]> sigrok.org Git - sigrok-firmware-fx2lafw.git/blobdiff - gpif-acquisition.c
Add Hantek PSO2020 firmware support
[sigrok-firmware-fx2lafw.git] / gpif-acquisition.c
index 44adc26ea846c9e28def27e1893bd38259fd53f4..c6ba52a0939fc81474bb29ee0d7ca3f700f6dbed 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * This file is part of the fx2lafw project.
+ * This file is part of the sigrok-firmware-fx2lafw project.
  *
  * Copyright (C) 2011-2012 Uwe Hermann <uwe@hermann-uwe.de>
  * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
  * GNU General Public License for more details.
  *
  * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
+ * along with this program; if not, see <http://www.gnu.org/licenses/>.
  */
 
+#include <eputils.h>
 #include <fx2regs.h>
 #include <fx2macros.h>
 #include <delay.h>
 #include <gpif.h>
-
 #include <fx2lafw.h>
 #include <gpif-acquisition.h>
 
+enum gpif_status gpif_acquiring = STOPPED;
+
 static void gpif_reset_waveforms(void)
 {
        int i;
@@ -44,15 +45,12 @@ static void gpif_setup_registers(void)
        /* TODO. Value probably irrelevant, as we don't use RDY* signals? */
        GPIFREADYCFG = 0;
 
-       /*
-        * Set TRICTL = 0, thus CTL0-CTL5 are CMOS outputs.
-        * TODO: Probably irrelevant, as we don't use CTL0-CTL5?
-        */
+       /* Set TRICTL = 0, thus CTL0-CTL5 are CMOS outputs. */
        GPIFCTLCFG = 0;
 
        /* When GPIF is idle, tri-state the data bus. */
        /* Bit 7: DONE, bit 0: IDLEDRV. TODO: Set/clear DONE bit? */
-       GPIFIDLECS = (1 << 0);
+       GPIFIDLECS = (0 << 0);
 
        /* When GPIF is idle, set CTL0-CTL5 to 0. */
        GPIFIDLECTL = 0;
@@ -64,10 +62,13 @@ static void gpif_setup_registers(void)
         * GPIFWFSELECT: [7:6] = SINGLEWR index, [5:4] = SINGLERD index,
         *               [3:2] = FIFOWR index, [1:0] = FIFORD index
         */
-       GPIFWFSELECT = (0x3 << 6) | (0x2 << 4) | (0x1 << 2) | (0x0 << 0);
+       GPIFWFSELECT = (0x3u << 6) | (0x2u << 4) | (0x1u << 2) | (0x0u << 0);
 
        /* Contains RDY* pin values. Read-only according to TRM. */
        GPIFREADYSTAT = 0;
+
+       /* Make GPIF stop on transaction count not flag. */
+       EP2GPIFPFSTOP = (0 << 0);
 }
 
 static void gpif_init_addr_pins(void)
@@ -122,52 +123,162 @@ void gpif_init_la(void)
 
        /* Initialize flowstate registers (not used by us). */
        gpif_init_flowstates();
+
+       /* Reset the status. */
+       gpif_acquiring = STOPPED;
 }
 
-void gpif_acquisition_start(void)
+static void gpif_make_delay_state(volatile BYTE *pSTATE, uint8_t delay, uint8_t output)
 {
-       xdata volatile BYTE *pSTATE;
+       /*
+        * DELAY
+        * Delay cmd->sample_delay clocks.
+        */
+       pSTATE[0] = delay;
 
-       /* GPIF terminology: DP = decision point, NDP = non-decision-point */
+       /*
+        * OPCODE
+        * SGL=0, GIN=0, INCAD=0, NEXT=0, DATA=0, DP=0
+        */
+       pSTATE[8] = 0;
 
-       /* Populate WAVEDATA
-        *
-        * This is the basic algorithm implemented in our GPIF state machine:
-        *
-        * State 0: NDP: Sample the FIFO data bus.
-        * State 1: DP: If EP2 is full, go to state 7 (the IDLE state), i.e.,
-        *          end the current waveform. Otherwise, go to state 0 again,
-        *          i.e., sample data until EP2 is full.
-        * State 2: Unused.
-        * State 3: Unused.
-        * State 4: Unused.
-        * State 5: Unused.
-        * State 6: Unused.
+       /*
+        * OUTPUT
+        * CTL[0:5]=output
         */
+       pSTATE[16] = output;
 
-       /* Populate S0 */
-       pSTATE = &GPIF_WAVE_DATA;
-       pSTATE[0] = 0x01;
-       pSTATE[8] = 0x02;
-       pSTATE[16] = 0x00;
+       /*
+        * LOGIC FUNCTION
+        * Not used.
+        */
        pSTATE[24] = 0x00;
+}
 
