]> sigrok.org Git - sigrok-firmware-fx2lafw.git/blobdiff - gpif-acquisition.c
Moved GPIF state generator code into helper functions
[sigrok-firmware-fx2lafw.git] / gpif-acquisition.c
index 0f9cfbe137197c7eae6b2cf6c308b3dd45989bd0..07825b425804959ad1482d280ec4e79d5a22e81e 100644 (file)
@@ -132,48 +132,13 @@ void gpif_init_la(void)
        gpif_acquiring = FALSE;
 }
 
-void gpif_acquisition_start(const struct cmd_start_acquisition *cmd)
+static void gpif_make_delay_data_state(volatile BYTE *pSTATE, uint8_t delay)
 {
-       xdata volatile BYTE *pSTATE;
-
-       /* Ensure GPIF is idle before reconfiguration. */
-       while (!(GPIFTRIG & 0x80));
-
-       /* Set IFCONFIG to the correct clock source. */
-       if (cmd->flags & CMD_START_FLAGS_CLK_48MHZ) {
-               IFCONFIG = bmIFCLKSRC | bm3048MHZ | bmIFCLKOE | bmASYNC |
-                          bmGSTATE | bmIFGPIF;
-       } else {
-               IFCONFIG = bmIFCLKSRC | bmIFCLKOE | bmASYNC |
-                          bmGSTATE | bmIFGPIF;
-       }
-
-       /* GPIF terminology: DP = decision point, NDP = non-decision-point */
-
-       /*
-        * Populate WAVEDATA.
-        *
-        * This is the basic algorithm implemented in our GPIF state machine:
-        *
-        * State 0: NDP: Sample the FIFO data bus.
-        * State 1: DP: If EP2 is full, go to state 7 (the IDLE state), i.e.,
-        *          end the current waveform. Otherwise, go to state 0 again,
-        *          i.e., sample data until EP2 is full.
-        * State 2: Unused.
-        * State 3: Unused.
-        * State 4: Unused.
-        * State 5: Unused.
-        * State 6: Unused.
-        */
-
-       /* Populate S0. */
-       pSTATE = &GPIF_WAVE_DATA;
-
        /*
         * DELAY
         * Delay cmd->sample_delay clocks.
         */
-       pSTATE[0] = cmd->sample_delay;
+       pSTATE[0] = delay;
 
        /*
         * OPCODE
@@ -193,10 +158,10 @@ void gpif_acquisition_start(const struct cmd_start_acquisition *cmd)
         * Not used.
         */
        pSTATE[24] = 0x00;
+}
 
-       /* Populate S1 - the decision point. */
-       pSTATE = &GPIF_WAVE_DATA + 1;
-
+static void gpid_make_dp_state(volatile BYTE *pSTATE)
+{
        /*
         * BRANCH
         * Branch to IDLE if condition is true, back to S0 otherwise.
@@ -221,6 +186,47 @@ void gpif_acquisition_start(const struct cmd_start_acquisition *cmd)
         * LFUNC=0 (AND), TERMA=6 (FIFO Flag), TERMB=6 (FIFO Flag)
         */
        pSTATE[24] = (6 << 3) | (6 << 0);
+}
+
+void gpif_acquisition_start(const struct cmd_start_acquisition *cmd)
+{
+       xdata volatile BYTE *pSTATE;
+
+       /* Ensure GPIF is idle before reconfiguration. */
+       while (!(GPIFTRIG & 0x80));
+
+       /* Set IFCONFIG to the correct clock source. */
+       if (cmd->flags & CMD_START_FLAGS_CLK_48MHZ) {
+               IFCONFIG = bmIFCLKSRC | bm3048MHZ | bmIFCLKOE | bmASYNC |
+                          bmGSTATE | bmIFGPIF;
+       } else {
+               IFCONFIG = bmIFCLKSRC | bmIFCLKOE | bmASYNC |
+                          bmGSTATE | bmIFGPIF;
+       }
+
+       /* GPIF terminology: DP = decision point, NDP = non-decision-point */
+
+       /*
+        * Populate WAVEDATA.
+        *
+        * This is the basic algorithm implemented in our GPIF state machine:
+        *
+        * State 0: NDP: Sample the FIFO data bus.
+        * State 1: DP: If EP2 is full, go to state 7 (the IDLE state), i.e.,
+        *          end the current waveform. Otherwise, go to state 0 again,
+        *          i.e., sample data until EP2 is full.
+        * State 2: Unused.
+        * State 3: Unused.
+        * State 4: Unused.
+        * State 5: Unused.
+        * State 6: Unused.
+        */
+
+       /* Populate S0 */
+       gpif_make_delay_data_state(&GPIF_WAVE_DATA, cmd->sample_delay);
+
+       /* Populate S1 - the decision point. */
+       gpid_make_dp_state(&GPIF_WAVE_DATA + 1);
 
        /* Execute the whole GPIF waveform once. */
        gpif_set_tc16(1);