR_MHZ(50)) {
1021 trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
1022 trigger_event);
1023 }
57bbf56b 1024
f3f19d11 1025 /* Find in which cluster the trigger occurred. */
1e23158b 1026 trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
ee492173 1027 }
28a35d8a 1028
5fc01191
MV
1029 /* For each full DRAM cluster. */
1030 for (i = 0; i < clusters_in_line; i++) {
3628074d 1031 dram_cluster = &dram_line->cluster[i];
5fc01191 1032
5fc01191 1033 /* The last cluster might not be full. */
23239b5c
MV
1034 if ((i == clusters_in_line - 1) &&
1035 (events_in_line % EVENTS_PER_CLUSTER)) {
5fc01191 1036 events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
23239b5c 1037 } else {
5fc01191 1038 events_in_cluster = EVENTS_PER_CLUSTER;
abda62ce 1039 }
ee492173 1040
1e23158b
MV
1041 triggered = (i == trigger_cluster);
1042 sigma_decode_dram_cluster(dram_cluster, events_in_cluster,
1043 triggered, sdi);
28a35d8a
HE
1044 }
1045
e46b8fb1 1046 return SR_OK;
28a35d8a
HE
1047}
1048
6057d9fa 1049static int download_capture(struct sr_dev_inst *sdi)
28a35d8a 1050{
e15e5873 1051 const uint32_t chunks_per_read = 32;
f06fb3e9
GS
1052
1053 struct dev_context *devc;
fd830beb 1054 struct sigma_dram_line *dram_line;
c6648b66 1055 int bufsz;
462fe786 1056 uint32_t stoppos, triggerpos;
6057d9fa 1057 uint8_t modestatus;
c6648b66
MV
1058 uint32_t i;
1059 uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
74d453ab 1060 uint32_t dl_first_line, dl_line;
f06fb3e9
GS
1061 uint32_t dl_events_in_line;
1062 uint32_t trg_line, trg_event;
1063
1064 devc = sdi->priv;
1065 dl_events_in_line = 64 * 7;
c6648b66 1066
6868626b 1067 sr_info("Downloading sample data.");
dde0175d 1068 devc->state.state = SIGMA_DOWNLOAD;
6868626b 1069
22f64ed8
GS
1070 /*
1071 * Ask the hardware to stop data acquisition. Reception of the
1072 * FORCESTOP request makes the hardware "disable RLE" (store
1073 * clusters to DRAM regardless of whether pin state changes) and
1074 * raise the POSTTRIGGERED flag.
1075 */
1076 sigma_set_register(WRITE_MODE, WMR_FORCESTOP | WMR_SDRAMWRITEEN, devc);
1077 do {
f73b00b6 1078 if (sigma_read_register(READ_MODE, &modestatus, 1, devc) != 1) {
bfa79fbd 1079 sr_err("failed while waiting for RMR_POSTTRIGGERED bit");
f73b00b6
DT
1080 return FALSE;
1081 }
22f64ed8 1082 } while (!(modestatus & RMR_POSTTRIGGERED));
6057d9fa
MV
1083
1084 /* Set SDRAM Read Enable. */
22f64ed8 1085 sigma_set_register(WRITE_MODE, WMR_SDRAMREADEN, devc);
6057d9fa
MV
1086
1087 /* Get the current position. */
462fe786 1088 sigma_read_pos(&stoppos, &triggerpos, devc);
6057d9fa
MV
1089
1090 /* Check if trigger has fired. */
f73b00b6 1091 if (sigma_read_register(READ_MODE, &modestatus, 1, devc) != 1) {
bfa79fbd 1092 sr_err("failed to read READ_MODE register");
f73b00b6
DT
1093 return FALSE;
1094 }
dc400817
GS
1095 trg_line = ~0;
1096 trg_event = ~0;
22f64ed8 1097 if (modestatus & RMR_TRIGGERED) {
c6648b66 1098 trg_line = triggerpos >> 9;
1e23158b
MV
1099 trg_event = triggerpos & 0x1ff;
1100 }
6057d9fa 1101
735ed8a1
GS
1102 devc->sent_samples = 0;
1103
c6648b66 1104 /*
74d453ab
GS
1105 * Determine how many "DRAM lines" of 1024 bytes each we need to
1106 * retrieve from the Sigma hardware, so that we have a complete
1107 * set of samples. Note that the last line need not contain 64
1108 * clusters, it might be partially filled only.
