PulseView  0.3.0
A Qt-based sigrok GUI
analogsegment.cpp
Go to the documentation of this file.
1 /*
2  * This file is part of the PulseView project.
3  *
4  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include <extdef.h>
22 
23 #include <assert.h>
24 #include <string.h>
25 #include <stdlib.h>
26 #include <cmath>
27 
28 #include <algorithm>
29 
30 #include "analogsegment.hpp"
31 
32 using std::lock_guard;
33 using std::recursive_mutex;
34 using std::max;
35 using std::max_element;
36 using std::min;
37 using std::min_element;
38 
39 namespace pv {
40 namespace data {
41 
43 const int AnalogSegment::EnvelopeScaleFactor = 1 << EnvelopeScalePower;
45  logf(EnvelopeScaleFactor);
46 const uint64_t AnalogSegment::EnvelopeDataUnit = 64*1024; // bytes
47 
49  uint64_t samplerate, const uint64_t expected_num_samples) :
50  Segment(samplerate, sizeof(float))
51 {
52  set_capacity(expected_num_samples);
53 
54  lock_guard<recursive_mutex> lock(mutex_);
55  memset(envelope_levels_, 0, sizeof(envelope_levels_));
56 }
57 
59 {
60  lock_guard<recursive_mutex> lock(mutex_);
61  for (Envelope &e : envelope_levels_)
62  free(e.samples);
63 }
64 
66  size_t sample_count, size_t stride)
67 {
68  assert(unit_size_ == sizeof(float));
69 
70  lock_guard<recursive_mutex> lock(mutex_);
71 
72  // If we're out of memory, this will throw std::bad_alloc
73  data_.resize((sample_count_ + sample_count) * sizeof(float));
74 
75  float *dst = (float*)data_.data() + sample_count_;
76  const float *dst_end = dst + sample_count;
77  while (dst != dst_end) {
78  *dst++ = *data;
79  data += stride;
80  }
81 
82  sample_count_ += sample_count;
83 
84  // Generate the first mip-map from the data
86 }
87 
89  int64_t start_sample, int64_t end_sample) const
90 {
91  assert(start_sample >= 0);
92  assert(start_sample < (int64_t)sample_count_);
93  assert(end_sample >= 0);
94  assert(end_sample < (int64_t)sample_count_);
95  assert(start_sample <= end_sample);
96 
97  lock_guard<recursive_mutex> lock(mutex_);
98 
99  float *const data = new float[end_sample - start_sample];
100  memcpy(data, (float*)data_.data() + start_sample, sizeof(float) *
101  (end_sample - start_sample));
102  return data;
103 }
104 
106  uint64_t start, uint64_t end, float min_length) const
107 {
108  assert(end <= get_sample_count());
109  assert(start <= end);
110  assert(min_length > 0);
111 
112  lock_guard<recursive_mutex> lock(mutex_);
113 
114  const unsigned int min_level = max((int)floorf(logf(min_length) /
115  LogEnvelopeScaleFactor) - 1, 0);
116  const unsigned int scale_power = (min_level + 1) *
118  start >>= scale_power;
119  end >>= scale_power;
120 
121  s.start = start << scale_power;
122  s.scale = 1 << scale_power;
123  s.length = end - start;
124  s.samples = new EnvelopeSample[s.length];
125  memcpy(s.samples, envelope_levels_[min_level].samples + start,
126  s.length * sizeof(EnvelopeSample));
127 }
128 
130 {
131  const uint64_t new_data_length = ((e.length + EnvelopeDataUnit - 1) /
133  if (new_data_length > e.data_length) {
134  e.data_length = new_data_length;
135  e.samples = (EnvelopeSample*)realloc(e.samples,
136  new_data_length * sizeof(EnvelopeSample));
137  }
138 }
139 
141 {
142  Envelope &e0 = envelope_levels_[0];
143  uint64_t prev_length;
144  EnvelopeSample *dest_ptr;
145 
146  // Expand the data buffer to fit the new samples
147  prev_length = e0.length;
149 
150  // Break off if there are no new samples to compute
151  if (e0.length == prev_length)
152  return;
153 
155 
156  dest_ptr = e0.samples + prev_length;
157 
158  // Iterate through the samples to populate the first level mipmap
159  const float *const end_src_ptr = (float*)data_.data() +
161  for (const float *src_ptr = (float*)data_.data() +
162  prev_length * EnvelopeScaleFactor;
163  src_ptr < end_src_ptr; src_ptr += EnvelopeScaleFactor) {
164  const EnvelopeSample sub_sample = {
165  *min_element(src_ptr, src_ptr + EnvelopeScaleFactor),
166  *max_element(src_ptr, src_ptr + EnvelopeScaleFactor),
167  };
168 
169  *dest_ptr++ = sub_sample;
170  }
171 
172  // Compute higher level mipmaps
173  for (unsigned int level = 1; level < ScaleStepCount; level++) {
174  Envelope &e = envelope_levels_[level];
175  const Envelope &el = envelope_levels_[level-1];
176 
177  // Expand the data buffer to fit the new samples
178  prev_length = e.length;
180 
181  // Break off if there are no more samples to computed
182  if (e.length == prev_length)
183  break;
184 
186 
187  // Subsample the level lower level
188  const EnvelopeSample *src_ptr =
189  el.samples + prev_length * EnvelopeScaleFactor;
190  const EnvelopeSample *const end_dest_ptr = e.samples + e.length;
191  for (dest_ptr = e.samples + prev_length;
192  dest_ptr < end_dest_ptr; dest_ptr++) {
193  const EnvelopeSample *const end_src_ptr =
194  src_ptr + EnvelopeScaleFactor;
195 
196  EnvelopeSample sub_sample = *src_ptr++;
197  while (src_ptr < end_src_ptr) {
198  sub_sample.min = min(sub_sample.min, src_ptr->min);
199  sub_sample.max = max(sub_sample.max, src_ptr->max);
200  src_ptr++;
201  }
202 
203  *dest_ptr = sub_sample;
204  }
205  }
206 }
207 
208 } // namespace data
209 } // namespace pv
void append_interleaved_samples(const float *data, size_t sample_count, size_t stride)
static const uint64_t EnvelopeDataUnit
const float * get_samples(int64_t start_sample, int64_t end_sample) const
static const unsigned int ScaleStepCount
void get_envelope_section(EnvelopeSection &s, uint64_t start, uint64_t end, float min_length) const
uint64_t sample_count_
Definition: segment.hpp:82
void set_capacity(uint64_t new_capacity)
Increase the capacity of the segment.
Definition: segment.cpp:75
std::vector< uint8_t > data_
Definition: segment.hpp:81
static const int EnvelopeScalePower
uint64_t get_sample_count() const
Definition: segment.cpp:49
void reallocate_envelope(Envelope &l)
AnalogSegment(uint64_t samplerate, uint64_t expected_num_samples=0)
static const int EnvelopeScaleFactor
std::recursive_mutex mutex_
Definition: segment.hpp:80
struct Envelope envelope_levels_[ScaleStepCount]
static const float LogEnvelopeScaleFactor
unsigned int unit_size_
Definition: segment.hpp:86