-       /* Populate S1 */
-       pSTATE = &GPIF_WAVE_DATA + 1;
-       pSTATE[0] = 0x00;
-       pSTATE[8] = 0x01;
-       pSTATE[16] = 0x00;
-       pSTATE[24] = 0x36;
+static void gpif_make_data_dp_state(volatile BYTE *pSTATE)
+{
+       /*
+        * BRANCH
+        * Branch to IDLE if condition is true, back to S0 otherwise.
+        */
+       pSTATE[0] = (1u << 7) | (7u << 3) | (0u << 0);
 
-       /* Populate Reserved Words */
-       pSTATE = &GPIF_WAVE_DATA + 7;
-       pSTATE[0] = 0x07;
-       pSTATE[8] = 0x00;
+       /*
+        * OPCODE
+        * SGL=0, GIN=0, INCAD=0, NEXT=0, DATA=1, DP=1
+        */
+       pSTATE[8] = (1 << 1) | (1 << 0);
+
+       /*
+        * OUTPUT
+        * CTL[0:5]=0
+        */
        pSTATE[16] = 0x00;
-       pSTATE[24] = 0x3f;
 
+       /*
+        * LOGIC FUNCTION
+        * Evaluate if the FIFO full flag is set.
+        * LFUNC=0 (AND), TERMA=6 (FIFO Flag), TERMB=6 (FIFO Flag)
+        */
+       pSTATE[24] = (6 << 3) | (6 << 0);
+}
+
+bool gpif_acquisition_prepare(const struct cmd_start_acquisition *cmd)
+{
+       int i;
+       volatile BYTE *pSTATE = &GPIF_WAVE_DATA;
+
+       /* Ensure GPIF is idle before reconfiguration. */
+       while (!(GPIFTRIG & 0x80));
+
+       /* Configure the EP2 FIFO. */
+       if (cmd->flags & CMD_START_FLAGS_SAMPLE_16BIT)
+               EP2FIFOCFG = bmAUTOIN | bmWORDWIDE;
+       else
+               EP2FIFOCFG = bmAUTOIN;
        SYNCDELAY();
 
+       /* Set IFCONFIG to the correct clock source. */
+       if (cmd->flags & CMD_START_FLAGS_CLK_48MHZ) {
+               IFCONFIG = bmIFCLKSRC | bm3048MHZ | bmIFCLKOE | bmASYNC |
+                          bmGSTATE | bmIFGPIF;
+       } else {
+               IFCONFIG = bmIFCLKSRC | bmIFCLKOE | bmASYNC |
+                          bmGSTATE | bmIFGPIF;
+       }
+
+       /* Populate delay states. */
+       if (cmd->sample_delay_h >= 6)
+               return false;
+
+       if (cmd->flags & CMD_START_FLAGS_CLK_CTL2) {
+               uint8_t delay_1, delay_2 = cmd->sample_delay_l;
+
+               /* We need a pulse where the CTL1/2 pins alternate states. */
+               if (cmd->sample_delay_h) {
+                       for (i = 0; i < cmd->sample_delay_h; i++)
+                               gpif_make_delay_state(pSTATE++, 0, 0x06);
+               } else {
+                       delay_1 = delay_2 / 2;
+                       delay_2 -= delay_1;
+                       gpif_make_delay_state(pSTATE++, delay_1, 0x06);
+               }
+
+               /* sample_delay_l is always != 0 for the supported rates. */
+               gpif_make_delay_state(pSTATE++, delay_2, 0x00);
+       } else {
+               for (i = 0; i < cmd->sample_delay_h; i++)
+                       gpif_make_delay_state(pSTATE++, 0, 0x00);
+
+               if (cmd->sample_delay_l != 0)
+                       gpif_make_delay_state(pSTATE++, cmd->sample_delay_l, 0x00);
+       }
+
+       /* Populate S1 - the decision point. */
+       gpif_make_data_dp_state(pSTATE++);
+
+       /* Update the status. */
+       gpif_acquiring = PREPARED;
+
+       return true;
+}
+
+void gpif_acquisition_start(void)
+{
+       /* Execute the whole GPIF waveform once. */
+       gpif_set_tc16(1);
+
        /* Perform the initial GPIF read. */
        gpif_fifo_read(GPIF_EP2);
+
+       /* Update the status. */
+       gpif_acquiring = RUNNING;
+}
+
+void gpif_poll(void)
+{
+       /* Detect if acquisition has completed. */
+       if ((gpif_acquiring == RUNNING) && (GPIFTRIG & 0x80)) {
+               /* Activate NAK-ALL to avoid race conditions. */
+               FIFORESET = 0x80;
+               SYNCDELAY();
+
+               /* Switch to manual mode. */
+               EP2FIFOCFG = 0;
+               SYNCDELAY();
+
+               /* Reset EP2. */
+               FIFORESET = 0x02;
+               SYNCDELAY();
+
+               /* Return to auto mode. */
+               EP2FIFOCFG = bmAUTOIN;
+               SYNCDELAY();
+
+               /* Release NAK-ALL. */
+               FIFORESET = 0x00;
+               SYNCDELAY();
+
+               gpif_acquiring = STOPPED;
+       }
 }