1109 *
1110 * When RMR_ROUND is set, the circular buffer in DRAM has wrapped
1111 * around. Since the status of the very next line is uncertain in
1112 * that case, we skip it and start reading from the next line. The
1113 * circular buffer has 32K lines (0x8000).
c6648b66
MV
1114 */
1115 dl_lines_total = (stoppos >> 9) + 1;
74d453ab
GS
1116 if (modestatus & RMR_ROUND) {
1117 dl_first_line = dl_lines_total + 1;
1118 dl_lines_total = 0x8000 - 2;
1119 } else {
1120 dl_first_line = 0;
1121 }
44081095
DT
1122 dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
1123 if (!dram_line)
1124 return FALSE;
c6648b66 1125 dl_lines_done = 0;
c6648b66
MV
1126 while (dl_lines_total > dl_lines_done) {
1127 /* We can download only up-to 32 DRAM lines in one go! */
547c4cdc 1128 dl_lines_curr = MIN(chunks_per_read, dl_lines_total - dl_lines_done);
6868626b 1129
74d453ab
GS
1130 dl_line = dl_first_line + dl_lines_done;
1131 dl_line %= 0x8000;
1132 bufsz = sigma_read_dram(dl_line, dl_lines_curr,
f41a4cae 1133 (uint8_t *)dram_line, devc);
c6648b66
MV
1134 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1135 (void)bufsz;
6868626b 1136
c6648b66
MV
1137 /* This is the first DRAM line, so find the initial timestamp. */
1138 if (dl_lines_done == 0) {
3513d965
MV
1139 devc->state.lastts =
1140 sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
c6648b66 1141 devc->state.lastsample = 0;
6868626b
BV
1142 }
1143
c6648b66 1144 for (i = 0; i < dl_lines_curr; i++) {
1e23158b 1145 uint32_t trigger_event = ~0;
c6648b66
MV
1146 /* The last "DRAM line" can be only partially full. */
1147 if (dl_lines_done + i == dl_lines_total - 1)
46641fac 1148 dl_events_in_line = stoppos & 0x1ff;
c6648b66 1149
e69ad48e 1150 /* Test if the trigger happened on this line. */
c6648b66 1151 if (dl_lines_done + i == trg_line)
1e23158b 1152 trigger_event = trg_event;
e69ad48e 1153
1e23158b
MV
1154 decode_chunk_ts(dram_line + i, dl_events_in_line,
1155 trigger_event, sdi);
c6648b66 1156 }
6868626b 1157
c6648b66 1158 dl_lines_done += dl_lines_curr;
6868626b 1159 }
dde0175d 1160 g_free(dram_line);
6868626b 1161
bee2b016 1162 std_session_send_df_end(sdi);
6057d9fa 1163
dde0175d 1164 devc->state.state = SIGMA_IDLE;
d2f7c417 1165 sr_dev_acquisition_stop(sdi);
6057d9fa
MV
1166
1167 return TRUE;
6868626b
BV
1168}
1169
d4051930 1170/*
74d453ab
GS
1171 * Periodically check the Sigma status when in CAPTURE mode. This routine
1172 * checks whether the configured sample count or sample time have passed,
1173 * and will stop acquisition and download the acquired samples.
d4051930
MV
1174 */
1175static int sigma_capture_mode(struct sr_dev_inst *sdi)
6868626b 1176{
f06fb3e9 1177 struct dev_context *devc;
94ba4bd6 1178 uint64_t running_msec;
2f425a56 1179 uint64_t current_time;
28a35d8a 1180
f06fb3e9
GS
1181 devc = sdi->priv;
1182
74d453ab
GS
1183 /*
1184 * Check if the selected sampling duration passed. Sample count
1185 * limits are covered by this enforced timeout as well.
1186 */
2f425a56
GS
1187 current_time = g_get_monotonic_time();
1188 running_msec = (current_time - devc->start_time) / 1000;
00c86508 1189 if (running_msec >= devc->limit_msec)
6057d9fa 1190 return download_capture(sdi);
00c86508 1191
d4051930
MV
1192 return TRUE;
1193}
28a35d8a 1194
3ba56876 1195SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
d4051930
MV
1196{
1197 struct sr_dev_inst *sdi;
1198 struct dev_context *devc;
88c51afe 1199
d4051930
MV
1200 (void)fd;
1201 (void)revents;
88c51afe 1202
d4051930
MV
1203 sdi = cb_data;
1204 devc = sdi->priv;
1205
1206 if (devc->state.state == SIGMA_IDLE)
1207 return TRUE;
1208
dde0175d
GS
1209 /*
1210 * When the application has requested to stop the acquisition,
1211 * then immediately start downloading sample data. Otherwise
1212 * keep checking configured limits which will terminate the
1213 * acquisition and initiate download.
1214 */
1215 if (devc->state.state == SIGMA_STOPPING)
1216 return download_capture(sdi);
d4051930
MV
1217 if (devc->state.state == SIGMA_CAPTURE)
1218 return sigma_capture_mode(sdi);
28a35d8a 1219
28a35d8a
HE
1220 return TRUE;
1221}
1222
c53d793f
HE
1223/* Build a LUT entry used by the trigger functions. */
1224static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
ee492173
HE
1225{
1226 int i, j, k, bit;
1227
ba7dd8bb 1228 /* For each quad channel. */
0a1f7b09 1229 for (i = 0; i < 4; i++) {
c53d793f 1230 entry[i] = 0xffff;
ee492173 1231
f758d074 1232 /* For each bit in LUT. */
0a1f7b09 1233 for (j = 0; j < 16; j++)
ee492173 1234
ba7dd8bb 1235 /* For each channel in quad. */
0a1f7b09 1236 for (k = 0; k < 4; k++) {
ee492173
HE
1237 bit = 1 << (i * 4 + k);
1238
c53d793f 1239 /* Set bit in entry */
0a1f7b09
UH
1240 if ((mask & bit) && ((!(value & bit)) !=
1241 (!(j & (1 << k)))))
c53d793f 1242 entry[i] &= ~(1 << j);
ee492173
HE
1243 }
1244 }
c53d793f 1245}
ee492173 1246
c53d793f
HE
1247/* Add a logical function to LUT mask. */
1248static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1249 int index, int neg, uint16_t *mask)
1250{
1251 int i, j;
1252 int x[2][2], tmp, a, b, aset, bset, rset;
1253
1254 memset(x, 0, 4 * sizeof(int));
1255
1256 /* Trigger detect condition. */
1257 switch (oper) {
1258 case OP_LEVEL:
1259 x[0][1] = 1;
1260 x[1][1] = 1;
1261 break;
1262 case OP_NOT:
1263 x[0][0] = 1;
1264 x[1][0] = 1;
1265 break;
1266 case OP_RISE:
1267 x[0][1] = 1;
1268 break;
1269 case OP_FALL:
1270 x[1][0] = 1;
1271 break;
1272 case OP_RISEFALL:
1273 x[0][1] = 1;
1274 x[1][0] = 1;
1275 break;
1276 case OP_NOTRISE:
1277 x[1][1] = 1;
1278 x[0][0] = 1;
1279 x[1][0] = 1;
1280 break;
1281 case OP_NOTFALL:
1282 x[1][1] = 1;
1283 x[0][0] = 1;
1284 x[0][1] = 1;
1285 break;
1286 case OP_NOTRISEFALL:
1287 x[1][1] = 1;
1288 x[0][0] = 1;
1289 break;
1290 }
1291
1292 /* Transpose if neg is set. */
1293 if (neg) {
0a1f7b09
UH
1294 for (i = 0; i < 2; i++) {
1295 for (j = 0; j < 2; j++) {
c53d793f 1296 tmp = x[i][j];
0a1f7b09
UH
1297 x[i][j] = x[1 - i][1 - j];
1298 x[1 - i][1 - j] = tmp;
c53d793f 1299 }
ea9cfed7 1300 }
c53d793f
HE
1301 }
1302
1303 /* Update mask with function. */
0a1f7b09 1304 for (i = 0; i < 16; i++) {
c53d793f
HE
1305 a = (i >> (2 * index + 0)) & 1;
1306 b = (i >> (2 * index + 1)) & 1;
1307
1308 aset = (*mask >> i) & 1;
1309 bset = x[b][a];
1310
382cb19f 1311 rset = 0;
c53d793f
HE
1312 if (func == FUNC_AND || func == FUNC_NAND)
1313 rset = aset & bset;
1314 else if (func == FUNC_OR || func == FUNC_NOR)
1315 rset = aset | bset;
1316 else if (func == FUNC_XOR || func == FUNC_NXOR)
1317 rset = aset ^ bset;
1318
1319 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1320 rset = !rset;
1321
1322 *mask &= ~(1 << i);
1323
1324 if (rset)
1325 *mask |= 1 << i;
1326 }
1327}
1328
1329/*
1330 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1331 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1332 * set at any time, but a full mask and value can be set (0/1).
1333 */
3ba56876 1334SR_PRIV int sigma_build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
c53d793f
HE
1335{
1336 int i,j;
4ae1f451 1337 uint16_t masks[2] = { 0, 0 };
c53d793f
HE
1338
1339 memset(lut, 0, sizeof(struct triggerlut));
1340
f3f19d11 1341 /* Constant for simple triggers. */
c53d793f
HE
1342 lut->m4 = 0xa000;
1343
1344 /* Value/mask trigger support. */
0e1357e8 1345 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
99965709 1346 lut->m2d);
c53d793f
HE
1347
1348 /* Rise/fall trigger support. */
0a1f7b09 1349 for (i = 0, j = 0; i < 16; i++) {
0e1357e8
BV
1350 if (devc->trigger.risingmask & (1 << i) ||
1351 devc->trigger.fallingmask & (1 << i))
c53d793f
HE
1352 masks[j++] = 1 << i;
1353 }
1354
1355 build_lut_entry(masks[0], masks[0], lut->m0d);
1356 build_lut_entry(masks[1], masks[1], lut->m1d);
1357
1358 /* Add glue logic */
1359 if (masks[0] || masks[1]) {
1360 /* Transition trigger. */
0e1357e8 1361 if (masks[0] & devc->trigger.risingmask)
c53d793f 1362 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1363 if (masks[0] & devc->trigger.fallingmask)
c53d793f 1364 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
0e1357e8 1365 if (masks[1] & devc->trigger.risingmask)
c53d793f 1366 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
0e1357e8 1367 if (masks[1] & devc->trigger.fallingmask)
c53d793f
HE
1368 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1369 } else {
1370 /* Only value/mask trigger. */
1371 lut->m3 = 0xffff;
1372 }
ee492173 1373
c53d793f 1374 /* Triggertype: event. */
ee492173
HE
1375 lut->params.selres = 3;
1376
e46b8fb1 1377 return SR_OK;
ee492173 1378}